801 research outputs found

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})

    Dynamic Spectrum Reservation for CR Networks in the Presence of Channel Failures: Channel Allocation and Reliability Analysis

    Full text link
    (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this[EN] Providing channel access opportunities for new service requests and guaranteeing continuous connections for ongoing flows until service completion are two challenges for service provisioning in wireless networks. Channel failures, which are typically caused by hardware and software failures or/and by intrinsic instability in radio transmissions, can easily result in network performance degradation. In cognitive radio networks (CRNs), secondary transmissions are inherently vulnerable to connection breaks due to licensed users' arrivals as well as channel failures. To explore the advantages of channel reservation on performance improvement in error-prone channels, we propose and analyze a dynamic channel reservation (DCR) algorithm and a dynamic spectrum access (DSA) scheme with three access privilege variations. The key idea of the DCR algorithm is to reserve a dynamically adjustable number of channels for the interrupted services to maintain service retainability for ongoing users or to enhance channel availability for new users. Furthermore, the DCR algorithm is embedded in the DSA scheme enabling spectrum access of primary and secondary users with different access privileges based on access flexibility for licensed shared access. The performance of such a CRN in the presence of homogeneous and heterogeneous channel failures is investigated considering different channel failure and repair rates.The work of V. Pla was supported by the Spanish Ministry of Economy, Industry and Competitiveness under Grant TIN2013-47272-C2-1-R.Balapuwaduge, IAM.; Li, F.; Pla, V. (2018). Dynamic Spectrum Reservation for CR Networks in the Presence of Channel Failures: Channel Allocation and Reliability Analysis. IEEE Transactions on Wireless Communications. 17(2):882-898. https://doi.org/10.1109/TWC.2017.2772240S88289817

    DiffServ resource management in IP-based radio access networks

    Get PDF
    The increasing popularity of the Internet, the flexibility of IP, and the wide deployment of IP technologies, as well as the growth of mobile communications have driven the development of IP-based solutions for wireless networking. The introduction of IP-based transport in Radio Access Networks (RANs) is one of these networking solutions. When compared to traditional IP networks, an IP-based RAN has specific characteristics, due to which, for satisfactory transport functionality, it imposes strict requirements on resource management schemes. In this paper we present the Resource Management in DiffServ (RMD) framework, which extends the DiffServ architecture with new admission control and resource reservation concepts, such that the resource management requirements of an IP-based RAN are met. This framework aims at simplicity, low-cost, and easy implementation, along with good scaling properties. The RMD framework defines two architectural concepts: the Per Hop Reservation (PHR) and the Per Domain Reservation (PDR). As part of the RMD framework a new protocol, the RMD On DemAnd (RODA) Per Hop Reservation (PHR) protocol will be introduced. A key characteristic of the RODA PHR is that it maintains only a single reservation state per PHB in the interior routers of a DiffServ domain, regardless of the number of flows passing through

    Over-Booking Approach for Dynamic Spectrum Management

    No full text
    An over-booking based dynamic spectrum management (DSM) scheme is conceived for improving the attainable spectral efficiency. All secondary users (SU) will be categorized into different classes and they borrow spectral resources from the primary users (PU) before data transmission. Under the risk-based policy model, the effects of both booking cancellations and ’no-show’ reservations are analyzed. Assuming that the booking demands obey an inhomogeneous Poisson process, we derive the optimal number of excess reservations, while minimizing the total compensation costs. Algorithms are developed for determining the capacity allocation dedicated to each SU class, whilst denying those resource allocations, which would lead to congested bookings

    Channel Access and Reliability Performance in Cognitive Radio Networks:Modeling and Performance Analysis

    Get PDF
    Doktorgradsavhandling ved Institutt for Informasjons- og kommunikasjonsteknologi, Universitetet i AgderAccording to the facts and figures published by the international telecommunication union (ITU) regarding information and communication technology (ICT) industry, it is estimated that over 3.2 billion people have access to the Internet in 2015 [1]. Since 2000, this number has been octupled. Meanwhile, by the end of 2015, there were more than 7 billion mobile cellular subscriptions in the world, corresponding to a penetration rate of 97%. As the most dynamic segment in ICT, mobile communication is providing Internet services and consequently the mobile broadband penetration rate has reached 47% globally. Accordingly, capacity, throughput, reliability, service quality and resource availability of wireless services become essential factors for future mobile and wireless communications. Essentially, all these wireless technologies, standards, services and allocation policies rely on one common natural resource, i.e., radio spectrum. Radio spectrum spans over the electromagnetic frequencies between 3 kHz and 300 GHz. Existing radio spectrum access techniques are based on the fixed allocation of radio resources. These methods with fixed assigned bandwidth for exclusive usage of licensed users are often not efficient since most of the spectrum bands are under-utilized, either/both in the space domain or/and in the time domain. In reality, it is observed that many spectrum bands are largely un-occupied in many places [2], [3]. For instance, the spectrum bands which are exclusively allocated for TV broadcasting services in USA remain un-occupied from midnight to early morning according to the real-life measurement performed in [4]. In addition to the wastage of radio resources, spectrum under-utilization constraints spectrum availability for other intended users. Furthermore, legacy fixed spectrum allocation techniques are not capable of adapting to the changes and interactions in the system, leading to degraded network performance. Unlike in the static spectrum allocation, a fraction of the radio spectrum is allocated for open access as license-free bands, e.g., the industrial, scientific and medical (ISM) bands (902-928, 2400-2483.5, 5725-5850 MHz). In 1985, the federal communications commission (FCC) permitted to use the ISM bands for private and unlicensed occupancy, however, under certain restrictions on transmission power [5]. Consequently, standards like IEEE 802.11 for wireless local area networks (WLANs) and IEEE 802.15 for wireless personal area networks (WPAN) have grown rapidly with open access spectrum policies in the 2.4 GHz and 5 GHz ISM bands. With the co-existence of both similar and dissimilar radio technologies, 802.11 networks face challenges for providing satisfactory quality of service (QoS). This and the above mentioned spectrum under-utilization issues motivate the spectrum regulatory bodies to rethink about more flexible spectrum access for licenseexempt users or more efficient radio spectrum management. Cognitive radio (CR) is probably the most promising technology for achieving efficient spectrum utilization in future wireless networks
    • 

    corecore