4,668 research outputs found

    On the existence of polynomials with chaotic behaviour

    Get PDF
    We establish a general result on the existence of hypercyclic (resp., transitive, weakly mixing, mixing, frequently hypercyclic) polynomials on locally convex spaces. As a consequence we prove that every (real or complex) infinite-dimensional separable Frèchet space admits mixing (hence hypercyclic) polynomials of arbitrary positive degree. Moreover, every complex infinite-dimensional separable Banach space with an unconditional Schauder decomposition and every complex Frèchet space with an unconditional basis support chaotic and frequently hypercyclic polynomials of arbitrary positive degree. We also study distributional chaos for polynomials and show that every infinite-dimensional separable Banach space supports polynomials of arbitrary positive degree that have a dense distributionally scrambled linear manifold. © 2013 Nilson C. Bernardes Jr. and Alfredo Peris.The present work was done while the first author was visiting the Departament de Matematica Aplicada at Universitat Politecnica de Valencia (Spain). The first author is very grateful for the hospitality. The first author was supported in part by CAPES: Bolsista, Project no. BEX 4012/11-9. The second author was supported in part by MEC and FEDER, Project MTM2010-14909, and by GVA, Projects PROMETEO/2008/101 and PROMETEOII/2013/013.Bernardes, NC.; Peris Manguillot, A. (2013). On the existence of polynomials with chaotic behaviour. Journal of Function Spaces and Applications. 2013(320961). https://doi.org/10.1155/2013/320961S2013320961Bayart, F., & Matheron, E. (2009). Dynamics of Linear Operators. doi:10.1017/cbo9780511581113Grosse-Erdmann, K.-G., & Peris Manguillot, A. (2011). Linear Chaos. Universitext. doi:10.1007/978-1-4471-2170-1Rolewicz, S. (1969). On orbits of elements. Studia Mathematica, 32(1), 17-22. doi:10.4064/sm-32-1-17-22Herzog, G. (1992). On linear operators having supercyclic vectors. Studia Mathematica, 103(3), 295-298. doi:10.4064/sm-103-3-295-298Ansari, S. I. (1997). Existence of Hypercyclic Operators on Topological Vector Spaces. Journal of Functional Analysis, 148(2), 384-390. doi:10.1006/jfan.1996.3093Bernal-González, L. (1999). Proceedings of the American Mathematical Society, 127(04), 1003-1011. doi:10.1090/s0002-9939-99-04657-2Bonet, J., & Peris, A. (1998). Hypercyclic Operators on Non-normable Fréchet Spaces. Journal of Functional Analysis, 159(2), 587-595. doi:10.1006/jfan.1998.3315Bonet, J., Martínez-Giménez, F., & Peris, A. (2001). A Banach Space which Admits No Chaotic Operator. Bulletin of the London Mathematical Society, 33(2), 196-198. doi:10.1112/blms/33.2.196Shkarin, S. (2008). On the spectrum of frequently hypercyclic operators. Proceedings of the American Mathematical Society, 137(01), 123-134. doi:10.1090/s0002-9939-08-09655-xDe la Rosa, M., Frerick, L., Grivaux, S., & Peris, A. (2011). Frequent hypercyclicity, chaos, and unconditional Schauder decompositions. Israel Journal of Mathematics, 190(1), 389-399. doi:10.1007/s11856-011-0210-6Bernardes, N. C. (1998). ON ORBITS OF POLYNOMIAL MAPS IN BANACH SPACES. Quaestiones Mathematicae, 21(3-4), 311-318. doi:10.1080/16073606.1998.9632049Bernardes Jr., N. C. (1998). Proceedings of the American Mathematical Society, 126(10), 3037-3045. doi:10.1090/s0002-9939-98-04483-9Dineen, S. (1999). Complex Analysis on Infinite Dimensional Spaces. Springer Monographs in Mathematics. doi:10.1007/978-1-4471-0869-6Peris, A. (2001). Proceedings of the American Mathematical Society, 129(12), 3759-3761. doi:10.1090/s0002-9939-01-06274-8ARON, R. M., & MIRALLES, A. (2008). CHAOTIC POLYNOMIALS IN SPACES OF CONTINUOUS AND DIFFERENTIABLE FUNCTIONS. Glasgow Mathematical Journal, 50(2), 319-323. doi:10.1017/s0017089508004229Peris, A. (2003). Chaotic polynomials on Banach spaces. Journal of Mathematical Analysis and Applications, 287(2), 487-493. doi:10.1016/s0022-247x(03)00547-xMARTÍNEZ-GIMÉNEZ, F., & PERIS, A. (2010). CHAOTIC POLYNOMIALS ON SEQUENCE AND FUNCTION SPACES. International Journal of Bifurcation and Chaos, 20(09), 2861-2867. doi:10.1142/s0218127410027416Martínez-Giménez, F., & Peris, A. (2009). Existence of hypercyclic polynomials on complex Fréchet spaces. Topology and its Applications, 156(18), 3007-3010. doi:10.1016/j.topol.2009.02.010Bès, J., & Peris, A. (2007). Disjointness in hypercyclicity. Journal of Mathematical Analysis and Applications, 336(1), 297-315. doi:10.1016/j.jmaa.2007.02.043Bernardes, N. C., Bonilla, A., Müller, V., & Peris, A. (2013). Distributional chaos for linear operators. Journal of Functional Analysis, 265(9), 2143-2163. doi:10.1016/j.jfa.2013.06.019Le�n-Saavedra, F., & M�ller, V. (2004). Rotations of Hypercyclic and Supercyclic Operators. Integral Equations and Operator Theory, 50(3), 385-391. doi:10.1007/s00020-003-1299-8Grosse-Erdmann, K.-G., & Peris, A. (2010). Weakly mixing operators on topological vector spaces. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 104(2), 413-426. doi:10.5052/racsam.2010.25Li, T.-Y., & Yorke, J. A. (1975). Period Three Implies Chaos. The American Mathematical Monthly, 82(10), 985. doi:10.2307/2318254Schweizer, B., & Smital, J. (1994). Measures of Chaos and a Spectral Decomposition of Dynamical Systems on the Interval. Transactions of the American Mathematical Society, 344(2), 737. doi:10.2307/2154504Bermúdez, T., Bonilla, A., Martínez-Giménez, F., & Peris, A. (2011). Li–Yorke and distributionally chaotic operators. Journal of Mathematical Analysis and Applications, 373(1), 83-93. doi:10.1016/j.jmaa.2010.06.011Hou, B., Cui, P., & Cao, Y. (2010). Chaos for Cowen-Douglas operators. Proceedings of the American Mathematical Society, 138(03), 929-929. doi:10.1090/s0002-9939-09-10046-1Martínez-Giménez, F., Oprocha, P., & Peris, A. (2009). Distributional chaos for backward shifts. Journal of Mathematical Analysis and Applications, 351(2), 607-615. doi:10.1016/j.jmaa.2008.10.049Schenke, A., & Shkarin, S. (2013). Hypercyclic operators on countably dimensional spaces. Journal of Mathematical Analysis and Applications, 401(1), 209-217. doi:10.1016/j.jmaa.2012.11.013BONET, J., FRERICK, L., PERIS, A., & WENGENROTH, J. (2005). TRANSITIVE AND HYPERCYCLIC OPERATORS ON LOCALLY CONVEX SPACES. Bulletin of the London Mathematical Society, 37(02), 254-264. doi:10.1112/s0024609304003698Shkarin, S. (2012). Hypercyclic operators on topological vector spaces. Journal of the London Mathematical Society, 86(1), 195-213. doi:10.1112/jlms/jdr08

    Multiple integral representation for functionals of Dirichlet processes

    Full text link
    We point out that a proper use of the Hoeffding--ANOVA decomposition for symmetric statistics of finite urn sequences, previously introduced by the author, yields a decomposition of the space of square-integrable functionals of a Dirichlet--Ferguson process, written L2(D)L^2(D), into orthogonal subspaces of multiple integrals of increasing order. This gives an isomorphism between L2(D)L^2(D) and an appropriate Fock space over a class of deterministic functions. By means of a well-known result due to Blackwell and MacQueen, we show that each element of the nnth orthogonal space of multiple integrals can be represented as the L2L^2 limit of UU-statistics with degenerate kernel of degree nn. General formulae for the decomposition of a given functional are provided in terms of linear combinations of conditioned expectations whose coefficients are explicitly computed. We show that, in simple cases, multiple integrals have a natural representation in terms of Jacobi polynomials. Several connections are established, in particular with Bayesian decision problems, and with some classic formulae concerning the transition densities of multiallele diffusion models, due to Littler and Fackerell, and Griffiths. Our results may also be used to calculate the best approximation of elements of L2(D)L^2(D) by means of UU-statistics of finite vectors of exchangeable observations.Comment: Published in at http://dx.doi.org/10.3150/07-BEJ5169 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
    corecore