2,244 research outputs found

    Assigning and Scheduling Partially Overlapping Channels in Wireless Mesh Networks

    Get PDF
    The design and the management of Wireless Mesh Networks (WMNs) are currently associated with the most active research area within the current wireless networking paradigms. WMNs inherit features from existing wireless networking technologies such as WLANs, mobile ad hoc networks. Because WMNs are easy to deploy and with low power consumption, there is a phenomenal growing interest in seeing WMNs as the next wireless backhaul networks, and an alternative to the existing wired infrastructure. The earliest development of WMNs had begun with single-channel single-radio mesh networks. This technology then evolved towards multi-channel single-radio mesh networks, and then to multi-channel multi-radio mesh networks. WMNs operate in North America on IEEE 802.11 2.4 GHz spectrum, which provides up to 11 channels. Despite the availability of 11 channels, only 3 (1, 6, 11) orthogonal channels can be used concurrently. The efficiency of multi-channel multi-radio wireless mesh networks can be improved with the increase of the number of channels used concurrently and of multiple radios. In this study, we investigate how to design a scalable channel assignment and a scheduling algorithm, which both exploit partially overlapping channels in order to increase the throughput in comparison with the one that can be obtained only using three orthogonal channels. In order to accurately take into account the radio interferences, we use the physical interference model to estimate the interferences among wireless links. We then introduce the definition of transmission configurations, which are sets of links, which can transmit concurrently. These links can be assigned with channels of overlapping or orthogonal in nature. We then design a TDMA based scheduling allowing a transmission configuration to transmit concurrently in a time slot. Finally, we evaluate all our algorithms through extensive simulations. Our numerical experiments show that we can gain up to 25% for the throughput by appropriately managing all the available channels

    A Review of Interference Reduction in Wireless Networks Using Graph Coloring Methods

    Full text link
    The interference imposes a significant negative impact on the performance of wireless networks. With the continuous deployment of larger and more sophisticated wireless networks, reducing interference in such networks is quickly being focused upon as a problem in today's world. In this paper we analyze the interference reduction problem from a graph theoretical viewpoint. A graph coloring methods are exploited to model the interference reduction problem. However, additional constraints to graph coloring scenarios that account for various networking conditions result in additional complexity to standard graph coloring. This paper reviews a variety of algorithmic solutions for specific network topologies.Comment: 10 pages, 5 figure

    Radio Co-location Aware Channel Assignments for Interference Mitigation in Wireless Mesh Networks

    Full text link
    Designing high performance channel assignment schemes to harness the potential of multi-radio multi-channel deployments in wireless mesh networks (WMNs) is an active research domain. A pragmatic channel assignment approach strives to maximize network capacity by restraining the endemic interference and mitigating its adverse impact on network performance. Interference prevalent in WMNs is multi-faceted, radio co-location interference (RCI) being a crucial aspect that is seldom addressed in research endeavors. In this effort, we propose a set of intelligent channel assignment algorithms, which focus primarily on alleviating the RCI. These graph theoretic schemes are structurally inspired by the spatio-statistical characteristics of interference. We present the theoretical design foundations for each of the proposed algorithms, and demonstrate their potential to significantly enhance network capacity in comparison to some well-known existing schemes. We also demonstrate the adverse impact of radio co- location interference on the network, and the efficacy of the proposed schemes in successfully mitigating it. The experimental results to validate the proposed theoretical notions were obtained by running an exhaustive set of ns-3 simulations in IEEE 802.11g/n environments.Comment: Accepted @ ICACCI-201

    State-of-the-art of distributed channel assignment

    Get PDF
    Channel assignment for Wireless Mesh Networks (WMNs) attempts to increase the network performance by decreasing the interference of simultaneous transmissions. The reduction of interference is achieved by exploiting the availability of fully or partially non-overlapping channels. Although it is still a young research area, many different approaches have already been developed. These approaches can be distinguished into centralized and distributed. Centralized algorithms rely on a central entity, usually called Channel Assignment Server (CAS), which calculates the channel assignment and sends the result to the mesh routers. In distributed approaches, each mesh router calculates its channel assignment decision based on local information. Distributed approaches can react faster to topology changes due to node failures or mobility and usually introduce less protocol overhead since communication with the CAS is not necessary. As a result, distributed approaches are more suitable once the network is operational and running. Distributed approaches can further be classified into static and dynamic, in regard to the modus of channel switching. In dynamic approaches, channels can be switched on a per-packet basis, whereas in static approaches radios stay on a specific channel for a longer period of time. Static assignments have been more in focus, since the channel switching time for current Institute of Electrical and Electronics Engineers (IEEE) 802.11 hardware is in the order of milliseconds which is two orders higher than the packet transmission time. Recently, surveys of channel assignment algorithms have been presented which cover certain aspects of the research field. The survey in [1] introduces the problem and presents a couple of distributed algorithms and [2] gives a broad introduction to centralized and distributed approaches. The survey herein is focused on distributed approaches for peer- to-peer network architectures. This report describes the problem formulation for channel assignment in WMNs and the fundamental concepts and challenges of this research area. We present different distributed channel assignment algorithms and characterize them according to a set of classification keys. Since channel assignment algorithms may change the connectivity and therefore the network topology, they may have a high impact on routing. Therefore, we present routing metrics that consider channel diversity and adapt better to the multi- radio multi-channel scenario than traditional routing metrics designed for single channel networks. The presented algorithms are discussed and compared focusing on practical evaluations in testbed and network environments. The implementation for real networks is a hard and labor-intensive task because the researcher has to deal with the complexity of the hardware, operating system, and wireless network interface drivers. As a result, frameworks emerged in order to simplify the implementation process. We describe these frameworks and the mechanisms used to help researchers implementing their algorithms and show their limitations and restrictions

    Partially Overlapping Channel Assignments in Wireless Mesh Networks

    Get PDF

    Internet Traffic based Channel Selection in Multi-Radio Multi-Channel Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks(WMNs) are the outstanding technology to facilitate wireless broadband Internet access to users. Routers in WMN have multiple radio interfaces to which multiple orthogonal/partially overlapping channels are assigned to improve the capacity of WMN. This paper is focused on channel selection problem in WMN since proper channel selection to radio interfaces of mesh router increases the performance of WMN. To access the Internet through WMN, the users have to associate with one of the mesh routers. Since most of the Internet Servers are still in wired networks, the major dominant traffic of Internet users is in downlink direction i.e. from the gateway of WMN to user. This paper proposes a new method of channel selection to improve the user performance in downlink direction of Internet traffic. The method is scalable and completely distributed solution to the problem of channel selection in WMN. The simulation results indicate the significant improvement in user performance

    An Efficient Interference Aware Partially Overlapping Channel Assignment and Routing in Wireless Mesh Networks

    Get PDF
    In recent years, multi-channel multi-radio wireless mesh networks are considered a reliable and cost effective way for internet access in wide area. A major research challenge in this network is, selecting a least interference channel from the available channels, efficiently assigning a radio to the selected channel, and routing packets through the least interference path. Many algorithms and methods have been developed for channel assignment to maximize the network throughput using orthogonal channels. Recent research and test-bed experiments have proved that POC (Partially Overlapped Channels) based channel assignment allows significantly more flexibility in wireless spectrum sharing. In this paper, first we represent the channel assignment as a graph edge coloring problem using POC. The signal-to-noise plus interference ratio is measured to avoid interference from neighbouring transmissions, when a channel is assigned to the link. Second we propose a new routing metric called signal-to-noise plus interference ratio (SINR) value which measures interference in each link and routing algorithm works based on the interference information. The simulation results show that the channel assignment and interference aware routing algorithm, proposed in this paper, improves the network throughput and performance
    corecore