255 research outputs found

    A Dynamic Multimedia User-Weight Classification Scheme for IEEE_802.11 WLANs

    Full text link
    In this paper we expose a dynamic traffic-classification scheme to support multimedia applications such as voice and broadband video transmissions over IEEE 802.11 Wireless Local Area Networks (WLANs). Obviously, over a Wi-Fi link and to better serve these applications - which normally have strict bounded transmission delay or minimum link rate requirement - a service differentiation technique can be applied to the media traffic transmitted by the same mobile node using the well-known 802.11e Enhanced Distributed Channel Access (EDCA) protocol. However, the given EDCA mode does not offer user differentiation, which can be viewed as a deficiency in multi-access wireless networks. Accordingly, we propose a new inter-node priority access scheme for IEEE 802.11e networks which is compatible with the EDCA scheme. The proposed scheme joins a dynamic user-weight to each mobile station depending on its outgoing data, and therefore deploys inter-node priority for the channel access to complement the existing EDCA inter-frame priority. This provides efficient quality of service control across multiple users within the same coverage area of an access point. We provide performance evaluations to compare the proposed access model with the basic EDCA 802.11 MAC protocol mode to elucidate the quality improvement achieved for multimedia communication over 802.11 WLANs.Comment: 15 pages, 8 figures, 3 tables, International Journal of Computer Networks & Communications (IJCNC

    A control theoretic approach to achieve proportional fairness in 802.11e EDCA WLANs

    Get PDF
    This paper considers proportional fairness amongst ACs in an EDCA WLAN for provision of distinct QoS requirements and priority parameters. A detailed theoretical analysis is provided to derive the optimal station attempt probability which leads to a proportional fair allocation of station throughputs. The desirable fairness can be achieved using a centralised adaptive control approach. This approach is based on multivariable statespace control theory and uses the Linear Quadratic Integral (LQI) controller to periodically update CWmin till the optimal fair point of operation. Performance evaluation demonstrates that the control approach has high accuracy performance and fast convergence speed for general network scenarios. To our knowledge this might be the first time that a closed-loop control system is designed for EDCA WLANs to achieve proportional fairness

    Delay-aware Link Scheduling and Routing in Wireless Mesh Networks

    Get PDF
    Resource allocation is a critical task in computer networks because of their capital-intensive nature. In this thesis we apply operations research tools and technologies to model, solve and analyze resource allocation problems in computer networks with real-time traffic. We first study Wireless Mesh Networks, addressing the problem of link scheduling with end-to-end delay constraints. Exploiting results obtained with the Network Calculus framework, we formulate the problem as an integer non-linear optimization problem. We show that the feasibility of a link schedule does depend on the aggregation framework. We also address the problem of jointly solving the routing and link scheduling problem optimally, taking into account end-to-end delay guarantees. We provide guidelines and heuristics. As a second contribution, we propose a time division approach in CSMA MAC protocols in the context of 802.11 WLANs. By grouping wireless clients and scheduling time slots to these groups, not only the delay of packet transmission can be decreased, but also the goodput of multiple WLANs can be largely increased. Finally, we address a resource allocation problem in wired networks for guaranteed-delay traffic engineering. We formulate and solve the problem under different latency models. Global optimization let feasible schedules to be computed with instances where local resource allocation schemes would fail. We show that this is the case even with a case-study network, and at surprisingly low average loads

    Control-theoretic approaches for efficient transmission on IEEE 802.11e wireless networks

    Get PDF
    With the increasing use of multimedia applications on the wireless network, the functionalities of the IEEE 802.11 WLAN was extended to allow traffic differentiation so that priority traffic gets quicker service time depending on their Quality of Service (QoS) requirements. The extended functionalities contained in the IEEE Medium Access Control (MAC) and Physical Layer (PHY) Specifications, i.e. the IEEE 802.11e specifications, are recommended values for channel access parameters along traffic lines and the channel access parameters are: the Minimum Contention Window CWmin, Maximum Contention Window CWmax, Arbitration inter-frame space number, (AIFSN) and the Transmission Opportunity (TXOP). These default Enhanced Distributed Channel Access (EDCA) contention values used by each traffic type in accessing the wireless medium are only recommended values which could be adjusted or changed based on the condition of number of associated nodes on the network. In particular, we focus on the Contention Window (CW) parameter and it has been shown that when the number of nodes on the network is small, a smaller value of CWmin should be used for channel access in order to avoid underutilization of channel time and when the number of associated nodes is large, a larger value of CWmin should be used in order to avoid large collisions and retransmissions on the network. Fortunately, allowance was made for these default values to be adjusted or changed but the challenge has been in designing an algorithm that constantly and automatically tunes the CWmin value so that the Access Point (AP) gives out the right CWmin value to be used on the WLAN and this value should be derived based on the level of activity experienced on the network or predefined QoS constraints while considering the dynamic nature of the WLAN. In this thesis, we propose the use of feedback based control and we design a controller for wireless medium access. The controller will give an output which will be the EDCA CWmin value to be used by contending stations/nodes in accessing the medium and this value will be based on current WLAN conditions. We propose the use of feedback control due to its established mathematical concepts particularly for single-input-single-output systems and multi-variable systems which are scenarios that apply to the WLAN

    VoIP Call Admission Control in WLANs in Presence of Elastic Traffic

    Get PDF
    VoIP service over WLAN networks is a promising alternative to provide mobile voice communications. However, several performance problems appear due to i) heavy protocol overheads, ii) unfairness and asymmetry between the uplink and downlink flows, and iii) the coexistence with other traffic flows. This paper addresses the performance of VoIP communications with simultaneous presence of bidirectional TCP traffic, and shows how the presence of elastic flows drastically reduces the capacity of the system. To solve this limitation a simple solution is proposed using an adaptive Admission and Rate Control algorithm which tunes the BEB (Binary Exponential Backoff) parameters. Analytical results are obtained by using an IEEE 802.11e user centric queuing model based on a bulk service M=G[1;B]=1=K queue, which is able to capture the main dynamics of the EDCA-based traffic differentiation parameters (AIFS, BEB and TXOP). The results show that the improvement achieved by our scheme on the overall VoIP performance is significant

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Performance Modeling and Analysis of Wireless Local Area Networks with Bursty Traffic

    Get PDF
    The explosive increase in the use of mobile digital devices has posed great challenges in the design and implementation of Wireless Local Area Networks (WLANs). Ever-increasing demands for high-speed and ubiquitous digital communication have made WLANs an essential feature of everyday life. With audio and video forming the highest percentage of traffic generated by multimedia applications, a huge demand is placed for high speed WLANs that provide high Quality-of-Service (QoS) and can satisfy end user’s needs at a relatively low cost. Providing video and audio contents to end users at a satisfactory level with various channel quality and current battery capacities requires thorough studies on the properties of such traffic. In this regard, Medium Access Control (MAC) protocol of the 802.11 standard plays a vital role in the management and coordination of shared channel access and data transmission. Therefore, this research focuses on developing new efficient analytical models that evaluate the performance of WLANs and the MAC protocol in the presence of bursty, correlated and heterogeneous multimedia traffic using Batch Markovian Arrival Process (BMAP). BMAP can model the correlation between different packet size distributions and traffic rates while accurately modelling aggregated traffic which often possesses negative statistical properties. The research starts with developing an accurate traffic generator using BMAP to capture the existing correlations in multimedia traffics. For validation, the developed traffic generator is used as an arrival process to a queueing model and is analyzed based on average queue length and mean waiting time. The performance of BMAP/M/1 queue is studied under various number of states and maximum batch sizes of BMAP. The results clearly indicate that any increase in the number of states of the underlying Markov Chain of BMAP or maximum batch size, lead to higher burstiness and correlation of the arrival process, prompting the speed of the queue towards saturation. The developed traffic generator is then used to model traffic sources in IEEE 802.11 WLANs, measuring important QoS metrics of throughput, end-to-end delay, frame loss probability and energy consumption. Performance comparisons are conducted on WLANs under the influence of multimedia traffics modelled as BMAP, Markov Modulated Poisson Process and Poisson Process. The results clearly indicate that bursty traffics generated by BMAP demote network performance faster than other traffic sources under moderate to high loads. The model is also used to study WLANs with unsaturated, heterogeneous and bursty traffic sources. The effects of traffic load and network size on the performance of WLANs are investigated to demonstrate the importance of burstiness and heterogeneity of traffic on accurate evaluation of MAC protocol in wireless multimedia networks. The results of the thesis highlight the importance of taking into account the true characteristics of multimedia traffics for accurate evaluation of the MAC protocol in the design and analysis of wireless multimedia networks and technologies
    corecore