144,925 research outputs found

    Energy Flows in Low-Entropy Complex Systems

    Full text link
    Nature's many complex systems--physical, biological, and cultural--are islands of low-entropy order within increasingly disordered seas of surrounding, high-entropy chaos. Energy is a principal facilitator of the rising complexity of all such systems in the expanding Universe, including galaxies, stars, planets, life, society, and machines. A large amount of empirical evidence--relating neither entropy nor information, rather energy--suggests that an underlying simplicity guides the emergence and growth of complexity among many known, highly varied systems in the 14-billion-year-old Universe, from big bang to humankind. Energy flows are as centrally important to life and society as they are to stars and galaxies. In particular, the quantity energy rate density--the rate of energy flow per unit mass--can be used to explicate in a consistent, uniform, and unifying way a huge collection of diverse complex systems observed throughout Nature. Operationally, those systems able to utilize optimal amounts of energy tend to survive and those that cannot are non-randomly eliminated.Comment: 12 pages, 2 figures, review paper for special issue on Recent Advances in Non-Equilibrium Statistical Mechanics and its Application. arXiv admin note: text overlap with arXiv:1406.273

    Nonlinear Dynamical Systems Applications to Psychology and Management

    Get PDF

    Restricted Complexity, General Complexity

    Get PDF
    Why has the problematic of complexity appeared so late? And why would it be justified

    Complexity and Information: Measuring Emergence, Self-organization, and Homeostasis at Multiple Scales

    Full text link
    Concepts used in the scientific study of complex systems have become so widespread that their use and abuse has led to ambiguity and confusion in their meaning. In this paper we use information theory to provide abstract and concise measures of complexity, emergence, self-organization, and homeostasis. The purpose is to clarify the meaning of these concepts with the aid of the proposed formal measures. In a simplified version of the measures (focusing on the information produced by a system), emergence becomes the opposite of self-organization, while complexity represents their balance. Homeostasis can be seen as a measure of the stability of the system. We use computational experiments on random Boolean networks and elementary cellular automata to illustrate our measures at multiple scales.Comment: 42 pages, 11 figures, 2 table

    Unreduced Dynamic Complexity: Towards the Unified Science of Intelligent Communication Networks and Software

    Get PDF
    Operation of autonomic communication networks with complicated user-oriented functions should be described as unreduced many-body interaction process. The latter gives rise to complex-dynamic behaviour including fractally structured hierarchy of chaotically changing realisations. We recall the main results of the universal science of complexity (http://cogprints.org/4471/) based on the unreduced interaction problem solution and its application to various real systems, from nanobiosystems (http://cogprints.org/4527/) and quantum devices to intelligent networks (http://cogprints.org/4114/) and emerging consciousness (http://cogprints.org/3857/). We concentrate then on applications to autonomic communication leading to fundamentally substantiated, exact science of intelligent communication and software. It aims at unification of the whole diversity of complex information system behaviour, similar to the conventional, "Newtonian" science order for sequential, regular models of system dynamics. Basic principles and first applications of the unified science of complex-dynamic communication networks and software are outlined to demonstrate its advantages and emerging practical perspectives

    Complexity and Philosophy

    Get PDF
    The science of complexity is based on a new way of thinking that stands in sharp contrast to the philosophy underlying Newtonian science, which is based on reductionism, determinism, and objective knowledge. This paper reviews the historical development of this new world view, focusing on its philosophical foundations. Determinism was challenged by quantum mechanics and chaos theory. Systems theory replaced reductionism by a scientifically based holism. Cybernetics and postmodern social science showed that knowledge is intrinsically subjective. These developments are being integrated under the header of “complexity science”. Its central paradigm is the multi-agent system. Agents are intrinsically subjective and uncertain about their environment and future, but out of their local interactions, a global organization emerges. Although different philosophers, and in particular the postmodernists, have voiced similar ideas, the paradigm of complexity still needs to be fully assimilated by philosophy. This will throw a new light on old philosophical issues such as relativism, ethics and the role of the subject
    • …
    corecore