3 research outputs found

    Joint Transceiver Design Algorithms for Multiuser MISO Relay Systems with Energy Harvesting

    Full text link
    In this paper, we investigate a multiuser relay system with simultaneous wireless information and power transfer. Assuming that both base station (BS) and relay station (RS) are equipped with multiple antennas, this work studies the joint transceiver design problem for the BS beamforming vectors, the RS amplify-and-forward transformation matrix and the power splitting (PS) ratios at the single-antenna receivers. Firstly, an iterative algorithm based on alternating optimization (AO) and with guaranteed convergence is proposed to successively optimize the transceiver coefficients. Secondly, a novel design scheme based on switched relaying (SR) is proposed that can significantly reduce the computational complexity and overhead of the AO based designs while maintaining a similar performance. In the proposed SR scheme, the RS is equipped with a codebook of permutation matrices. For each permutation matrix, a latent transceiver is designed which consists of BS beamforming vectors, optimally scaled RS permutation matrix and receiver PS ratios. For the given CSI, the optimal transceiver with the lowest total power consumption is selected for transmission. We propose a concave-convex procedure based and subgradient-type iterative algorithms for the non-robust and robust latent transceiver designs. Simulation results are presented to validate the effectiveness of all the proposed algorithms

    Training based channel estimation algorithms for dual hop MIMO OFDM relay systems

    Get PDF
    In this paper we consider minimum mean square error (MMSE) training based channel estimation for two-hop multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) relaying systems. The channel estimation process is divided into two main phases. The relay-destination channel is estimated in the first phase and can be obtained using well known point-to-point MIMO OFDM estimation methods. In the second phase, the source-relay channel is estimated at the destination with the use of a known training sequence that is transmitted from the source and forwarded to the destination by a non-regenerative relay. To obtain an estimate of the source-relay channel, the source training sequence, relay precoder, and destination processor, require to be optimised. To solve this problem we derive an iterative algorithm that involves sequentially solving a number of convex optimisation problems to update the source, relay, and destination design variables. Since the iterative algorithm may be too computationally expensive for practical implementation we then derive simplified solutions that have reduced computational complexity. Simulation results demonstrate the effectiveness of the proposed algorithms
    corecore