1,147 research outputs found

    Channel correlation-based approach for feedback overhead reduction in massive MIMO

    Get PDF
    For frequency-division duplex multiple-input-multiple-output (MIMO) systems, the channel state information at the transmitter is usually obtained by sending pilots or reference signals from all elements of the antenna array. The channel is then estimated by the receiver and communicated back to the transmitter. However, for massive MIMO, this periodical estimation of the full transfer matrix can lead to prohibitive overhead. To reduce the amount of data, we propose to estimate the updated channel matrix from the knowledge of the full correlation matrix at the transmitter made during some initialization time and the instantaneous measured channel matrix of smaller size, characterizing the link between the user and a limited number of reference array elements. The proposed algorithm is validated with measured massive MIMO channel transfer functions at 3.5GHz between a 9×99 \times 9 uniform rectangular array and different user positions. Since measurements were made in static conditions, the criteria chosen for evaluating the performance of the algorithm are based on a comparison of the predicted channel capacity calculated from either the measured or estimated channel matrix

    Reciprocity Calibration for Massive MIMO: Proposal, Modeling and Validation

    Get PDF
    This paper presents a mutual coupling based calibration method for time-division-duplex massive MIMO systems, which enables downlink precoding based on uplink channel estimates. The entire calibration procedure is carried out solely at the base station (BS) side by sounding all BS antenna pairs. An Expectation-Maximization (EM) algorithm is derived, which processes the measured channels in order to estimate calibration coefficients. The EM algorithm outperforms current state-of-the-art narrow-band calibration schemes in a mean squared error (MSE) and sum-rate capacity sense. Like its predecessors, the EM algorithm is general in the sense that it is not only suitable to calibrate a co-located massive MIMO BS, but also very suitable for calibrating multiple BSs in distributed MIMO systems. The proposed method is validated with experimental evidence obtained from a massive MIMO testbed. In addition, we address the estimated narrow-band calibration coefficients as a stochastic process across frequency, and study the subspace of this process based on measurement data. With the insights of this study, we propose an estimator which exploits the structure of the process in order to reduce the calibration error across frequency. A model for the calibration error is also proposed based on the asymptotic properties of the estimator, and is validated with measurement results.Comment: Submitted to IEEE Transactions on Wireless Communications, 21/Feb/201

    Downlink channel spatial covariance estimation in realistic FDD massive MIMO systems

    Full text link
    The knowledge of the downlink (DL) channel spatial covariance matrix at the BS is of fundamental importance for large-scale array systems operating in frequency division duplexing (FDD) mode. In particular, this knowledge plays a key role in the DL channel state information (CSI) acquisition. In the massive MIMO regime, traditional schemes based on DL pilots are severely limited by the covariance feedback and the DL training overhead. To overcome this problem, many authors have proposed to obtain an estimate of the DL spatial covariance based on uplink (UL) measurements. However, many of these approaches rely on simple channel models, and they are difficult to extend to more complex models that take into account important effects of propagation in 3D environments and of dual-polarized antenna arrays. In this study we propose a novel technique that takes into account the aforementioned effects, in compliance with the requirements of modern 4G and 5G system designs. Numerical simulations show the effectiveness of our approach.Comment: [v2] is the version accepted at GlobalSIP 2018. Only minor changes mainly in the introductio
    • …
    corecore