3 research outputs found

    Buffer De-bloating in Wireless Access Networks

    Get PDF
    PhDExcessive buffering brings a new challenge into the networks which is known as Bufferbloat, which is harmful to delay sensitive applications. Wireless access networks consist of Wi-Fi and cellular networks. In the thesis, the performance of CoDel and RED are investigated in Wi-Fi networks with different types of traffic. Results show that CoDel and RED work well in Wi-Fi networks, due to the similarity of protocol structures of Wi-Fi and wired networks. It is difficult for RED to tune parameters in cellular networks because of the time-varying channel. CoDel needs modifications as it drops the first packet of queue and the head packet in cellular networks will be segmented. The major contribution of this thesis is that three new AQM algorithms tailored to cellular networks are proposed to alleviate large queuing delays. A channel quality aware AQM is proposed using the CQI. The proposed algorithm is tested with a single cell topology and simulation results show that the proposed algorithm reduces the average queuing delay for each user by 40% on average with TCP traffic compared to CoDel. A QoE aware AQM is proposed for VoIP traffic. Drops and delay are monitored and turned into QoE by mathematical models. The proposed algorithm is tested in NS3 and compared with CoDel, and it enhances the QoE of VoIP traffic and the average endto- end delay is reduced by more than 200 ms when multiple users with different CQI compete for the wireless channel. A random back-off AQM is proposed to alleviate the queuing delay created by video in cellular networks. The proposed algorithm monitors the play-out buffer and postpones the request of the next packet. The proposed algorithm is tested in various scenarios and it outperforms CoDel by 18% in controlling the average end-to-end delay when users have different channel conditions

    Congestion mitigation in LTE base stations using radio resource allocation techniques with TCP end to end transport

    Get PDF
    As of 2019, Long Term Evolution (LTE) is the chosen standard for most mobile and fixed wireless data communication. The next generation of standards known as 5G will encompass the Internet of Things (IoT) which will add more wireless devices to the network. Due to an exponential increase in the number of wireless subscriptions, in the next few years there is also an expected exponential increase in data traffic. Most of these devices will use Transmission Control Protocol (TCP) which is a type of network protocol for delivering internet data to users. Due to its reliability in delivering data payload to users and congestion management, TCP is the most common type of network protocol used. However, the ability for TCP to combat network congestion has certain limitations especially in a wireless network. This is due to wireless networks not being as reliable as fixed line networks for data delivery because of the use of last mile radio interface. LTE uses various error correction techniques for reliable data delivery over the air-interface. These cause other issues such as excessive latency and queuing in the base station leading to degradation in throughput for users and congestion in the network. Traditional methods of dealing with congestion such as tail-drop can be inefficient and cumbersome. Therefore, adequate congestion mitigation mechanisms are required. The LTE standard uses a technique to pre-empt network congestion by a mechanism known as Discard Timer. Additionally, there are other algorithms such as Random Early Detection (RED) that also are used for network congestion mitigation. However, these mechanisms rely on configured parameters and only work well within certain regions of operation. If the parameters are not set correctly then the TCP links can experience congestion collapse. In this thesis, the limitations of using existing LTE congestion mitigation mechanisms such as Discard Timer and RED have been explored. A different mechanism to analyse the effects of using control theory for congestion mitigation has been developed. Finally, congestion mitigation in LTE networks has been addresses using radio resource allocation techniques with non-cooperative game theory being an underlying mathematical framework. In doing so, two key end-to-end performance measurements considered for measuring congestion for the game theoretic models were identified which were the total end-to-end delay and the overall throughput of each individual TCP link. An end to end wireless simulator model with the radio access network using LTE and a TCP based backbone to the end server was developed using MATLAB. This simulator was used as a baseline for testing each of the congestion mitigation mechanisms. This thesis also provides a comparison and performance evaluation between the congestion mitigation models developed using existing techniques (such as Discard Timer and RED), control theory and game theory. As of 2019, Long Term Evolution (LTE) is the chosen standard for most mobile and fixed wireless data communication. The next generation of standards known as 5G will encompass the Internet of Things (IoT) which will add more wireless devices to the network. Due to an exponential increase in the number of wireless subscriptions, in the next few years there is also an expected exponential increase in data traffic. Most of these devices will use Transmission Control Protocol (TCP) which is a type of network protocol for delivering internet data to users. Due to its reliability in delivering data payload to users and congestion management, TCP is the most common type of network protocol used. However, the ability for TCP to combat network congestion has certain limitations especially in a wireless network. This is due to wireless networks not being as reliable as fixed line networks for data delivery because of the use of last mile radio interface. LTE uses various error correction techniques for reliable data delivery over the air-interface. These cause other issues such as excessive latency and queuing in the base station leading to degradation in throughput for users and congestion in the network. Traditional methods of dealing with congestion such as tail-drop can be inefficient and cumbersome. Therefore, adequate congestion mitigation mechanisms are required. The LTE standard uses a technique to pre-empt network congestion by a mechanism known as Discard Timer. Additionally, there are other algorithms such as Random Early Detection (RED) that also are used for network congestion mitigation. However, these mechanisms rely on configured parameters and only work well within certain regions of operation. If the parameters are not set correctly then the TCP links can experience congestion collapse. In this thesis, the limitations of using existing LTE congestion mitigation mechanisms such as Discard Timer and RED have been explored. A different mechanism to analyse the effects of using control theory for congestion mitigation has been developed. Finally, congestion mitigation in LTE networks has been addresses using radio resource allocation techniques with non-cooperative game theory being an underlying mathematical framework. In doing so, two key end-to-end performance measurements considered for measuring congestion for the game theoretic models were identified which were the total end-to-end delay and the overall throughput of each individual TCP link. An end to end wireless simulator model with the radio access network using LTE and a TCP based backbone to the end server was developed using MATLAB. This simulator was used as a baseline for testing each of the congestion mitigation mechanisms. This thesis also provides a comparison and performance evaluation between the congestion mitigation models developed using existing techniques (such as Discard Timer and RED), control theory and game theory
    corecore