5 research outputs found

    Characteristic of Rings. Prime Fields

    Get PDF
    The notion of the characteristic of rings and its basic properties are formalized [14], [39], [20]. Classification of prime fields in terms of isomorphisms with appropriate fields (ℚ or ℤ/p) are presented. To facilitate reasonings within the field of rational numbers, values of numerators and denominators of basic operations over rationals are computed.Christoph Schwarzweller - Institute of Computer Science, University of Gdańsk, PolandArtur Korniłowicz - Institute of Informatics, University of Białystok, PolandJonathan Backer, Piotr Rudnicki, and Christoph Schwarzweller. Ring ideals. Formalized Mathematics, 9(3):565–582, 2001.Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41–46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433–439, 1990.Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1): 55–65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164, 1990.Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53, 1990.Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. Set of points on elliptic curve in projective coordinates. Formalized Mathematics, 19(3):131–138, 2011. doi:10.2478/v10037-011-0021-6. [Crossref]Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, and Yasunari Shidama. Gaussian integers. Formalized Mathematics, 21(2):115–125, 2013. doi:10.2478/forma-2013-0013. [Crossref]Nathan Jacobson. Basic Algebra I. 2nd edition. Dover Publications Inc., 2009.Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5): 841–845, 1990.Artur Korniłowicz and Christoph Schwarzweller. The first isomorphism theorem and other properties of rings. Formalized Mathematics, 22(4):291–301, 2014. doi:10.2478/forma-2014-0029. [Crossref]Jarosław Kotowicz. Quotient vector spaces and functionals. Formalized Mathematics, 11 (1):59–68, 2003.Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relatively primes. Formalized Mathematics, 1(5):829–832, 1990.Heinz Lüneburg. Die grundlegenden Strukturen der Algebra (in German). Oldenbourg Wisenschaftsverlag, 1999.Anna Justyna Milewska. The field of complex numbers. Formalized Mathematics, 9(2): 265–269, 2001.Michał Muzalewski. Opposite rings, modules and their morphisms. Formalized Mathematics, 3(1):57–65, 1992.Michał Muzalewski. Category of rings. Formalized Mathematics, 2(5):643–648, 1991.Michał Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring. Formalized Mathematics, 2(1):3–11, 1991.Michał Muzalewski and Wojciech Skaba. From loops to Abelian multiplicative groups with zero. Formalized Mathematics, 1(5):833–840, 1990.Karol Pąk. Linear map of matrices. Formalized Mathematics, 16(3):269–275, 2008. doi:10.2478/v10037-008-0032-0. [Crossref]Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559–564, 2001.Christoph Schwarzweller. The correctness of the generic algorithms of Brown and Henrici concerning addition and multiplication in fraction fields. Formalized Mathematics, 6(3): 381–388, 1997.Christoph Schwarzweller. The ring of integers, Euclidean rings and modulo integers. Formalized Mathematics, 8(1):29–34, 1999.Christoph Schwarzweller. The field of quotients over an integral domain. Formalized Mathematics, 7(1):69–79, 1998.Yasunari Shidama, Hikofumi Suzuki, and Noboru Endou. Banach algebra of bounded functionals. Formalized Mathematics, 16(2):115–122, 2008. doi:10.2478/v10037-008-0017-z. [Crossref]Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1): 115–122, 1990.Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4): 341–347, 2003.Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821–827, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296, 1990.Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573–578, 1991.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.B.L. van der Waerden. Algebra I. 4th edition. Springer, 2003.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1 (1):73–83, 1990

    Formally Real Fields

    Get PDF
    Summary We extend the algebraic theory of ordered fields [7, 6] in Mizar [1, 2, 3]: we show that every preordering can be extended into an ordering, i.e. that formally real and ordered fields coincide.We further prove some characterizations of formally real fields, in particular the one by Artin and Schreier using sums of squares [4]. In the second part of the article we define absolute values and the square root function [5].Institute of Informatics, Faculty of Mathematics, Physics and Informatics, University of Gdansk Wita Stwosza 57, 80-308 Gdansk, PolandGrzegorz Bancerek, Czesław Bylinski, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pak, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261-279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi: 10.1007/978-3-319-20615-8 17.Adam Grabowski, Artur Korniłowicz, and Adam Naumowicz. Four decades of Mizar. Journal of Automated Reasoning, 55(3):191-198, 2015. doi: 10.1007/s10817-015-9345-1.Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. On algebraic hierarchies in mathematical repository of Mizar. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Infor mation Systems (FedCSIS), volume 8 of Annals of Computer Science and Information Systems, pages 363-371, 2016. doi: 10.15439/2016F520.Nathan Jacobson. Lecture Notes in Abstract Algebra, III. Theory of Fields and Galois Theory. Springer-Verlag, 1964.Manfred Knebusch and Claus Scheiderer. Einf¨uhrung in die reelle Algebra. Vieweg-Verlag, 1989.Alexander Prestel. Lectures on Formally Real Fields. Springer-Verlag, 1984.Knut Radbruch. Geordnete K¨orper. Lecture Notes, University of Kaiserslautern, Germany, 1991.Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.Christoph Schwarzweller. Ordered rings and fields. Formalized Mathematics, 25(1):63-72, 2017. doi: 10.1515/forma-2017-0006.Christoph Schwarzweller. On roots of polynomials and algebraically closed fields. Formalized Mathematics, 25(3):185-195, 2017. doi: 10.1515/forma-2017-0018.Christoph Schwarzweller and Artur Korniłowicz. Characteristic of rings. Prime fields. Formalized Mathematics, 23(4):333-349, 2015. doi: 10.1515/forma-2015-0027.25424925

    AIM Loops and the AIM Conjecture

    Get PDF
    In this article, we prove, using the Mizar [2] formalism, a number of properties that correspond to the AIM Conjecture. In the first section, we define division operations on loops, inner mappings T, L and R, commutators and associators and basic attributes of interest. We also consider subloops and homomorphisms. Particular subloops are the nucleus and center of a loop and kernels of homomorphisms. Then in Section 2, we define a set Mlt Q of multiplicative mappings of Q and cosets (mostly following Albert 1943 for cosets [1]). Next, in Section 3 we define the notion of a normal subloop and construct quotients by normal subloops. In the last section we define the set InnAut of inner mappings of Q, define the notion of an AIM loop and relate this to the conditions on T, L, and R defined by satisfies TT, etc. We prove in Theorem (67) that the nucleus of an AIM loop is normal and finally in Theorem (68) that the AIM Conjecture follows from knowing every AIM loop satisfies aa1, aa2, aa3, Ka, aK1, aK2 and aK3. The formalization follows M.K. Kinyon, R. Veroff, P. Vojtechovsky [4] (in [3]) as well as Veroff’s Prover9 files.This work has been supported by the European Research Council (ERC) Consolidator grant nr. 649043 AI4REASON and the Polish National Science Centre granted by decision no. DEC-2015/19/D/ST6/01473.Chad E. Brown - Český Institut Informatiky Robotiky a Kybernetiky, Zikova 4, 166 36 Praha 6, Czech RepublicKarol Pąk - Institute of Informatics, University of Białystok, PolandA. A. Albert. Quasigroups. I. Transactions of the American Mathematical Society, 54(3): 507–519, 1943.Grzegorz Bancerek, Czesław Bylinski, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pak. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.Maria Paola Bonacina and Mark E. Stickel, editors. Automated Reasoning and Mathematics – Essays in Memory of William W. McCune, volume 7788 of Lecture Notes in Computer Science, 2013. Springer.Michael K. Kinyon, Robert Veroff, and Petr Vojtěchovský. Loops with abelian inner mapping groups: An application of automated deduction. In Bonacina and Stickel [3], pages 151–164.Christoph Schwarzweller and Artur Korniłowicz. Characteristic of rings. Prime fields. Formalized Mathematics, 23(4):333–349, 2015. doi:10.1515/forma-2015-0027.27432133

    Quadratic Extensions

    Get PDF
    In this article we further develop field theory [6], [7], [12] in Mizar [1], [2], [3]: we deal with quadratic polynomials and quadratic extensions [5], [4]. First we introduce quadratic polynomials, their discriminants and prove the midnight formula. Then we show that - in case the discriminant of p being non square - adjoining a root of p’s discriminant results in a splitting field of p. Finally we prove that these are the only field extensions of degree 2, e.g. that an extension E of F is quadratic if and only if there is a non square Element a ∈ F such that E and F(√a) are isomorphic over F.Christoph Schwarzweller - Institute of Informatics, University of Gdańsk, PolandAgnieszka Rowińska-Schwarzweller - Sopot, PolandGrzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, Karol Pąk, and Josef Urban. Mizar: State-of-the-art and beyond. In Manfred Kerber, Jacques Carette, Cezary Kaliszyk, Florian Rabe, and Volker Sorge, editors, Intelligent Computer Mathematics, volume 9150 of Lecture Notes in Computer Science, pages 261–279. Springer International Publishing, 2015. ISBN 978-3-319-20614-1. doi:10.1007/978-3-319-20615-8 17.Grzegorz Bancerek, Czesław Byliński, Adam Grabowski, Artur Korniłowicz, Roman Matuszewski, Adam Naumowicz, and Karol Pąk. The role of the Mizar Mathematical Library for interactive proof development in Mizar. Journal of Automated Reasoning, 61(1):9–32, 2018. doi:10.1007/s10817-017-9440-6.Adam Grabowski, Artur Korniłowicz, and Christoph Schwarzweller. On algebraic hierarchies in mathematical repository of Mizar. In M. Ganzha, L. Maciaszek, and M. Paprzycki, editors, Proceedings of the 2016 Federated Conference on Computer Science and Information Systems (FedCSIS), volume 8 of Annals of Computer Science and Information Systems, pages 363–371, 2016. doi:10.15439/2016F520.Nathan Jacobson. Basic Algebra I. Dover Books on Mathematics, 1985.Serge Lang. Algebra. Springer Verlag, 2002 (Revised Third Edition).Heinz Luneburg. Gruppen, Ringe, K¨orper: Die grundlegenden Strukturen der Algebra. Oldenbourg Verlag, 1999.Knut Radbruch. Algebra I. Lecture Notes, University of Kaiserslautern, Germany, 1991.Christoph Schwarzweller. Ring and field adjunctions, algebraic elements and minimal polynomials. Formalized Mathematics, 28(3):251–261, 2020. doi:10.2478/forma-2020-0022.Christoph Schwarzweller. Formally real fields. Formalized Mathematics, 25(4):249–259, 2017. doi:10.1515/forma-2017-0024.Christoph Schwarzweller. On roots of polynomials and algebraically closed fields. Formalized Mathematics, 25(3):185–195, 2017. doi:10.1515/forma-2017-0018.Christoph Schwarzweller and Artur Korniłowicz. Characteristic of rings. Prime fields. Formalized Mathematics, 23(4):333–349, 2015. doi:10.1515/forma-2015-0027.Steven H. Weintraub. Galois Theory. Springer-Verlag, 2 edition, 2009.29422924
    corecore