298,937 research outputs found
Performance limits for channelized cellular telephone systems
Studies the performance of channel assignment algorithms for “channelized” (e.g., FDMA or TDMA) cellular telephone systems, via mathematical models, each of which is characterized by a pair (H,p), where H is a hypergraph describing the channel reuse restrictions, and p is a probability vector describing the variation of traffic intensity from cell to cell. For a given channel assignment algorithm, the authors define T(r) to be the amount of carried traffic, as a function of the offered traffic, where both r and T(r) are measured in Erlangs per channel. They show that for a given H and p, there exists a function TH,p(r), which can be computed by linear programming, such that for every channel assignment algorithm, T(r) ≤ TH,p(r). Moreover, they show that there exist channel assignment algorithms whose performance approaches TH,p (r) arbitrarily closely as the number of channels increases. As a corollary, they show that for a given (H,p) there is a number r0 , which also can be computed by linear programming, such that if the offered traffic exceeds r0, then for any channel assignment algorithm, a positive fraction of all call requests must be blocked, whereas if the offered traffic is less than r0, all call requests can be honored, if the number of channels is sufficiently large. The authors call r0, whose units are Erlangs per channel, the capacity of the cellular system
Constrained speaker linking
In this paper we study speaker linking (a.k.a.\ partitioning) given
constraints of the distribution of speaker identities over speech recordings.
Specifically, we show that the intractable partitioning problem becomes
tractable when the constraints pre-partition the data in smaller cliques with
non-overlapping speakers. The surprisingly common case where speakers in
telephone conversations are known, but the assignment of channels to identities
is unspecified, is treated in a Bayesian way. We show that for the Dutch CGN
database, where this channel assignment task is at hand, a lightweight speaker
recognition system can quite effectively solve the channel assignment problem,
with 93% of the cliques solved. We further show that the posterior distribution
over channel assignment configurations is well calibrated.Comment: Submitted to Interspeech 2014, some typos fixe
Channel assignment in cellular radio
Some heuristic channel-assignment algorithms for cellular systems are described. These algorithms have yielded optimal, or near-optimal assignments, in many cases. The channel-assignment problem can be viewed as a generalized graph-coloring problem, and these algorithms have been developed, in part, by suitably adapting some of the ideas previously introduced in heuristic graph-coloring algorithms. The channel-assignment problem is formulated as a minimum-span problem, i.e. a problem wherein the requirement is to find the minimum bandwidth necessary to satisfy a given demand. Examples are presented, and algorithm performance results are discussed
Radio Co-location Aware Channel Assignments for Interference Mitigation in Wireless Mesh Networks
Designing high performance channel assignment schemes to harness the
potential of multi-radio multi-channel deployments in wireless mesh networks
(WMNs) is an active research domain. A pragmatic channel assignment approach
strives to maximize network capacity by restraining the endemic interference
and mitigating its adverse impact on network performance. Interference
prevalent in WMNs is multi-faceted, radio co-location interference (RCI) being
a crucial aspect that is seldom addressed in research endeavors. In this
effort, we propose a set of intelligent channel assignment algorithms, which
focus primarily on alleviating the RCI. These graph theoretic schemes are
structurally inspired by the spatio-statistical characteristics of
interference. We present the theoretical design foundations for each of the
proposed algorithms, and demonstrate their potential to significantly enhance
network capacity in comparison to some well-known existing schemes. We also
demonstrate the adverse impact of radio co- location interference on the
network, and the efficacy of the proposed schemes in successfully mitigating
it. The experimental results to validate the proposed theoretical notions were
obtained by running an exhaustive set of ns-3 simulations in IEEE 802.11g/n
environments.Comment: Accepted @ ICACCI-201
A genetic-inspired joint multicast routing and channel assignment algorithm in wireless mesh networks
Copyright @ 2008 IEEEThis paper proposes a genetic algorithm (GA) based optimization approach to search a minimum-interference multicast tree which satis¯es the end-to-end delay constraint and optimizes the usage of the scarce radio network resource in wireless mesh networks. The path-oriented en- coding method is used and each chromosome is represented by a tree data structure (i.e., a set of paths). Since we expect the multicast trees on which the minimum-interference channel assignment can be produced, a fitness function that returns the total channel conflict is devised. Crossover and mutation are well designed to adapt to the tree structure. A simple yet effective channel assignment algorithm is proposed to reduce the channel conflict. Simulation results show that the proposed GA based multicast algorithm achieves better performance in terms of both the total channel conflict and the tree cost than that of a well known algorithm
Automatic frequency assignment for cellular telephones using constraint satisfaction techniques
We study the problem of automatic frequency assignment for cellular telephone
systems. The frequency assignment problem is viewed as the problem
to minimize the unsatisfied soft constraints in a constraint satisfaction problem
(CSP) over a finite domain of frequencies involving co-channel, adjacent
channel, and co-site constraints. The soft constraints are automatically derived
from signal strength prediction data. The CSP is solved using a generalized
graph coloring algorithm. Graph-theoretical results play a crucial
role in making the problem tractable. Performance results from a real-world
frequency assignment problem are presented.
We develop the generalized graph coloring algorithm by stepwise refinement,
starting from DSATUR and augmenting it with local propagation,
constraint lifting, intelligent backtracking, redundancy avoidance, and iterative
deepening
Tight lower bound for the channel assignment problem
We study the complexity of the Channel Assignment problem. A major open
problem asks whether Channel Assignment admits an -time algorithm, for
a constant independent of the weights on the edges. We answer this question
in the negative i.e. we show that there is no -time algorithm
solving Channel Assignment unless the Exponential Time Hypothesis fails. Note
that the currently best known algorithm works in time so our lower bound is tight
Joint multicast routing and channel assignment in multiradio multichannel wireless mesh networks using tabu search
Copyright @ 2009 IEEE Computer SocietyThis paper proposes a tabu search (TS) based optimization approach to search a minimum-interference multicast tree which satisfies the end-to-end delay constraint and optimizes the usage of the scarce radio network resource in wireless mesh networks. The path-oriented encoding method is adopted and each candidate solution is represented by a tree data structure (i.e., a set of paths). Since we expect the multicast trees on which the minimum-interference channel assignment can be produced, a fitness function that returns the total channel conflict is devised. The techniques for controlling the tabu search procedure are well developed. A simple yet effective channel assignment algorithm is proposed to reduce the channel conflict. Simulation results show that the proposed TS multicast algorithm can produce the multicast trees which have better performance in terms of both the total channel conflict and the tree cost than that of a well known multicast algorithm in wireless mesh networks.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1
- …
