14,390 research outputs found

    External Lexical Information for Multilingual Part-of-Speech Tagging

    Get PDF
    Morphosyntactic lexicons and word vector representations have both proven useful for improving the accuracy of statistical part-of-speech taggers. Here we compare the performances of four systems on datasets covering 16 languages, two of these systems being feature-based (MEMMs and CRFs) and two of them being neural-based (bi-LSTMs). We show that, on average, all four approaches perform similarly and reach state-of-the-art results. Yet better performances are obtained with our feature-based models on lexically richer datasets (e.g. for morphologically rich languages), whereas neural-based results are higher on datasets with less lexical variability (e.g. for English). These conclusions hold in particular for the MEMM models relying on our system MElt, which benefited from newly designed features. This shows that, under certain conditions, feature-based approaches enriched with morphosyntactic lexicons are competitive with respect to neural methods

    Learning to Create and Reuse Words in Open-Vocabulary Neural Language Modeling

    Full text link
    Fixed-vocabulary language models fail to account for one of the most characteristic statistical facts of natural language: the frequent creation and reuse of new word types. Although character-level language models offer a partial solution in that they can create word types not attested in the training corpus, they do not capture the "bursty" distribution of such words. In this paper, we augment a hierarchical LSTM language model that generates sequences of word tokens character by character with a caching mechanism that learns to reuse previously generated words. To validate our model we construct a new open-vocabulary language modeling corpus (the Multilingual Wikipedia Corpus, MWC) from comparable Wikipedia articles in 7 typologically diverse languages and demonstrate the effectiveness of our model across this range of languages.Comment: ACL 201

    Japanese/English Cross-Language Information Retrieval: Exploration of Query Translation and Transliteration

    Full text link
    Cross-language information retrieval (CLIR), where queries and documents are in different languages, has of late become one of the major topics within the information retrieval community. This paper proposes a Japanese/English CLIR system, where we combine a query translation and retrieval modules. We currently target the retrieval of technical documents, and therefore the performance of our system is highly dependent on the quality of the translation of technical terms. However, the technical term translation is still problematic in that technical terms are often compound words, and thus new terms are progressively created by combining existing base words. In addition, Japanese often represents loanwords based on its special phonogram. Consequently, existing dictionaries find it difficult to achieve sufficient coverage. To counter the first problem, we produce a Japanese/English dictionary for base words, and translate compound words on a word-by-word basis. We also use a probabilistic method to resolve translation ambiguity. For the second problem, we use a transliteration method, which corresponds words unlisted in the base word dictionary to their phonetic equivalents in the target language. We evaluate our system using a test collection for CLIR, and show that both the compound word translation and transliteration methods improve the system performance

    Robust Multilingual Part-of-Speech Tagging via Adversarial Training

    Full text link
    Adversarial training (AT) is a powerful regularization method for neural networks, aiming to achieve robustness to input perturbations. Yet, the specific effects of the robustness obtained from AT are still unclear in the context of natural language processing. In this paper, we propose and analyze a neural POS tagging model that exploits AT. In our experiments on the Penn Treebank WSJ corpus and the Universal Dependencies (UD) dataset (27 languages), we find that AT not only improves the overall tagging accuracy, but also 1) prevents over-fitting well in low resource languages and 2) boosts tagging accuracy for rare / unseen words. We also demonstrate that 3) the improved tagging performance by AT contributes to the downstream task of dependency parsing, and that 4) AT helps the model to learn cleaner word representations. 5) The proposed AT model is generally effective in different sequence labeling tasks. These positive results motivate further use of AT for natural language tasks.Comment: NAACL 201

    Multilingual term extraction from comparable corpora : informativeness of monolingual term extraction features

    Get PDF
    Most research on bilingual automatic term extraction (ATE) from comparable corpora focuses on both components of the task separately, i.e. monolingual automatic term extraction and finding equivalent pairs cross-lingually. The latter usually relies on context vectors and is notoriously inaccurate for infrequent terms. The aim of this pilot study is to investigate whether using information gathered for the former might be beneficial for the cross-lingual linking as well, thereby illustrating the potential of a more holistic approach to ATE from comparable corpora with re-use of information across the components. To test this hypothesis, an existing dataset was expanded, which covers three languages and four domains. A supervised binary classifier is shown to achieve robust performance, with stable results across languages and domains
    corecore