120 research outputs found

    Pilot Decontamination in CMT-based Massive MIMO Networks

    Full text link
    Pilot contamination problem in massive MIMO networks operating in time-division duplex (TDD) mode can limit their expected capacity to a great extent. This paper addresses this problem in cosine modulated multitone (CMT) based massive MIMO networks; taking advantage of their so-called blind equalization property. We extend and apply the blind equalization technique from single antenna case to multi-cellular massive MIMO systems and show that it can remove the channel estimation errors (due to pilot contamination effect) without any need for cooperation between different cells or transmission of additional training information. Our numerical results advocate the efficacy of the proposed blind technique in improving the channel estimation accuracy and removal of the residual channel estimation errors caused by the users of the other cells.Comment: Accepted in ISWCS 201

    Robust Pilot Decontamination Based on Joint Angle and Power Domain Discrimination

    Full text link
    We address the problem of noise and interference corrupted channel estimation in massive MIMO systems. Interference, which originates from pilot reuse (or contamination), can in principle be discriminated on the basis of the distributions of path angles and amplitudes. In this paper we propose novel robust channel estimation algorithms exploiting path diversity in both angle and power domains, relying on a suitable combination of the spatial filtering and amplitude based projection. The proposed approaches are able to cope with a wide range of system and topology scenarios, including those where, unlike in previous works, interference channel may overlap with desired channels in terms of multipath angles of arrival or exceed them in terms of received power. In particular we establish analytically the conditions under which the proposed channel estimator is fully decontaminated. Simulation results confirm the overall system gains when using the new methods.Comment: 14 pages, 5 figures, accepted for publication in IEEE Transactions on Signal Processin

    Group-blind detection with very large antenna arrays in the presence of pilot contamination

    Get PDF
    Massive MIMO is, in general, severely affected by pilot contamination. As opposed to traditional detectors, we propose a group-blind detector that takes into account the presence of pilot contamination. While sticking to the traditional structure of the training phase, where orthogonal pilot sequences are reused, we use the excess antennas at each base station to partially remove interference during the uplink data transmission phase. We analytically derive the asymptotic SINR achievable with group-blind detection, and confirm our findings by simulations. We show, in particular, that in an interference-limited scenario with one dominant interfering cell, the SINR can be doubled compared to non-group-blind detection.Comment: 5 pages, 4 figure

    Downlink Performance of Superimposed Pilots in Massive MIMO systems

    Full text link
    In this paper, we investigate the downlink throughput performance of a massive multiple-input multiple-output (MIMO) system that employs superimposed pilots for channel estimation. The component of downlink (DL) interference that results from transmitting data alongside pilots in the uplink (UL) is shown to decrease at a rate proportional to the square root of the number of antennas at the BS. The normalized mean-squared error (NMSE) of the channel estimate is compared with the Bayesian Cram\'{e}r-Rao lower bound that is derived for the system, and the former is also shown to diminish with increasing number of antennas at the base station (BS). Furthermore, we show that staggered pilots are a particular case of superimposed pilots and offer the downlink throughput of superimposed pilots while retaining the UL spectral and energy efficiency of regular pilots. We also extend the framework for designing a hybrid system, consisting of users that transmit either regular or superimposed pilots, to minimize both the UL and DL interference. The improved NMSE and DL rates of the channel estimator based on superimposed pilots are demonstrated by means of simulations.Comment: 28 single-column pages, 6 figures, 1 table, Submitted to IEEE Trans. Wireless Commun. in Aug 2017. Revised Submission in Feb. 201

    Uncoordinated pilot decontamination in massive MIMO systems

    Get PDF
    Abstract This work concerns wireless cellular networks applying time division duplexing (TDD) massive multiple-input multiple-output (MIMO) technology. Such systems suffer from pilot contamination during channel estimation, due to the shortage of orthogonal pilot sequences. This paper presents a solution based on pilot sequence hopping, which provides a randomization of the pilot contamination. It is shown that such randomized contamination can be significantly suppressed through appropriate filtering. The resulting channel estimation scheme requires no inter-cell coordination, which is a strong advantage for practical implementations. Comparisons with conventional estimation methods show that the MSE can be lowered as much as an order of magnitude at low mobility. Achievable uplink and downlink rates are increased by 42 and 46%, respectively, in a system with 128 antennas at the base station
    • …
    corecore