9,792 research outputs found

    On-Body Channel Measurement Using Wireless Sensors

    Get PDF
    © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This post-acceptance version of the paper is essentially complete, but may differ from the official copy of record, which can be found at the following web location (subscription required to access full paper): http://dx.doi.org/10.1109/TAP.2012.219693

    Design of a Finger Ring Antenna for Wireless Sensor Networks

    Get PDF
    Body-centric communications have become very active area of research due to ever-growing demand of portability. Advanced applications such as; health monitoring, tele-medicine, identification systems, performance monitoring of athletes, defence systems and personal entertainment are adding to its popularity. In this paper, a novel wearable antenna radiating at 5 GHz for the body-centric wireless sensor networks has been presented. The antenna consists of a conventional microstrip patch mounted on a gold base and could be worn in a finger like a ring. CST Microwave Studio is used for modelling, simulation and optimisation of the antenna. The simulated results show that the proposed antenna has a -10 dB bandwidth of 90.3 MHz with peak gain of 6.9 dBi. Good performance in terms of bandwidth, directivity, gain, return loss and radiation characteristics, along with a miniaturised form factor makes it a very well suited candidate for the body-worn wireless sensor applications

    Mathematical modeling of ultra wideband in vivo radio channel

    Get PDF
    This paper proposes a novel mathematical model for an in vivo radio channel at ultra-wideband frequencies (3.1–10.6 GHz), which can be used as a reference model for in vivo channel response without performing intensive experiments or simulations. The statistics of error prediction between experimental and proposed model is RMSE = 5.29, which show the high accuracy of the proposed model. Also, the proposed model was applied to the blind data, and the statistics of error prediction is RMSE = 7.76, which also shows a reasonable accuracy of the model. This model will save the time and cost on simulations and experiments, and will help in designing an accurate link budget calculation for a future enhanced system for ultra-wideband body-centric wireless systems

    Novel small-size directional antenna for UWB WBAN/WPAN applications

    Get PDF

    Multiple Antenna Techniques for Terahertz Nano-Bio Communication

    Get PDF
    Using higher frequency bands becomes an essential demand resulting from the explosive wireless traffic needs and the spectrum shortage of the currently used bands. This paper presents an overview on the terahertz technology and its application in the area of multi-input multi-output antenna system and in-vivo nano-communication. In addition, it presents a preliminary study on applying multiple input-single output (MISO) antenna technique to investigate the signal propagation and antenna diversity techniques inside the human skin tissues, which is represented by three layers: stratum corneum (SC), epidermis, and dermis layers, in the terahertz (THz) frequency range (0.8-1.2) THz. The spatial antenna diversity is investigated in this study to understand MISO system performance for two different in-vivo channels resulting from the signal propagation between two transmitting antennas, located at the dermis layer, and one receiving antenna, located at epidermis layer. Three techniques are investigated: selection combining (SC), equal-gain combing (EGC), and maximum-ratio combining (MRC). The initial study indicates that using multiple antenna technique with THz might be not useful for in-vivo nano-communication
    corecore