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Training-Based Channel Estimation Algorithms for

Dual Hop MIMO OFDM Relay Systems
Andrew P. Millar, Stephan Weiss, Senior Member, IEEE, and Robert W. Stewart

Abstract—In this paper, we consider minimum-mean-square
error (MMSE) training-based channel estimation for two-hop
multiple-input multiple-output (MIMO) orthogonal frequency
division multiplexing (OFDM) relaying systems. The channel
estimation process is divided into two main phases. The relay-
destination channel is estimated in the first phase and can be
obtained using well-known point-to-point MIMO OFDM estima-
tion methods. In the second phase, the source-relay channel is
estimated at the destination with the use of a known training
sequence that is transmitted from the source and forwarded to the
destination by a nonregenerative relay. To obtain an estimate of
the source-relay channel, the source training sequence, relay pre-
coder, and destination processor, require to be optimized. To solve
this problem, we first derive an iterative algorithm that involves
sequentially solving a number of convex optimization problems to
update the source, relay, and destination design variables. Since
the iterative algorithm may be too computationally expensive
for practical implementation, we then derive simplified solutions
that have reduced computational complexity. Simulation results
demonstrate the effectiveness of the proposed algorithms.

Index Terms—MIMO OFDM, relay networks, MMSE channel
estimation, training sequences design.

I. INTRODUCTION

M IMO relaying has recently attracted significant inter-

est due to the potential benefits of extended network

coverage, increased data throughput, and robustness to channel

impairments such as strong shadowing and multipath fading.

Transceiver designs for MIMO relaying have been exten-

sively studied in e.g. [1]–[9], where it is mainly assumed

that perfect channel state information (CSI) is available. The

use of well-known conventional point-to-point channel esti-

mation algorithms (such as those in [10]–[14]) for estimation

in MIMO relay networks would require the source-relay and

relay-destination channels to be estimated at the relay and

destination, respectively. Such an approach is appropriate for

regenerative relays (also known as decode-forward relay net-

works) where the relay has the signal processing functionality

to perform the task of channel estimation [15], [16]. However,
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non-regenerative relays (also known as amplify-forward relays)

are expected to have simpler functionality and lower imple-

mentation cost than decode-forward relays. As such they have

limited signal processing capabilities [17]–[23] and are there-

fore not expected to perform complex tasks such as channel

estimation. In fact it is desireable to keep the complexity of

non-regenerative relays to a minimum. For these reasons the

estimation of the source-relay channel at the relay in such

networks is considered impractical, and alternative estimation

methods have therefore been suggested.

For channel estimation problems in non-regenerative MIMO

relaying, one possible approach is to estimate the compound

MIMO channel through observations at the destination device

(as in e.g. [15], [24]). Although techniques that estimate the

compound source-destination MIMO channel allow reliable

detection at the destination device, they cannot fully exploit

the potential benefits (such as improved MSE and BER perfor-

mance etc.) that are made available by sophisticated transceiver

designs such as those developed in [1]–[9], which require

knowledge of both the source-relay and relay-destination chan-

nels. Alternative methods that are capable of estimating both

these channels have therefore been developed [18], [19],

[21]–[23], [25], [26], where all channel estimation is conducted

at the destination.

Least squares (LS) and weighted least squares algorithms

have been developed in [25] and [26], respectively, where

the source-relay and relay-destination channels are estimated

from the observed composite MIMO channel at the desti-

nation. Necessary and sufficient conditions for obtaining the

source-relay and relay-destination channels from the composite

channel observed at the destination are studied in [19].

Two-phase channel estimation procedures have been devel-

oped in [18], [21]–[23]. In these works, the relay-destination

channel is estimated in the first phase using conventional

techniques. In the second phase, the source sends training sym-

bols to the relay, which precodes the received symbols and

forwards them to the destination. The destination can then

estimate the source-relay channel using the knowledge of the

relay-destination channel obtained in the first phase of chan-

nel estimation. In [18] the authors derive the optimal source

training symbols and relay precoder under the assumption that

the relay-destination channel is perfectly estimated during the

first phase. Imperfect estimation of the relay-destination chan-

nel adversely affects the source-relay estimate obtained by the

algorithm in [18]. The works of [21]–[23] therefore develop

robust estimation algorithms that account for such imperfect

relay-destination CSI.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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In this paper we consider the channel estimation problem

for non-regenerative MIMO OFDM relay networks for trans-

mission over frequency selective channels. Similar to [18],

[21]–[23] we adopt a two-phase channel estimation approach.

In the proposed algorithms, the relay-destination channel is

equivalent to a point-to-point MIMO OFDM channel estima-

tion problem and the algorithms in e.g. [11]–[13] can be used

to obtain the channel estimate at the destination. The main

contribution of this paper lies in the estimation of the source-

relay channel, which is conducted at the destination in the

second phase of channel estimation. We consider the design

of the source training matrix, relay precoder, and destina-

tion processor in order to estimate the source-relay channel

at the destination. An iterative algorithm is firstly consid-

ered, before simplified approaches with reduced complexity are

presented.

Notation: In our notation we denote scalars, vectors, and

matrices by lower case normal font, lower case bold font, and

upper case bold font respectively. The quantities I N and 0N×M

denote the N × N identity matrix and N × M zero matrix.

The element in the i th row and j th column of matrix A is

denoted [A]i j . The operators E{.}, tr{.}, (.)T , (.)H , {.}†, and

‖.‖F denote expectation, trace, transpose, Hermitian transpose,

pseudo inverse, and Frobenius norm, respectively. Matrix rank

is denoted rank{.} and diag[{An}N
n=1] produces a block diag-

onal matrix with the nth diagonal block given by An . The

operators min(.) and max(.) return the minimum and maxi-

mum, and we define [x]+ � max(x, 0). The floor operator ⌊.⌋
returns the maximum integer not exceeding the argument. The

Kronecker product is denoted by ⊗ and the vectorisation oper-

ator is denoted vec[.]. The notation A � B signifies that A is

positive semi-definite w.r.t. B.

II. SIGNAL MODEL AND CHANNEL ESTIMATION

A. OFDM Channel Model

We consider a half duplex two-hop non-regenerative MIMO

relaying system where the source, relay, and destination devices

are equipped with Ns , Nr , and Nd antennas, respectively. The

source-relay and relay-destination channels are considered to

be frequency selective with L + 1 distinguishable delay paths

between each transmit-receive antenna pair. We denote the lth

MIMO taps of the source-relay and relay-destination channels

by Hs[l] ∈ C
Nr ×Ns and Hr [l] ∈ C

Nd×Nr , respectively, and

assume each delay path to be spatially correlated on both the

transmit and receive sides. We adopt the Kronecker spatial cor-

relation model and can thus decompose the source-relay and

relay-destination channel taps as [27], [28]

Hs[l] = ϒ
1/2
s [l]Hsw[l]�

T/2
s [l], l = 0, . . . , L , (1)

Hr [l] = ϒ
1/2
r [l]Hrw[l]�

T/2
r [l], l = 0, . . . , L , (2)

where ϒs[l] ∈ C
Nr ×Nr and �s[l] ∈ C

Ns×Ns are the receive

side and transmit side spatial correlation matrices, respectively,

for the lth delay path of the source-relay channel. Similarly,

ϒr [l] ∈ C
Nd×Nd and �r [l] ∈ C

Nr ×Nr are the spatial correla-

tion matrices for the lth delay path of the relay-destination

channel. We assume that different delay paths are uncorrelated

and the elements of Hs[l] and Hr [l] are circularly symmetric

complex Gaussian random variables drawn from CN(0, σ 2
hs

[l])

and CN(0, σ 2
hr

[l]), respectively.

To deal with the frequency selective nature of the wire-

less channels, OFDM is employed with K subcarriers for

both the source-relay and relay-destination transmission stages.

Assuming that the OFDM cyclic prefix on each antenna branch

is of length L , the frequency selective channels are decou-

pled into the K orthogonal narrowband subcarrier channel

matrices

Hs,k =
L
∑

l=0

Hs[l]Wkl ∈ C
Nr ×Ns , k = 1, . . . , K , (3)

Hr,k =
L
∑

l=0

Hr [l]Wkl ∈ C
Nd×Nr , k = 1, . . . , K , (4)

where Hs,k and Hr,k are the kth subcarriers for the source-relay

and relay-destination channels, respectively, and we define

Wkl � e− j2π(k−1)l/K . Channel estimation can be conducted to

either directly estimate the OFDM subcarrier channels in (3)

and (4), or to estimate the underlying time domain channels

characterised by (1) and (2). In this paper we develop chan-

nel estimation algorithms for the latter case since it generally

requires fewer parameters to be estimated.

In our channel model we assume that both the source-relay

and relay-destination channels remain constant over the chan-

nel estimation process. Furthermore, it is also assumed that the

coherence time of both channels is long enough such that the

subsequent transmission of data symbols may be conducted

without the overhead spent on channel estimation and feedback

becoming prohibitive and thereby limiting the system spectral

efficiency.

B. Channel Estimation Procedure

Similar to the works in [18] and [21], we assume that the

estimation of the source-relay and relay-destination channels is

conducted in two training phases. In the first phase the source

remains silent and the relay sends a known training sequence to

the destination. The estimation of the relay-destination channel

in this case is a standard point-to-point MIMO OFDM estima-

tion problem and the algorithms developed in [11]–[13] can be

used to estimate the channel at the destination. Since the esti-

mation of the relay-destination channel is a standard MIMO

OFDM channel estimation problem it shall not be discussed

further. The main focus of this paper is on the estimation of

the source-relay channel, which is obtained at the destination

during the second phase of channel estimation.

The second phase of channel estimation is dedicated to esti-

mating the source-relay channel matrices in (1). In this phase

the source transmits a training sequence to the relay whilst the

relay remains silent. For each OFDM subcarrier we can write

the received signal rk ∈ C
Nr at the relay as

rk = Hs,k sk + vs,k, k = 1, . . . , K , (5)



MILLAR et al.: TRAINING-BASED CHANNEL ESTIMATION ALGORITHMS FOR DUAL HOP MIMO OFDM RELAY SYSTEMS 3

where sk ∈ C
Ns is the training signal for the kth subcarrier, and

vs,k ∈ C
Nr is an additive white Gaussian noise (AWGN) vector,

which contains independent identically distributed (i.i.d.) zero

mean complex Gaussian random variables, and has covari-

ance E{vs,kvH
s,k} = σ 2

vs
I Nr . Substituting (3) into (5), and using

vec[AX B] = (BT ⊗ A)vec[X], we have

rk =
(

mk ⊗ I Nr

)

hs + vs,k, k = 1, . . . , K , (6)

where for notational convenience we define

mk �

[

sT
k Wk0, . . . , sT

k WkL

]

∈ C
Ns (L+1), k = 1, . . . , K ,

(7)

hs � vec
[

Hs[0], . . . ,Hs[L]
]

∈ C
Lhs . (8)

In (8) we define Lhs � Ns Nr (L + 1) as being the number of

source-relay channel coefficients that require to be estimated.

Collecting the received signals from (6) into a single col-

umn vector defined as r � vec[r1, . . . , r K ] ∈ C
K Nr , it can be

straightforwardly shown that

r =
(

M ⊗ I Nr

)

hs + vs, (9)

where vs � vec[vs,1, . . . , vs,K ] ∈ C
K Nr is the collection of

source-relay AWGN vectors over all subcarriers, and we also

define the matrices

M � [F0 S, . . . , FL S] ∈ C
K×Ns (L+1) (10)

Fl � diag
[

{Wkl}K
k=1

]

∈ C
K×K , l = 0, . . . , L , (11)

S � [s1, . . . , sK ]T ∈ C
K×Ns . (12)

The matrix S in (12) is the training matrix associated with the

source-relay channel estimation problem, which requires to be

optimised. It is worth noting here that if the relay device has

the ability to perform channel estimation then, based on the

received signal in (9), the estimate of hs can be computed at

the relay using the point-to-point channel estimation algorithms

in e.g. [12]. However, a non-regenerative relay as considered

here may be limited in its processing capability and it is desire-

able to keep the computational expense at the relay as low as

possible.

Similar to the works in [18] and [21], we consider that the

relay only performs a simple precode-and-forward operation

and channel estimation is then performed at the destination. The

relay device thus precodes the received signal in (9) to produce

the transmit signal

r̂ = G
((

M ⊗ I Nr

)

hs + vs

)

∈ C
K Nr , (13)

where G ∈ C
K Nr ×K Nr is the linear relay precoder that operates

over all subcarriers and also requires to be optimised. After per-

forming the precoding operation the relay transmits the signal

in (13) to the destination node, resulting in the signal y ∈ C
K Nd

received at the destination being given by

y = Hr G
(

M ⊗ I Nr

)

hs + Hr Gvs + vr , (14)

where vr ∈ C
K Nd is the relay-destination AWGN vector that

contains i.i.d. zero mean complex Gaussian random variables

and has covariance E{vr vH
r } = σ 2

vr
I K Nd

. In (14) the matrix

Hr ∈ C
K Nd×K Nr describes the relay-destination OFDM chan-

nel over all subcarriers and is defined as

Hr � diag
[
{

Hr,k

}K

k=1

]

, (15)

with the subcarrier channels Hr,k being given in (4).

From the received signal in (14) the task is to compute an

estimate of the source-relay channel taps given in (1). This is

equivalent to the estimation of the channel vector hs in (8). In

the following we shall denote the estimate of hs by

ĥs � vec
[

Ĥs[0], . . . , Ĥs[L]
]

∈ C
Lhs , (16)

with Ĥs[l] ∈ C
Nr ×Ns signifying the estimate of the lth source-

relay MIMO channel tap in (1). In order to facilitate the

optimisation of the channel estimate in (16) we introduce a lin-

ear processor W ∈ C
Lhs ×K Nd at the destination and let ĥs =

W y. Using the received signal in (14) the source-relay channel

estimate is then given by

ĥs = W
(

Hr G
(

M ⊗ I Nr

)

hs + Hr Gvs + vr

)

. (17)

To obtain a useful channel estimate in (17) we require to opti-

mise the destination processor W , the linear relay precoder G,

and the source training matrix S (note that M is a function of S

through (10)). Since both the source-relay and relay-destination

channels are estimated at the destination device, it is convenient

that the optimisation problem is solved at the destination. The

source training matrix and relay precoder may then be commu-

nicated back to the source and relay, respectively, through low

rate feedback channels.

III. PROBLEM FORMULATION

In this section we formulate the optimisation problem for

deriving the source training matrix, the relay precoder and the

destination processer to minimise the source-relay channel esti-

mation MSE. We firstly denote the error between the estimated

channel vector ĥs and the actual channel vector hs as e =
ĥs − hs ∈ C

Lhs . Using (17) we can express the source-relay

estimation error as

e =
(

W Hr G
(

M ⊗ I Nr

)

− I Lhs

)

hs + W (Hr Gvs + vr) .

(18)

The channel estimation MSE cost function is then given

by �(S, G, W) = tr{E{eeH }}, where the expectation is taken

w.r.t. the random noise compenents vs and vr , as well as
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the unknown channel vector hs . Using (18) we can expand

�(S, G, W) as

�(S, G, W) = tr
{

W Hr G
(

M ⊗ I Nr

)

×Rhs

(

M ⊗ I Nr

)H
GH H H

r W H
}

− tr
{

W Hr G
(

M ⊗ I Nr

)

Rhs

}

+ tr
{

Rhs

}

− tr
{

Rhs

(

M ⊗ I Nr

)H
GH H H

r W H
}

+ tr
{

W
(

Hr GGH H H
r σ 2

vs
+ σ 2

vr
I K Nd

)

W H
}

,

(19)

where we define Rhs � E{hs hH
s } ∈ C

Lhs ×Lhs

Rhs = diag

[
{

σ 2
hs

[l]�s[l] ⊗ ϒs[l]
}L

l=0

]

(20)

as the source-relay channel covariance matrix. Unfortunately,

we find from (19) that minimising �(S, G, W) can only be

conducted if the relay-destination channel matrix Hr in (15)

is precisely known.

In order to formulate an analytically tractable optimisation

problem we make the simplifying assumption that the estimate

of the relay-destination OFDM channel is sufficiently accurate.

This is a valid assumption when the signal to noise ratio (SNR)

during the first phase of channel estimation is sufficiently high

such that relay-destination channel estimation errors are small

enough to be negligible [21]. We therefore consider the cost

function �̂(S, G, W) given by

�̂(S, G, W) = tr
{

W Ĥr G
(

M ⊗ I Nr

)

× Rhs

(

M ⊗ I Nr

)H
GH Ĥ

H

r W H
}

− tr
{

W Ĥr G
(

M ⊗ I Nr

)

Rhs

}

+ tr
{

Rhs

}

− tr
{

Rhs

(

M ⊗ I Nr

)H
GH Ĥ

H

r W H
}

+ tr
{

W
(

Ĥr GGH Ĥ
H

r σ 2
vs

+ σ 2
vr

I K Nd

)

W H
}

,

(21)

which is obtained from (19) simply by replacing Hr with the

corresponding channel estimate Ĥr .

As well as minimising the cost function �̂(S, G, W), the

source and relay transmit powers should be constrained since

these devices will have limited power budgets. The source

transmit power constraint is given by

tr
{

SSH
}

≤ Ps, (22)

with Ps being the power budget available to the source device.

The relay transmit signal in (13) should also abide by a power

constraint. Since (13) depends on the unknown noise signal vs

as well as the channel vector hs we shall enforce an expected

relay transmit power constraint given by tr{E{r̂ r̂
H }} ≤ Pr ,

where the expectation is taken w.r.t. vs and hs , and Pr is the

power budget available to the relay. The relay power constraint

can thus be written as

tr
{

GT GH
}

≤ Pr , (23)

where T � E{r r H } ∈ C
K Nr ×K Nr and is given by

T =
(

M ⊗ I Nr

)

Rhs (M ⊗ I Nr )
H + σ 2

vs
I K Nr . (24)

We can now construct the optimisation problem for finding the

source-relay channel estimate as

min
S,G,W

�̂(S, G, W) (25)

s.t. tr
{

SSH
}

≤ Ps (26)

tr
{

GT GH
}

≤ Pr . (27)

The optimisation problem in (25)–(27) is non-convex and

obtaining the optimal solution in closed form is intractable.

In the following sections we propose several algorithms for

overcoming this problem.

IV. PROPOSED ITERATIVE ALGORITHM

It can be shown that with any two of the variables fixed the

problem in (25)–(27) is convex w.r.t. the remaining variable.

In fact, the individual design problems for the source training

matrix, the relay precoder, and the destination processor can be

formulated as (possibly) constrained quadratic matrix problems

with matrix variables. With this observation we therefore sug-

gest an iterative algorithm to solve (25)–(27) by sequentially

updating each variable. Since each subproblem is a convex

optimisation problem, iteratively updating each variable in a

sequential fashion allows the algorithm to converge to (at least)

a locally optimal solution. It is interesting to note that the

proposed iterative algorithm is not too dissimilar in nature to

iterative linear MMSE transceiver designs for MIMO relay sys-

tems (see [29]), and similar tools can be utilised to solve these

problems.

A. Training Matrix Update

We focus firstly on solving (25)–(27) for updating the source

training matrix S when both G and W are fixed. To this end we

note that �̂(S, G, W) can be equivalently written as

�̂(S, G, W) =
∥
∥
∥

(

W Ĥr G
(

M ⊗ I Nr

)

− I Lhs

)

R
1/2
hs

∥
∥
∥

2

F

+
∥
∥
∥
∥

W
(

Ĥr GGH Ĥ
H

r σ 2
vs

+ σ 2
vr

I K Nd

)1/2
∥
∥
∥
∥

2

F

.

(28)

Similarly, we can equivalently express the source and relay

power constraints in (26) and (27) as

‖S‖2
F ≤ Ps (29)

∥
∥
∥G
(

M ⊗ I Nr

)

R
1/2
hs

∥
∥
∥

2

F
≤ Pr −

∥
∥Gσvs

∥
∥

2

F
, (30)
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where to obtain (30) we have used the definition of T in (24).

Using (28)–(30) we can rewrite the optimisation problem in

(25)–(27) for finding the training matrix S as

min
S

∥
∥
∥

(

W Ĥr G
(

M ⊗ I Nr

)

− I Lhs

)

R
1/2
hs

∥
∥
∥

2

F
(31)

s.t. ‖S‖2
F ≤ Ps (32)

∥
∥
∥G
(

M ⊗ I Nr

)

R
1/2
hs

∥
∥
∥

2

F
≤ Pr −

∥
∥Gσvs

∥
∥

2

F
. (33)

We note that the contribution of the second term in (28) has

been eliminated from the objective function in (31) since it is

not a function of the training matrix S. Introducing an auxilliary

variable t that satisfies

t ≥
∥
∥
∥

(

W Ĥr G
(

M ⊗ I Nr

)

− I Lhs

)

R
1/2
hs

∥
∥
∥

F
, (34)

we can solve (31)–(33) from the following second order conic

program (SOCP) [30]

min
S,t

t (35)

s.t. ‖S‖F ≤
√

Ps (36)
∥
∥
∥G
(

M ⊗ I Nr

)

R
1/2
hs

∥
∥
∥

F
≤
√

Pr −
∥
∥Gσvs

∥
∥

2

F
(37)

∥
∥
∥

(

W Ĥr G
(

M ⊗ I Nr

)

− I Lhs

)

R
1/2
hs

∥
∥
∥

F
≤ t. (38)

The SOCP in (35)–(38) is a standard convex optimisatin prob-

lem and therefore the optimal solution can be efficiently found

using interior point algorithms [30].

B. Relay Precoder Update

We now focus on updating the relay precoder by solving

(25)–(27) for G when both the source training matrix S and the

destination processor W are fixed. Since the power constraint

in (26) does not depend on G we can find the relay precoder by

solving

min
G

�̂(S, G, W) (39)

s.t. tr
{

GT GH
}

≤ Pr . (40)

This optimisation problem is a quadratic matrix problem with a

single constraint and is a standard convex optimisation problem.

It is worthwhile mentioning that the optimisation problem for

the relay precoder in (39)–(40) can be reformulated as a SOCP

and solved using interior point methods. However, since there

is only one constraint, a simpler solution can be derived from

the KKT conditions [30]. The following KKT conditions are

sufficient for optimality:
(

Ĥ
H

r W H W Ĥr + µr I K Nr

)

GT = Ĥ
H

r W H Rhs

(

M ⊗ I Nr

)H

(41)

tr
{

GT GH
}

− Pr ≤ 0 (42)

µr

(

tr
{

GT GH
}

− Pr

)

= 0 (43)

µr ≥ 0, (44)

where µr is the Lagrangian multiplier associated with the relay

power constraint in (40), or equivalently that in (42). Solving

(41) results in the optimal relay precoder given by

G =
(

Ĥ
H

r W H W Ĥr + µr I K Nr

)−1

× Ĥ
H

r W H Rhs

(

M ⊗ I Nr

)H
T−1. (45)

The Lagrangian multiplier µr must now be calculated to ensure

the power constraint in (40) is satisfied. Substituting (45) into

(42) and (43) we require to find µr that satisfies

tr

{
(

Ĥ
H

r W H W Ĥr + µr I K Nr

)−2

X

}

≤ Pr , (46)

µr

(

tr

{
(

Ĥ
H

r W H W Ĥr + µr I K Nr

)−2

X

}

− Pr

)

= 0 (47)

where for convenience we define

X � Ĥ
H

r W H Rhs

(

M ⊗ I Nr

)H
T−1

×
(

M ⊗ I Nr

)

Rhs W Ĥr . (48)

The condition in (47) can be satisfied with either µr = 0 or

tr{(Ĥ
H

r W H W Ĥr + µr I K Nr )
−2 X} = Pr . If µr = 0 satisfies

the condition in (46) then, since the left hand side of (46) is

a monotonically decreasing function of µr , it is the only solu-

tion to satisfy both (46) and (47). On the other hand, if µr = 0

does not satisfy (46) then we must compute a positive µr to

satisfy both (46) and (47). To satisfy (46) and (47) in this

case we require to compute µr such that tr{(Ĥ
H

r W H W Ĥr +
µr I K Nr )

−2 X} = Pr . Based on the fact that the left hand side

of this expression is a monotonically decreasing function of µr ,

the method of bisection can be used to find µr in this case.

C. Destination Processor Update

We finally focus on updating the destination processor by

solving (25)–(27) for W when both the relay precoder G and

the source training matrix S are fixed. Since the source and

relay power constraints in (26) and (27) are independent of

W , the destination processor can be found by solving the

unconstrained optimisation problem

min
W

�̂(S, G, W). (49)

From �̂(S, G, W) given in (21) it is straightforward to show

that �̂(S, G, W) is convex in W . The optimal solution to the

unconstrained problem in (49) can therefore be found by setting

the derivative of �̂(S, G, W) w.r.t. W∗ to zero and solving the

result for W . This leads to the optimal destination processor

being given by

W = Rhs

(

M ⊗ I Nr

)H
GH Ĥ

H

r

×
(

Ĥr GT GH Ĥ
H

r + σ 2
vr

I K Nd

)−1

. (50)
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D. Summary of Iterative Algorithm

We now briefly summarise the proposed iterative algorithm.

For the i th iteration, let us denote Si , Gi , and W i , as the updates

of the source training matrix, relay precoder, and destination

processor, respectively. The main steps of the proposed iterative

algorithm are shown in Algorithm 1:

Algorithm 1: Iterative algorithm for source-relay channel

estimation.

Initialisation: Set i = 0. Initialise S0 and G0 to satisfy (26) and

(27) and initialise W0.

repeat

Set i = i + 1.

Update Si by solving the SOCP in (35)–(38).

Compute X using (48).

if tr{(Ĥ
H

r W H
i−1W i−1 Ĥr )

−2 X} ≤ Pr then

Set µr,i = 0.

else

Solve tr{(Ĥ
H

r W H
i−1W i−1 Ĥr + µr,i I K Nr )

−2 X} = Pr

for µr,i using the method of bisection.

end if

Update Gi using (45).

Update W i using (50).

until |�̂(Si , Gi , W i ) − �̂(Si−1, Gi−1, W i−1)| ≤ ǫ or i =
maxiter.

Compute the source-relay channel estimate ĥs from (17).

As highlighted in Algorithm 1, the variables Si , Gi ,

and W i are repeatedly updated until |�̂(Si , Gi , W i ) −
�̂(Si−1, Gi−1, W i−1)| falls below some threshold ǫ ∈ R+, or

until a maximum number of prespecified iterations are reached.

Since the design variables are found by solving convex sub-

problems, the channel estimation MSE can only decrease or

maintain after each update and convergence is guaranteed.

V. PROPOSED SIMPLIFIED ALGORITHMS

As has been previously established, for any given S and

G, the optimal destination processing matrix W can be found

by solving the unconstrained problem in (49) and the solu-

tion is given by (50). Substituting (50) into (21), and using

the matrix inversion lemma, we can express the source-relay

channel estimation MSE as in (51), shown at the bottom of the

page. To obtain the matrix E1 in (51) we have also used the

facts that (A ⊗ B)H = (AH ⊗ BH ) and (A ⊗ B)(C ⊗ D) =
(AC ⊗ B D), for matrices of commensurate dimensions. We

can now formulate the joint training matrix and relay precoder

design problem as

min
S,G

tr {E1} + tr {E2} (52)

s.t. tr
{

SSH
}

≤ Ps (53)

tr
{

GT GH
}

≤ Pr . (54)

The optimisation problem in (52)–(54) is not jointly convex in

the design variables S and G and thus the optimal solution is

difficult to obtain. In the following we therefore focus on sim-

plified approaches to solving (52)–(54), which have reduced

computational complexity compared to the iterative algorithm

proposed in the previous section.

A. Optimal Relay Precoder Structure

We begin by deriving the optimal structure of the relay pre-

coder G as the solution to (52)–(54). Since E1 and the source

power constraint in (53) are both independent of G, we can

calculate the optimal relay precoder structure by solving

min
G

tr {E2} (55)

tr
{

GT GH
}

≤ Pr . (56)

Theorem 1: The optimal structure of the relay precoder G as

the solution to the problem in (55)–(56) is given by

G = L Rhs

(

M H ⊗ I Nr

)

T−1, (57)

where L ∈ C
K Nr ×Lhs is a matrix yet to be determined.

Proof: See Appendix A. �

We see that the optimal relay precoder given in (57) can be

decomposed into two main components. Specifically, it con-

sists of a transmit/precoding matrix L and a receiver matrix

given by Rhs (M H ⊗ I Nr )T−1. Interestingly, given the relay

received signal in (9), it can be straightforwardly shown that this

receiver matrix is in fact the optimal linear matrix for produc-

ing the MMSE channel estimate at the relay. The action of the

relay precoder is therefore to firstly produce a MMSE source-

relay channel estimate, before precoding this estimate by L and

forwarding the result to the destination.

�̂(S, G, W) = tr

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(

R−1
hs

+ σ−2
vs

(

M H M ⊗ I Nr

))−1

︸ ︷︷ ︸

E1

⎫

⎪
⎪
⎬

⎪
⎪
⎭

+ tr

⎧

⎪
⎪
⎨

⎪
⎪
⎩

T−1/2
(

M ⊗ I Nr

)

Rhs Rhs

(

M H ⊗ I Nr

)

T−1/2
(

σ−2
vr

T 1/2GH Ĥ
H

r Ĥr GT 1/2 + I K Nr

)−1

︸ ︷︷ ︸

E2

⎫

⎪
⎪
⎬

⎪
⎪
⎭

. (51)
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Substituting the relay precoder structure of (57) into tr{E2}
in (51) and using the matrix inversion lemma we can write

tr {E2} = tr

{
(

σ−2
vr

L H Ĥ
H

r Ĥr L + N−1
)−1
}

, (58)

where for convenience we define

N � Rhs

(

M H ⊗ I Nr

)

T−1
(

M ⊗ I Nr

)

Rhs . (59)

For high SNR of the source-relay link, i.e. when we have

(M ⊗ I Nr )Rhs (M H ⊗ I Nr ) ≫ I K Nr , it is straightforward to

show from (59) that N approaches Rhs . In such a high SNR

environment the source training matrix S does not impact

tr{E2} in (58). The optimisation of S in this case can then

be computed independently of the relay precoder and we can

therefore approximate and decompose the original optimisation

problem in (52)–(54) into two separate problems. Specifically,

using the optimal relay precoder structure in (57) as well as the

matrix E1 defined in (51), we can approximate and decompose

the problem (52)–(54) into the following source training matrix

optimisation problem

min
S

tr

{
(

R−1
hs

+ σ−2
vs

(

M H M ⊗ I Nr

))−1
}

(60)

s.t. tr
{

SSH
}

≤ Ps, (61)

and relay precoder matrix optimisation problem

min
L

tr

{
(

σ−2
vr

L H Ĥ
H

r Ĥr L + N−1
)−1
}

(62)

s.t. tr
{

L N L H
}

≤ Pr . (63)

The decomposition of the original problem in (52)–(54) using

the high SNR approximation greatly simplifies the optimisa-

tion procedure since the training matrix S can firstly be found

by solving (60)–(61) and the matrix L can subsequently be

found by solving (62)–(63). Unlike the algorithm proposed in

Section IV there is no need to iteratively update the variables

in this case, which results in the proposed simplified algo-

rithms having substantially reduced computational complexity

compared to the iterative algorithm.

B. Proposed Simplified Algorithm 1

The source training matrix optimisation problem in (60)–(61)

is equivalent to the point-to-point MIMO OFDM channel esti-

mation problem considered in [12] and the optimal solution to

(60)–(61) can be found using similar arguments to those made

in [12]. Specifically, the optimal structure of the source training

matrix is given by

S = QS̄, (64)

where S̄ ∈ C
Ns×Ns is a matrix yet to be determined and Q ∈

C
K×Ns is a semi-unitary matrix that satisfies

QH FH
m Fn Q = 0Ns×Ns ∀m = n (65)

QH FH
l Fl Q = I Ns ∀l (66)

QH Q = I Ns , (67)

where Fl were defined in (11). The semi-unitary matrix Q

that satisfies the properties in (65)–(67) can be constructed as

follows: Partition the matrix Q as Q = [q1, . . . , q Ns
], where

qi ∈ C
K denotes the i th column of Q. Let the first column of

Q be given by q1 =
√

1/K 1K , where 1K is a K dimensional

column vector with all elements equal to one, which satisfies

‖q1‖ = 1. The kth element of the remaining columns of Q can

then be constructed as
[

qi

]

k
= e− j2π⌊K/Nr ⌋(i−1)(k−1)/K .

Substituting (20) and (64) into (60)–(61), then after introduc-

ing the variable change

Ŝ = S̄
H

S̄, (68)

the optimisation problem in (60)–(61) is equivalent to the

following problem in Ŝ

min
Ŝ

L
∑

l=0

tr

{
(

σ−2
hs

[l]�−1
s [l] ⊗ ϒ

−1
s [l] + σ−2

vs
Ŝ ⊗ I Nr

)−1
}

(69)

s.t. tr
{

Ŝ
}

≤ Ps (70)

Ŝ � 0Ns×Ns . (71)

To obtain the objective function in (69) we have utilised the

fact that the matrix Q in (64) satisfies the conditions in (65)–

(67), as well as the properties (A ⊗ B)−1 = (A−1 ⊗ B−1) and

(diag[{An}N
n=1])−1 = diag[{A−1

n }N
n=1]. Introducing auxilliary

matrices K [l] ∈ C
Ns Nr ×Ns Nr satisfying

K [l] �
(

σ−2
hs

[l]�−1
s [l] ⊗ ϒ

−1
s [l] + σ−2

vs
Ŝ ⊗ I Nr

)−1
, (72)

then by utilising the Schur complement lemma the problem in

(69)–(71) can be solved by the following SDP [30]

min
Ŝ,{K [l]}L

l=0

L
∑

l=0

tr {K [l]} (73)

s.t. tr
{

Ŝ
}

≤ Ps (74)

Ŝ � 0Ns×Ns (75)
[

K [l] I Ns Nr

I Ns Nr R−1
hs

[l] + σ−2
vs

Ŝ ⊗ I Nr

]

� 0M×M , (76)

where Rhs [l] � σ 2
hs

[l]�s[l] ⊗ ϒs[l] and M � 2Ns Nr . The

SDP in (73)–(76) is a standard convex optimisation problem

and thus the optimal solution can be efficiently found using

interior point algorithms [30]. After solving (73)–(76) for Ŝ, the

matrix S̄ can be computed from (68) as S̄ = Ŝ
1/2

, and finally

the optimal training matrix S is given by (64).

Having solved (60)–(61) for the optimal training matrix S,

we now turn our attention to deriving the optimal matrix L as

the solution to the optimisation problem in (62)–(63). We firstly

restate the problem in (62)–(63) as

min
L

tr

{

N
(

σvr

−2 N1/2 L H Ĥ
H

r Ĥr L N1/2 + I Lhs

)−1
}

(77)

s.t. tr
{

L N L H
}

≤ Pr . (78)
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Let us now consider the singular value decomposition (SVD) of

Ĥr and eigenvalue decomposition (EVD) of N given by

Ĥr = Ur�V H
r (79)

N = Un�U H
n , (80)

where � is a K Nd × K Nr diagonal matrix containing the

non-zero singular values {δi }Rr

i=1 ∈ R++, and � is an Lhs ×
Lhs diagonal matrix that contains the non-zero eigenvalues

{ψi }Rn

i=1 ∈ R++. Here we define Rr � rank{Ĥr } and Rn �

rank{N}, and assume w.l.o.g. that the diagonal entries in � and

� are arranged in descending order.

Theorem 2: The optimal relay precoding matrix L as the

solution to (77)–(78) is given by

L = V r�U H
n , (81)

where � is a K Nr × Lhs diagonal matrix with non-negative

diagonal elements {φi }R
i=1 ∈ R+. Here we define the variable

R � min(Rr , Rn).

Proof: See Appendix B. �

With the matrix L given in (81) the optimal relay precoder is

finally given from (57) by

G = V r�U H
n Rhs

(

M H ⊗ I Nr

)

T−1. (82)

Substituting (79)–(81) into (62)–(63), the original matrix val-

ued optimisation problem reduces to the scalar problem

min
{φi }R

i=1

R
∑

i=1

ψiσ
2
vr

φ2
i δ2

i ψi + σ 2
vr

(83)

s.t.

R
∑

i=1

φ2
i ψi ≤ Pr . (84)

φi ≥ 0, i = 1, . . . , R. (85)

This problem has a standard waterfilling solution, which can be

obtained from the KKT conditions [30], and is given by

φ2
i = 1

δ2
i ψi

⎡

⎣

√

δ2
i ψiσ 2

vr

µr

− σ 2
vr

⎤

⎦

+

. (86)

Substituting (86) into (84) we now require to calculate the

waterlevel µr to satisfy the non-linear equation

R
∑

i=1

1

δ2
i

⎡

⎣

√

δ2
i ψiσ 2

vr

µr

− σ 2
vr

⎤

⎦

+

≤ Pr , (87)

which can be obtained using the waterfilling algorithm in [31].

We now briefly summarise the main steps for computing the

source-relay channel estimate using the simplified algorithm.

The matrix Ŝ is firstly computed by solving the SDP (73)–

(76) from which we then obtain S̄ = Ŝ
1/2

. The source training

matrix S is then given by (64). Having calculated S, we then

compute the relay precoding matrix G from (82), where the

elements of � are computed according to (86). Finally, the

destination processor W is given by (50) and the source-relay

channel estimate is obtained from (17).

C. Proposed Simplified Algorithm 2

Although the previously discussed simplified algorithm

allows the source training matrix to be computed independently

of the relay precoder, and is therefore more computationally

efficient than the iterative algorithm in Section IV, it requires

solving the SDP in (73)–(76). The channel estimation algorithm

can be simplified further by deriving a suboptimal solution to

the training matrix design problem in (60)–(61).

Substituting (64) into (60)–(61) the training matrix design

problem can be stated as

min
S̄

L
∑

l=0

tr

{
(

R−1
hs

[l] + σ−2
vs

S̄
H

S̄ ⊗ I Nr

)−1
}

(88)

s.t. tr
{

S̄S̄
H
}

≤ Ps, (89)

where Rhs [l] � σ 2
hs

[l]�s[l] ⊗ ϒs[l].

We now consider a suboptimal solution to (88)–(89) that

can be obtained in closed form. To this end it is shown in

Appendix C that an upper bound to the training matrix objective

function in (88) is

L
∑

l=0

tr

{
(

R−1
hs

[l] + σ−2
vs

S̄
H

S̄ ⊗ I Nr

)−1
}

≤tr

{
(

�̄
−1

s ⊗ ϒ̄
−1

s + σ−2
vs

(L + 1)−1 S̄
H

S̄ ⊗ I Nr

)−1
}

, (90)

where we define the matrices

�̄s �

L
∑

l=0

σ 2
hs

[l]�s[l] (91)

ϒ̄s � diag

[
{

max
(

{υr,i [l]}L
l=0

)}Nr

i=1

]

. (92)

Replacing the objective function in (88) with the upper bound

in (90), we can obtain a suboptimal solution to the optimisation

problem in (88)–(89) by solving

min
S̄

tr

{
(

�̄
−1

s ⊗ ϒ̄
−1

s + σ−2
vs

(L + 1)−1 S̄
H

S̄ ⊗ I Nr

)−1
}

(93)

s.t. tr
{

S̄S̄
H
}

≤ Ps . (94)

Before solving (93)–(94), let us introduce the EVD

�̄s = V �̄s
�V H

�̄s
, (95)

where � is an Ns × Ns diagonal matrix that contains the

positive eigenvalues {ξi }Ns

i=1 ∈ R++.

Theorem 3: The optimal solution to the optimisation prob-

lem in (93)–(94) is given by

S̄ = ŴV H
�̄s

, (96)

where Ŵ is a diagonal matrix of dimension Ns × Ns with non-

negative diagonal entries {γi }Ns

i=1 ∈ R+.

Proof: See Appendix D. �
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Substituting (96) into (64) the suboptimal structure for the

training matrix S as the solution to the original problem in (60)–

(61) is given by

S = QŴV H
�̄s

. (97)

We would like to mention that this result coincides with the

suboptimal training matrix solution derived in [12], although a

different method of derivation was employed in [12].

Substituting (96) and (95) into (93)–(94) we can restate the

matrix valued optimisation problem as the following scalar

problem

min
{γi }Ns

i=1

Ns∑

i=1

Nr∑

j=1

ξiσ
2
vs

(L + 1)

ξiγ
2
i + υ−1

j σ 2
vs

(L + 1)
(98)

s.t.

Ns∑

i=1

γ 2
i ≤ Ps . (99)

γi ≥ 0, i = 1, . . . , Ns . (100)

The optimal solution to (98)–(100) is still difficult to obtain

in closed form and we therefore consider a suboptimal solu-

tion to this problem. It is straightforward to show that the

objective function in (98) is concave in υ j . We can there-

fore obtain an upper bound to the objective function by using

Jensen’s inequality, and a suboptimal solution to (98)–(100) can

be obtained by minimising this upper bound. This suboptimal

solution to (98)–(100) can be found by solving

min
{γi }Ns

i=1

Ns∑

i=1

Nrξiσ
2
vs

(L + 1)

ξiγ
2
i + Nrσ 2

vs
(L + 1)

∑Nr

j=1 υ−1
j

(101)

s.t.

Ns∑

i=1

γ 2
i ≤ Ps . (102)

γi ≥ 0, i = 1, . . . , Ns . (103)

The problem (101)–(103) can be solved from the KKT condi-

tions of optimality [30] and is given by

γ 2
i = 1

ξi

⎡

⎣

√

Nrξ
2
i σ 2

vs
(L + 1)

µs

− Nrσ
2
vs

(L + 1)

Nr∑

j=1

υ−1
j

⎤

⎦

+

,

(104)

where µs is the KKT multiplier required to be computed to

satisfy the constraint in (102) and can be found using the

waterfilling algorithm in [31].

In summary, the proposed simplified source-relay channel

estimate can be obtained as follows. The source training matrix

S is firstly given by (97), after which the relay precoder G

can then be computed according to (82). Finally, the destina-

tion processor W is calculated from (50) and the source-relay

channel estimate is then obtained from (17).

VI. SIMULATION RESULTS

A. Simulation Setup

We consider a two-hop MIMO OFDM relaying system

equipped with Ns , Nr , and Nd antennas at the source, relay,

Fig. 1. Convergence of the proposed iterative channel estimation algorithm

with different initialisations for Ns = Nr = Nd = 3, SNRs = {5, 10, 30} dB,

SNRr = 20 dB, ρs [l] = ρr [l] = ̺s [l] = ̺r [l] = 0.5, ∀l, and Ĥr = Hr .

and destination devices. The frequency selective paths between

each transmit and receive antenna pair are considered to

be of length L = 4 with the lth MIMO channel taps being

modelled according to (1) and (2). The transmit spatial cor-

relation matrices �s[l] and �r [l], and the receive spatial

correlation matrices ϒs[l] and ϒr [l], are modelled using the

exponential model (see e.g. [32], [33]) and are given by

[�s[l]]mn = ρs[l]|m−n|, [�r [l]]mn = ρr [l]|m−n|, [ϒs[l]]mn =
̺s[l]|m−n|, and [ϒr [l]]mn = ̺r [l]|m−n|. where the correlation

co-efficients ρs[l], ρr [l], ̺s[l], and ̺r [l], define the level of spa-

tial correlation. The elements of Hsw[l] and Hrw[l] in (1) and

(2) are drawn from i.i.d. complex Gaussian distributions with

zero mean and variances σ 2
hs

[l] and σ 2
hr

[l], and in all simulations

we set σ 2
hs

[l] = σ 2
hr

[l] = 1/(L + 1), ∀l.

We consider an OFDM system that utilises K = 32 sub-

carriers. For channel estimation, the relay-destination channel

is estimated in the first phase where the SNR of the relay-

destination channel during the first phase of channel estimation

is SNRr = P̄r/(Kσ 2
vr

), where P̄r is the power afforded to the

relay for estimation in the first phase. The source-relay chan-

nel is estimated during the second phase. During the second

phase of channel estimation, the SNRs of the source-relay and

relay-destination channels are given by SNRs = Ps/(Kσ 2
vs

) and

SNRr = Pr/(Kσ 2
vr

), respectively.

B. Performance of the Proposed Algorithms

In our first set of simulation examples we assume a system

with Ns = Nr = Nd = 3 and that the relay-destination channel

estimate obtained during the first phase of channel estimation is

accurate such that Ĥr = Hr can be assumed. This is a practi-

cal assumption when the relay-destination SNR during the first

training phase is sufficiently high.

The convergence of the iterative algorithm proposed in

Section IV is firstly investigated when the source training

matrix and relay precoder are initialised as random matrices

scaled to satisfy the power constraints, as well as when it

is initialised using the solutions for the simplified algorithms

presented in Section V-B and Section V-C. Figure 1 shows
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the convergence of the algorithm for SNRs = {5, 10, 30} dB,

SNRr = 20 dB, and ρs[l] = ρr [l] = ̺s[l] = ̺r [l] = 0.5, ∀l.

It can be seen that the algorithm converges after around 5-6

iterations when initialised with random matrices. Interestingly,

when the iterative algorithm is initialised using the simplified

solutions presented in sections V-B and V-C, only a very small

performance improvement can be seen from the initial esti-

mates. This result suggests that the simplified solutions must

be close to a local optima (if not the global optima). It is evi-

dent that a judicious initialisation of the iterative algorithm is

to initialise it using one of the proposed simplified solutions.

In all simulation examples henceforth, the iterative algorithm is

initialised using the proposed simplified algorithm in Section V-

B. Furthermore, in all subsequent simulations, the iterative

algorithm is terminated after the difference in MSE betweeen

consecutive iterations falls below a threshold of 1 × 10−6 or a

maximum of 5 iterations is reached.

We now compare the performance of the proposed solutions

to various benchmark LS and MMSE source-relay channel esti-

mation algorithms. The benchmark LS algorithms utilise the

optimal least squares destination processor W = (Hr G(M ⊗
I Nr ))

† whilst the MMSE benchmark algorithms employ the

optimal MMSE destination processor in (50). In these algo-

rithms the relay precoder is selected as a naive amplify

forward (NAF) matrix given by G = α I K Nr , where α =
√

Pr/tr{(Ms ⊗ I Nr )Rhs (Ms ⊗ I Nr )
H + σ 2

vs
+ I K Nr } ensures

the relay power constraint is met with equality. The bench-

mark algorithms either utilise random training symbols (RTS)

or an equal power allocation (EPA) matrix. The RTS matrix S

contains randomly generated QPSK symbols, whereas the EPA

matrix is given by S =
√

tr{Ps/Ns} Q where Q is the semi-

unitary matrix satisfying (65)–(67). The proposed algorithms

are also compared to the optimal point-to-point MIMO OFDM

channel estimation algorithm developed in [12]. It is important

to note that the utilisation of this algorithm assumes the source-

relay channel can be estimated at the relay device. In cases

where it is practical to perform channel estimation at the relay,

the algorithm in [12] provides the optimal solution. However,

for cases where the processing cost and power consumption

at the relay should be minimised, the proposed algorithms are

more appropriate.

Figure 2 shows the results of the proposed and benchmark

algorithms against varying SNRs with the spatial correla-

tion coefficients ρs[l] = ρr [l] = ̺s[l] = ̺r [l] = 0.2, ∀l. It is

observed that the proposed algorithms show improved perfor-

mance compared to the benchmark LS NAF and MMSE NAF

designs across the whole SNR region. Interestingly, the pro-

posed simplified solutions have very similar performance to the

proposed iterative algorithm, which is guaranteed to converge

to at least a locally optimal solution. The close performance

of the simplified solutions to the iterative approach (which

was initialised using Simplified Algorithm 1) suggests that the

simplified solutions are close to a locally optimal (if not the

globally optimal) solution. We also note that, in the high SNRs

region, the proposed algorithms suffer a slight loss in perfor-

mance compared to the optimal MMSE algorithm in [12]. This

is due to the fact that proposed algorithms suffer from noise

Fig. 2. Source-relay channel estimation MSE against varying SNRs for the pro-

posed and benchmark algorithms with Ns = Nr = Nd = 3, SNRr = 30 dB,

ρs [l] = ρr [l] = ̺s [l] = ̺r [l] = 0.2, ∀l, and Ĥr = Hr .

Fig. 3. Source-relay channel estimation MSE against varying SNRs for the pro-

posed and benchmark algorithms with Ns = Nr = Nd = 3, SNRr = 30 dB,

ρs [l] = ̺s [l] = 0.2, ρr [l] = ̺r [l] = 0.8 ∀l, and Ĥr = Hr .

added by the relay-destination channel whereas the algorithm

in [12] is not affected by such noise.

Figure 3 show the performance of the various algorithms,

with all simulation parameters set as in the previous algorithm

but with the relay-destination spatial correlation co-efficients

now set as ρr [l] = ̺r [l] = 0.8, ∀l. It is observed that the

performance of the proposed algorithms, as well as the LS

NAF and MMSE NAF algorithms suffer a loss in performance

when the relay-destination channel is highly correlated. The

algorithm in [12] does not suffer such a performance since

as previously noted it is independent of any relay-destination

channel parameters. Figure 4 shows the performance of the

different algorithms with the source-relay channel spatial co-

efficients now increased to ρs[l] = ̺s[l] = 0.8, ∀l, and the

relay-destination channel spatial co-efficients set as ρr [l] =
̺r [l] = 0.2, ∀l. Comparing the results in Figure 4 to those in

Figure 2 it is seen that the proposed algorithms have improved

MSE when the source-relay channel is highly correlated.
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Fig. 4. Source-relay channel estimation MSE against varying SNRs for the pro-

posed and benchmark algorithms with Ns = Nr = Nd = 3, SNRr = 30 dB,

ρs [l] = ̺s [l] = 0.8, ρr [l] = ̺r [l] = 0.2 ∀l, and Ĥr = Hr .

Fig. 5. Source-relay channel estimation MSE against varying SNRs for

the proposed and benchmark algorithms with Ns = Nr = Nd = 3, SNRr =
{25, 30, 35} dB, ρs [l] = ρr [l] = ̺s [l] = ̺r [l] = 0.2, ∀l, and Ĥr = Hr .

The effect that the relay-destination channel noise has on

the performance of the proposed algorithms is highlighted in

Figure 5, where the channel estimation MSE is assessed for

different SNRr values. It is clear the all proposed algorithms

have poorer performance for lower SNR of the relay-destination

link, whereas if the point-to-point estimation algorithm of [12]

is used to estimate the source-relay channel at the relay device

then the resulting channel estimate is independent of SNRr .

Figure 6 demonstrates the performance of the proposed

source-relay channel estimation algorithms for various antenna

configurations. Specifically, the performance of the proposed

algorithms are assessed with Ns = Nd = {1, 2, 4} and with

Nr = {3, 6}. It is observed that, for all source and destination

antenna configurations, the performance of the proposed algo-

rithms decreases with an increasing number of relay antennas.

This results due to the fact that an increased number of relay

antennas results in an increased number of channel co-efficients

to estimate and a poorer channel estimation MSE consequently

results.

Fig. 6. Source-relay channel estimation MSE against varying SNRs of the

proposed algorithms for various antenna configurations with SNRr = 30 dB,

ρs [l] = ρr [l] = ̺s [l] = ̺r [l] = 0.2, ∀l, and Ĥr = Hr .

Fig. 7. Source-relay channel estimation MSE against varying SNRs of the

proposed algorithms for Ns = Nr = Nd = 3, SNRr = 20 dB, ρs [l] = ρr [l] =
̺s [l] = ̺r [l] = 0.2, ∀l, and SNRr = {10, 15, 20, 35} dB.

We now investigate the performance of the proposed

algorithms when the relay-destination channel is estimated

imperfectly during the first phase of channel estimation i.e.

when Ĥr = Hr . We consider that the relay-destination channel

is estimated using the optimal algorithm in [12], with the SNR

during this channel estimation phase being SNRr . The quality

of the relay-destination channel is obviously highly dependent

on SNRr , with low SNRr signifying a poor relay-destination

channel estimate and vice versa. As has been noted in the pre-

vious sections, the performance of the proposed source-relay

channel estimation algorithms are dependent on the quality of

the relay-destination channel estimate.

Figure 7 shows the performance of the proposed algorithms

compared to that achieved by estimating the source-relay chan-

nel at the relay using the optimal MMSE algorithm in [12].

Results are shown for a system with Ns = Nr = Nd = 3 and

with the spatial correlation co-efficients set as ρs[l] = ρr [l] =
̺s[l] = ̺r [l] = 0.2. The effect of any relay-destination chan-

nel estimation error from the first phase of channel estimation

is highlighted by different SNRr values. It can clearly be seen
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from these results that the proposed designs (as indeed do any

designs where the source-relay channel is estimated at the des-

tination) suffer a degradation in performance when the relay-

destination channel is not sufficiently accurate. Estimation of

the source-relay channel at the relay node does not suffer this

drawback since it does not require knowledge of the relay-

destination channel. However, it is again stressed that channel

estimation at the relay may be impractical in many cases since

the relay device may be a low cost, low power unit, and may

not be capable of performing the task of channel estimation.

VII. CONCLUSIONS

In this paper we have studied the problem of channel esti-

mation of spatially correlated frequency selective channels in

dual hop MIMO OFDM relay networks. The estimation of the

source-relay and relay-destination channels was conducted in

two phases. In the first phase the relay-destination channel was

estimated using convention point-to-point MIMO OFDM tech-

niques. The source-relay channel was then estimated at the

destination in the second phase of channel estimation.

To obtain the MMSE source-relay channel estimate, algo-

rithms were developed to design the source training matrix, the

relay precoder, and the destination processor. An iterative algo-

rithm, which has guaranteed convergence, was firstly proposed

where each variable was iteratively updated through convex

programming. Due to its iterative nature, the proposed iterative

algorithm would be too computationally expensive for practi-

cal implementation. Two suboptimal algorithms were therefore

derived using a high SNR approximation. The suboptimal algo-

rithms have comparable performance to the iterative algorithm

but at reduced computational cost, making them more suitable

for practical implementation.

Simulation results demonstrated that the proposed algorithms

could achieve a better source-relay channel estimate than vari-

ous benchmarks that also estimated the source-relay channel at

the destination. The proposed algorithms were also compared

to the optimal point-to-point MIMO OFDM channel estima-

tion design where it was assumed that the source-relay channel

could be estimated at the relay device (instead of at the des-

tination). It was shown that if the relay-destination channel

was sufficiently accurate and the relay-destination SNR was

also sufficiently high, then the proposed algorithms had similar

performance to this optimal algorithm. However, the perfor-

mance of the proposed algorithms was degraded with poorer

quality relay-destination channel estimates and/or lower relay-

destination channel noise. It is concluded that if the relay device

has the capability of performing channel estimation then it

can achieve better performance than estimating the channel at

the destination. However, when the relay is unable to perform

this task (e.g due to computational cost and power constraints)

then the proposed algorithms should be used to estimate the

source-relay channel at the destination.

APPENDIX A

In this appendix we prove the optimal relay precoder struc-

ture given in (57) of Theorem 1. To do so we shall require the

following lemma:

Lemma 1: [34] For Hermitian positive semi-definite matri-

ces A ∈ C
N×N and B ∈ C

N×N , with eigenvalues {λa,i }N
i=1 ∈

R+ and {λb,i }N
i=1 ∈ R+ arranged in descending order, we have

the inequality

tr {AB} ≥
N
∑

i=1

λa,iλb,N−i+1, (105)

where equality holds when A is diagonal with diagonal ele-

ments arranged in descending order and B is diagonal with

elements arranged in ascending order.

To derive the optimal relay precoder let us introduce the

following singular value decompositions (SVD’s)

Y � T−1/2
(

M ⊗ I Nr

)

Rhs = U y	V H
y (106)

Z = Ĥr GT 1/2 = U z
V H
z (107)

Ĥr = Ur�V H
r , (108)

where 	, 
, and � are K Nr × Lhs , K Nd × K Nr , and

K Nd × K Nr diagonal matrices, respectively, and contain

the positive singular values {λi }Rt

i=1 ∈ R++, {ωi }Rz

i=1 ∈ R++,

{δi }Rr

i=1 ∈ R++, respectively. Here we define Ry � rank{Y},
Rz � rank{Z}, and Rr � rank{Ĥr }. The singular values in 	,


, and � are assumed w.l.o.g. to be arranged in descending

order. Substituting (108) into (107) and solving the resulting

equation for G we can parameterise the relay precoder as

G = V r�
†U H

r U z
V H
z T−1/2. (109)

We wish to find the specific relay precoder from the parame-

terised set (109) that minimises the objective function in (55)

and satisfies the power constraint in (56). We focus firstly on

identifying the relay precoder structure that minimises (55). To

this end we note that by substituting (106) and (107) into tr{E2}
in (51), we can write

tr {E2}

= tr

{

YY H
(

σ−2
vr

ZH Z + I K Nr

)−1
}

(110)

= tr

{

U y		
T U H

y

(

σ−2
vr

V z

T

V H

z + I K Nr

)−1
}

(111)

≥
K Nr∑

i=1

λ2
i σ

2
vr

ω2
i + σ 2

vr

, (112)

where the lower bound in (112) is obtained by applying

Lemma 1 to (111). It is clear that the lower bound in (112) holds

with equality when V z = U y . We therefore find that any pre-

coder given by (109) achieves the lower bound in (112), and

therefore minimises (55), provided that V z = U y . To identify a

unique precoder we shall select the one that consumes the least

transmit power. Substituting (109) into tr{GT GH } the power

consumed by the relay is

tr
{

GT GH
}

= tr

{

U z


T U H

z Ur

(

�
T
)†

�
†U H

r

}

(113)

≥
K Nd∑

i=1

ω2
i

δ2
i

, (114)
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where the lower bound in (114) is obtained by applying

Lemma 1 to (113) and holds with equality when U z = Ur .

Substituting V z = U y and U z = Ur into (109) we therefore

find that the optimal relay precoder that minimises the objec-

tive function in (55) whilst consuming the least transmit power

is given by

G = V r�
†

U H

y T−1/2. (115)

We now note that from the decomposition in (106) we have

U y = T−1/2
(

M ⊗ I Nr

)

Rhs V y	
†, (116)

which upon substituting into (115) results in

G = V r�
†



(

	
T
)†

V H
y Rhs

(

M H ⊗ I Nr

)

T−1. (117)

By defining L � V r�
†

(	T )†V H

y we prove the optimal relay

structure as stated in (57) of Theorem 1.

APPENDIX B

The proof of the optimal structure of L in (81) follows similar

arguments to those made in Appendix A. Let us firstly introduce

M � Ĥr L N1/2 = Um DV H
m , (118)

where D is a K Nd × Lhs diagonal matrix and contains the sin-

gular values {di }Rm

i=1 ∈ R++, with Rm � rank{M}. Substituting

(79) and (80) into (118) we parameterise the set of matrices

L by

L = V r�
†U H

r Um DV H
m N−1/2. (119)

To find the specific matrix from (119) as the optimal solu-

tion to (77)–(78) we firstly consider the objective function.

Substituting (79) and (80) into (77) we can show that

tr

{

N
(

σ−2
vr

N1/2 L H Ĥ
H

r Ĥr L N1/2 + I Lhs

)−1
}

(120)

=tr

{

Un�U H
n

(

σ−2
vr

V m DT DV H
m + I Lhs

)−1
}

(121)

≥
Lhs∑

i=1

ψiσ
2
vr

d2
i + σ 2

vr

, (122)

where the lower bound is obtained from Lemma 1 in

Appendix A and holds with equality when V m = Un . Matrices

L of the form in (119) therefore minimise the objective func-

tion in (77) when V m = Un . To identify the matrix Um in (119)

we consider the relay power constraint. Substituting (119) into

(78) and making use of Lemma 1 we find that

tr
{

L N L H
}

= tr

{

Um D DT U H
m Ur

(

�
T
)†

�
†U H

r

}

(123)

≥
K Nd∑

i=1

d2
i

δ2
i

, (124)

where the lower bound is achieved when Um = Ur . We there-

fore find that the matrices in (119) are optimal solutions

of the problem in (77)–(78) when V m = Un and Um = Ur .

Substituting V m = Un , Um = Ur , and the decomposition of

(80) into (119) we have

L = V r�
† D�

−1/2U H
n , (125)

which proves the optimal L in (81) with the definition

of the diagonal matrix � � �
† D�

−1/2. Substituting � =
�

† D�
−1/2 into the lower bound in (122) we can write

Lhs∑

i=1

ψiσ
2
vr

d2
i + σ 2

vr

=
Lhs∑

i=1

ψiσ
2
vr

δ2
i φ2

i ψi + σ 2
vr

. (126)

Since Rr = rank{Ĥr } = rank{�} and Rn = rank{N} =
rank{�} it is straightforward to see that (126) will only depend

on R � min(Rr , Rn) diagonal entries of �. In other words we

should have rank{�} ≤ R since setting any {φi }
min(K Nr ,Lhs )

R+1

will not decrease the objective function in (126) but will lead

to an increased transmission power. This concludes the proof

of Theorem 2.

APPENDIX C

In this appendix we prove the upper bound in (90). To do so

let us firstly prove the following lemma:

Lemma 2: For positive semi-definite matrices A ∈ C
N×N

and B ∈ C
N×N , the function q(A) = tr{(A−1 + B)−1} is a

concave function of A.

Proof: Using the matrix inverse identity (I N + P)−1 =
I N − (I N + P)−1 P it is straightforward to show that

q (A) = tr

{
(

A−1 + B
)−1
}

(127)

= tr
{

B−1
}

− tr
{

(B AB + B)−1
}

, (128)

from which we see that proving the concavity of q(A) is equiva-

lent to showing that f (A) � tr{(B AB + B)−1} is convex w.r.t.

A. Let A = Ua + t V a where Ua ∈ C
N×N and V a ∈ C

N×N

are positive semi-definite and t ≥ 0, then define

f (t) � f (Ua + t V a) (129)

= tr
{

(BUa B + B + t BV a B)−1
}

. (130)

Proving that f (A) is convex w.r.t. A is equivalent to proving

that f (t) is convex w.r.t. t , which can be proven by showing

that the second derivative of f (t) is non-negative [30]. To this

end let X � BUa B + B and Y � BV a B and write

f (t) = tr
{

(X + tY)−1
}

(131)

= tr

{

X−1
(

I N + t X−1/2Y X−1/2
)−1
}

. (132)

Considering the EVD Z � X−1/2Y X−1/2 = U z	zU H
z , we can

further write (132) as

f (t) = tr
{

U H
z X−1U z (I N + t	z)

−1
}

(133)

=
N
∑

i=1

ai

1 + tλz,i

, (134)
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where ai � [U H
z X−1U z]i i ∈ R+ and {λz,i }N

i=1 ∈ R+ are the

eigenvalues in 	z . We note here that the matrices Z and

U H
z X−1U z are Hermitian positive semi-definite and we there-

fore have {ai }N
i=1 ≥ 0 and {λz,i }N

i=1 ≥ 0. With these observa-

tions it is straightforward to show from (134) that

∂ f 2(t)

∂t2
=

N
∑

i=1

λz,i ai
(

1 + tλz,i

)4
≥ 0, (135)

which proves the convexity of f (t). Since f (t) is convex w.r.t.

t we find that q(A) in (127) is concave w.r.t. A. �

Using Lemma 2 we can now show that

tr

{
(

R−1
hs

[l] + σ−2
vs

S̄
H

S̄ ⊗ I Nr

)−1
}

, l = 0, . . . , L , (136)

are convex functions of Rhs [l]. Therefore, by applying Jensen’s

inequality to (136), we can obtain

1

L + 1

L
∑

l=0

tr

{
(

R−1
hs

[l] + σ−2
vs

S̄
H

S̄ ⊗ I Nr

)−1
}

≤
L
∑

l=0

tr

{
(

(L + 1)R̄
−1
hs

+ σ−2
vs

S̄
H

S̄ ⊗ I Nr

)−1
}

, (137)

where R̄hs �
∑L

l=0 Rhs [l] and is given by

R̄hs =
L
∑

l=0

σ 2
hs

[l]�s[l] ⊗ ϒs[l]. (138)

From the definition of ϒ̄s in (92) it is straightforward to see that

ϒ̄s � ϒs[l], ∀l, and consequently from (138) we have R̄hs �
�̄s ⊗ ϒ̄s (and equivalently R̄

−1
hs

� �̄
−1

s ⊗ ϒ̄
−1

s ), where �̄s

was defined in (91). With this result it can then be shown from

(137) that

L
∑

l=0

tr

{
(

(L + 1)R̄
−1
hs

+ σ−2
vs

S̄
H

S̄ ⊗ I Nr

)−1
}

≤
L
∑

l=0

tr

{
(

(L + 1)�̄
−1

s ⊗ ϒ̄
−1

s + σ−2
vs

S̄
H

S̄ ⊗ I Nr

)−1
}

.

(139)

Finally, combining the inequalities in (137) and (139) yields the

desired result in (90) after multiplication by L + 1.

APPENDIX D

In this appendix we prove the structure of S̄ given in (96) of

Theorem 3. Let us firstly introduce the SVD

S̃ � S̄�̄
1/2

s = U s̃�V H
s̃ , (140)

where � is a square Ns × Ns diagonal matrix and contains the

non-negative singular values {πi }Ns

i=1 ∈ R+. Substituting (95)

into (140) and solving for S̄ we find the general family of

matrices S̄ given by

S̄ = U s̃�V H
s̃ �̄

−1/2

s . (141)

We now note that, through some straightforward deductions, we

can write the objective function in (93) as

tr

{
(

�̄
−1

s ⊗ ϒ̄
−1

s + σ−2
vs

(L + 1)−1 S̄
H

S̄ ⊗ I Nr

)−1
}

= tr

{
(

�̄s ⊗ ϒ̄s

)
(

I Lhs
+ σ−2

vs
(L + 1)−1

×
(

�̄
1/2

s S̄
H

S̄�̄
1/2

s ⊗ ϒ̄s

))−1
}

, (142)

where we have used the fact that, for matrices of commensurate

dimensions, (A ⊗ B)(C ⊗ D) = (AC ⊗ B D). Substituting

(95) and (140) into the right hand side of (142), and again

making use of the previous Kronecker product rule, we can

write

tr

{
(

�̄
−1

s ⊗ ϒ̄
−1

s + σ−2
vs

(L + 1)−1 S̄
H

S̄ ⊗ I Nr

)−1
}

= tr
{
(

� ⊗ ϒ̄s

)
(

I Lhs
+ σ−2

vs
(L + 1)−1

×
(

V H
�̄s

V s̃�
T
�V H

s̃ V �̄s
⊗ ϒ̄s

))−1
}

, (143)

≥
Ns∑

i=1

Nr∑

j=1

ξiυ jσ
2
vs

(L + 1)

σ 2
vs

(L + 1) + π2
i υ j

, (144)

where the lower bound is obtained by applying Lemma 1 from

Appendix A to (143). We note that (143) is invariant to the uni-

tary matrix U s̃ and that the lower bound in (144) holds with

equality when V s̃ = V �̄s
. Therefore, matrices given by (141)

minimise the objective function in (93) when V s̃ = V �̄s
. We

now note that by substituting (95) into (141), and the resulting

equation into tr{S̄S̄
H }, we have

tr
{

S̄S̄
H
}

= tr
{

V s̃�
T
�V H

s̃ V �̄s
�

−1V H
�̄s

}

(145)

≥
Ns∑

i=1

π2
i

ξi

, (146)

where the lower bound results from the use of Lemma 1 and

holds with equality when V s̃ = V �̄s
. Since both (143) and

(145) are invariant to U s̃ we can w.l.o.g. select U s̃ = I Ns . We

therefore find that, by substituting U s̃ = I Ns and V s̃ = V �̄s

into (141), the optimal structure of S̄ is

S̄ = ��
−1/2V H

�̄s
, (147)

which, after defining the diagonal matrix Ŵ � ��
−1/2, con-

cludes the proof of Theorem 3.
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