45 research outputs found

    Modulation Scheme Analysis for Low-Power Leadless Pacemaker Synchronization Based on Conductive Intracardiac Communication

    Get PDF
    Conductive intracardiac communication (CIC) has been demonstrated as a promising concept for the synchronization of multi-chamber leadless cardiac pacemakers (LLPMs). To meet the 2–5 μ W power budget of a LLPM, highly specialized CIC-transceivers, which make optimal use of the cardiac communication channel, need to be developed. However, a detailed investigation of the optimal communication parameters for CIC-based LLPM synchronization is missing so far. This work analyzes the intracardiac communication performance of two low-power modulation techniques, namely On-Off-Keying (OOK) and Manchester-encoded baseband transmission (BB-MAN), as a function of the transmitted bit-energy. The bit error rate (BER) of a prototype dual-chamber LLPM was determined both in simulation and in-vitro experiments on porcine hearts. A BER of 1e − 4 was achieved with a median bit-energy in the range of 3-16 pJ (interquartile range: 4-15 pJ) for data rates from 75-500 kbps and a receiver input noise density of 7 nV/ √Hz . Both modulation schemes showed comparable performance, with BB-MAN having a slight bit-energy advantage (1-2 dB at 150-500 kbps) under equalized transceiver characteristics. This study demonstrates that reliable CIC-based LLPM synchronization is feasible at transmitted power levels < 10 nW under realistic channel conditions and receiver noise performance. Therefore, modulation techniques such, as BB-MAN or OOK, are preferable over recently proposed alternatives, such as pulse position modulation or conductive impulse signaling, since they can be realized with fewer hardware resources and smaller bandwidth requirements. Ultimately, a baseband communication approach might be favored over OOK, due to the more efficient cardiac signal transmission and reduced transceiver complexity

    Design and performance analysis of human body communication digital transceiver for wireless body area network applications

    Get PDF
    Wireless body area network (WBAN) is a prominent technology for resolving health-care concerns and providing high-speed continuous monitoring and real-time help. Human body communication (HBC) is an IEEE 802.15.6 physical layer standard for short-range communications that is not reliant on radio frequency (RF). Most WBAN applications can benefit from the HBC's low-latency and low-power architectural features. In this manuscript, an efficient digital HBC transceiver (TR) hardware architecture is designed as per IEEE 802.15.6 standard to overcome the drawbacks of the RF-wireless communication standards like signal leakage, on body antenna and power consumption. The design is created using a frequency selective digital transmission scheme for transmitter and receiver modules. The design resources are analyzed using different field programmable gate array (FPGA) families. The HBC TR utilizes &lt;1% slices, consumes 101 mW power, and provides a throughput of 24.31 Mbps on Artix-7 FPGA with a latency of 10.5 clock cycles. In addition, the less than 10-4bit error rate of HBC is achieved with a 9.52 Mbps data rate. The proposed work is compared with existing architectures with significant improvement in performance parameters like chip area, power, and data rate

    Affinity-Division Multiplexing for Molecular Communications with Promiscuous Ligand Receptors

    Full text link
    A key challenge in Molecular Communications (MC) is low data transmission rates, which can be addressed by channel multiplexing techniques. One way to achieve channel multiplexing in MC is to leverage the diversity of different molecule types with respect to their receptor binding characteristics, such as affinity and kinetic binding/unbinding rates. In this study, we propose a practical multiplexing scheme for MC, which is based on the diversity of ligand-receptor binding affinities. This method requires only a single type of promiscuous receptor on the receiver side, capable of interacting with multiple ligand types. We analytically derive the mean Bit Error Probability (BEP) over all multiplexed MC channels as a function of similarity among ligands in terms of their receptor affinities, the number of receptors, the number of multiplexed channels, and the ratio of concentrations encoding bit-1 and bit-0. We investigate the impact of each design parameter on the performance of multiplexed MC system
    corecore