2,543 research outputs found

    Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction

    Get PDF
    Determining the optimal number of hidden nodes and their proper initial locations are essentially crucial before the wavelet neural networks (WNNs) start their learning process. In this paper, a novel strategy known as the modified cuckoo search algorithm (MCSA), is proposed for WNNs initialization in order to improve its generalization performance. The MCSA begins with an initial population of cuckoo eggs, which represent the translation vectors of the wavelet hidden nodes, and subsequently refines their locations by imitating the breeding mechanism of cuckoos. The resulting solutions from the MCSA are then used as the initial translation vectors for the WNNs. The feasibility of the proposed method is evaluated by forecasting a benchmark chaotic time series, and its superior prediction accuracy compared with that of conventional WNNs demonstrates its potential benefit

    Bat Algorithm: Literature Review and Applications

    Full text link
    Bat algorithm (BA) is a bio-inspired algorithm developed by Yang in 2010 and BA has been found to be very efficient. As a result, the literature has expanded significantly in the last 3 years. This paper provides a timely review of the bat algorithm and its new variants. A wide range of diverse applications and case studies are also reviewed and summarized briefly here. Further research topics are also discussed.Comment: 10 page

    A modified weight optimisation for higher-order neural network in time series prediction

    Get PDF
    Most of time series signals are difficult to predict as consist of non-linear, high complexity (noise) and chaotic processes. The challenges in time series prediction are to provide a technique to better understand a dataset. In line with this, the Cuckoo Search (CS) learning algorithm, a kind of metaheuristics techniques employs high-level techniques for exploration and exploitation of the search space in which its step length is much longer in the long run. Thus, can explicitly being used to address the possibilities of stochastic trends in time series signals. Since its discovery, the CS has been used extensively. However, these methods fixed the parameter values which essential for adjusting the weights. Therefore, a modification was made by the additional step of information exchange between the top eggs, which significantly improve the convergence rate. Hence, motivated by the advantages of those Modified Cuckoo Search (MCS), the improvement of the MCS called Modified Cuckoo Search-Markov chain Monté Carlo (MCS-MCMC) learning algorithm is proposed for weight optimisation. As the Markov chain Monté Carlo can replace the cumbersome in generating the objective functions, it is used to substitute the Lévy flight found in the MCS’s structure to prove that MCS-MCMC is suitable for predictive tasks. The performance of MCS-MCMC learning algorithm was validated with several test functions and compared with those of MCS learning algorithm. The MCS-MCMC results is further benchmarked with the standard Multilayer Perceptron, standard Pi-Sigma Neural Network (PSNN), Pi-Sigma Neural Network-Modified Cuckoo Search, Pi-Sigma Neural Network-Markov chain Monté Carlo, standard Functional Link Neural Network (FLNN), Functional Link Neural Network-Modified Cuckoo Search and Functional Link Neural Network-Markov chain Monté Carlo which emphasis in optimising the accuracy rate. The simulation results proved that MCS-MCMC outperformed in the form of Accuracy with the range of 0.003% to 4.421% when incorporated with standard PSNN and FLNN for three (3) data partitions covering 10 benchmarked time series datasets
    • …
    corecore