42,795 research outputs found

    Image transfer through a chaotic channel by intensity correlations

    Full text link
    The three-wave mixing processes in a second-order nonlinear medium can be used for imaging protocols, in which an object field is injected into the nonlinear medium together with a reference field and an image field is generated. When the reference field is chaotic, the image field is also chaotic and does not carry any information about the object. We show that a clear image of the object be extracted from the chaotic image field by measuring the spatial intensity correlations between this field and one Fourier component of the reference. We experimentally verify this imaging protocol in the case of frequency downconversion.Comment: 17 pages, 7 figure

    Merits and Qualms of Work Fluctuations in Classical Fluctuation Theorems

    Full text link
    Work is one of the most basic notion in statistical mechanics, with work fluctuation theorems being one central topic in nanoscale thermodynamics. With Hamiltonian chaos commonly thought to provide a foundation for classical statistical mechanics, here we present general salient results regarding how (classical) Hamiltonian chaos generically impacts on nonequilibrium work fluctuations. For isolated chaotic systems prepared with a microcanonical distribution, work fluctuations are minimized and vanish altogether in adiabatic work protocols. For isolated chaotic systems prepared at an initial canonical distribution at inverse temperature β\beta, work fluctuations depicted by the variance of eβWe^{-\beta W} are also minimized by adiabatic work protocols. This general result indicates that if the variance of eβWe^{-\beta W} diverges for an adiabatic work protocol, then it diverges for all nonadiabatic work protocols sharing the same initial and final Hamiltonians. How such divergence explicitly impacts on the efficiency of using the Jarzynski's equality to simulate free energy differences is studied in a Sinai model. Our general insights shall boost studies in nanoscale thermodynamics and are of fundamental importance in designing useful work protocols.Comment: 11 pages, 5 figures, close to published versio

    Entanglement, randomness and chaos

    Full text link
    Entanglement is not only the most intriguing feature of quantum mechanics, but also a key resource in quantum information science. The entanglement content of random pure quantum states is almost maximal; such states find applications in various quantum information protocols. The preparation of a random state or, equivalently, the implementation of a random unitary operator, requires a number of elementary one- and two-qubit gates that is exponential in the number n_q of qubits, thus becoming rapidly unfeasible when increasing n_q. On the other hand, pseudo-random states approximating to the desired accuracy the entanglement properties of true random states may be generated efficiently, that is, polynomially in n_q. In particular, quantum chaotic maps are efficient generators of multipartite entanglement among the qubits, close to that expected for random states. This review discusses several aspects of the relationship between entanglement, randomness and chaos. In particular, I will focus on the following items: (i) the robustness of the entanglement generated by quantum chaotic maps when taking into account the unavoidable noise sources affecting a quantum computer; (ii) the detection of the entanglement of high-dimensional (mixtures of) random states, an issue also related to the question of the emergence of classicality in coarse grained quantum chaotic dynamics; (iii) the decoherence induced by the coupling of a system to a chaotic environment, that is, by the entanglement established between the system and the environment.Comment: Review paper, 40 pages, 7 figures, added reference

    Simulating noisy quantum protocols with quantum trajectories

    Full text link
    The theory of quantum trajectories is applied to simulate the effects of quantum noise sources induced by the environment on quantum information protocols. We study two models that generalize single qubit noise channels like amplitude damping and phase flip to the many-qubit situation. We calculate the fidelity of quantum information transmission through a chaotic channel using the teleportation scheme with different environments. In this example, we analyze the role played by the kind of collective noise suffered by the quantum processor during its operation. We also investigate the stability of a quantum algorithm simulating the quantum dynamics of a paradigmatic model of chaos, the baker's map. Our results demonstrate that, using the quantum trajectories approach, we are able to simulate quantum protocols in the presence of noise and with large system sizes of more than 20 qubits.Comment: 11 pages, 7 fig

    Cutting and Shuffling a Line Segment: Mixing by Interval Exchange Transformations

    Full text link
    We present a computational study of finite-time mixing of a line segment by cutting and shuffling. A family of one-dimensional interval exchange transformations is constructed as a model system in which to study these types of mixing processes. Illustrative examples of the mixing behaviors, including pathological cases that violate the assumptions of the known governing theorems and lead to poor mixing, are shown. Since the mathematical theory applies as the number of iterations of the map goes to infinity, we introduce practical measures of mixing (the percent unmixed and the number of intermaterial interfaces) that can be computed over given (finite) numbers of iterations. We find that good mixing can be achieved after a finite number of iterations of a one-dimensional cutting and shuffling map, even though such a map cannot be considered chaotic in the usual sense and/or it may not fulfill the conditions of the ergodic theorems for interval exchange transformations. Specifically, good shuffling can occur with only six or seven intervals of roughly the same length, as long as the rearrangement order is an irreducible permutation. This study has implications for a number of mixing processes in which discontinuities arise either by construction or due to the underlying physics.Comment: 21 pages, 10 figures, ws-ijbc class; accepted for publication in International Journal of Bifurcation and Chao
    corecore