3 research outputs found

    Delay aware optimal resource allocation in MU MIMO-OFDM using enhanced spider monkey optimization

    Get PDF
    In multiple users MIMO- OFDM system allocates the available resources to the optimal users is a difficult task. Hence the scheduling and resource allocation become the major problem in the wireless network mainly in case of multiple input and multiple output method that has to be made efficient. There is various method introduced to give an optimal solution to the problem yet it has many drawbacks. So we propose this paper to provide an efficient solution for resource allocation in terms of delay and also added some more features such as high throughout, energy efficient and fairness. To make optimal resource allocation we introduce optimization algorithm named spider monkey with an enhancement which provides the efficient solution. In this optimization process includes the scheduling and resource allocation, the SNR values, channel state information (CSI) from the base station. To make more efficient finally we perform enhanced spider - monkey algorithm hence the resource allocation is performed based on QoS requirements. Thus the simulation results in our paper show high efficiency when compared with other schedulers and techniques

    Channel-, Queue-, and Delay-Aware Resource Allocation in Buffer-Aided Relay-Enhanced OFDMA Networks

    No full text
    Resource allocation is an important factor in providing different varieties of services in next-generation broadband wireless systems. In this paper, we consider dynamic routing and subchannel allocation for providing quality of service (QoS) in the downlink of orthogonal frequency-division multiple-access (OFDMA) networks enhanced with buffering relays. Specifically, we consider satisfying the QoS requirements of both delay-sensitive users with the goal of meeting packet deadline constraints and delay-tolerant users who need guarantees on their average throughputs. We provide a framework for 'time-domain scheduling' and 'frequency-domain resource allocation,' and based on this, we propose novel channel-, queue-, and delay-aware policies for formulating and solving the joint routing and resource allocation problem. In particular, these policies take different approaches to decide on the set of users considered in the utility function, the delay budget division between the base station and relays, the routing path of delay-sensitive users' packets, and the computation of minimum rate requirements for serving their queues. We present an iterative algorithm to solve the resulting problems. Numerical results show significant improvements in throughput and delay performance of the proposed resource allocation mechanisms compared with existing algorithms.Scopu
    corecore