823 research outputs found

    Channel characterization for 1D molecular communication with two absorbing receivers

    Get PDF
    This letter develops a one-dimensional (1D) diffusion-based molecular communication system to analyze channel responses between a single transmitter (TX) and two fully-absorbing receivers (RXs). Incorporating molecular degradation in the environment, rigorous analytical formulas for i) the fraction of molecules absorbed, ii) the corresponding hitting rate, and iii) the asymptotic fraction of absorbed molecules as time approaches infinity at each RX are derived when an impulse of molecules are released at the TX. By using particle-based simulations, the derived analytical expressions are validated. Simulations also present the distance ranges of two RXs that do not impact molecular absorption of each other, and demonstrate that the mutual influence of two active RXs reduces with the increase in the degradation rate

    Parameter Estimation in a Noisy 1D Environment via Two Absorbing Receivers

    Full text link
    This paper investigates the estimation of different parameters, e.g., propagation distance and flow velocity, by utilizing two fully-absorbing receivers (RXs) in a one-dimensional (1D) environment. The time-varying number of absorbed molecules at each RX and the number of absorbed molecules in a time interval as time approaches infinity are derived. Noisy molecules in this environment, that are released by sources in addition to the transmitter, are also considered. A novel estimation method, namely difference estimation (DE), is proposed to eliminate the effect of noise by using the difference of received signals at the two RXs. For DE, the Cramer-Rao lower bound (CRLB) on the variance of estimation is derived. Independent maximum likelihood estimation is also considered at each RX as a benchmark to show the performance advantage of DE. Aided by particle-based simulation, the derived analytical results are verified. Furthermore, numerical results show that DE attains the CRLB and is less sensitive to the change of noise than independent estimation at each RX.Comment: 7 pages, 5 figures, accepted by Globecom 202

    Channel Characterization of Diffusion-based Molecular Communication with Multiple Fully-absorbing Receivers

    Get PDF
    In this paper an analytical model is introduced to describe the impulse response of the diffusive channel between a pointwise transmitter and a given fully-absorbing (FA) receiver in a molecular communication (MC) system. The presence of neighbouring FA nanomachines in the environment is taken into account by describing them as sources of negative molecules. The channel impulse responses of all the receivers are linked in a system of integral equations. The solution of the system with two receivers is obtained analytically. For a higher number of receivers the system of integral equations is solved numerically. It is also shown that the channel impulse response shape is distorted by the presence of the neighbouring FA interferers. For instance, there is a time shift of the peak in the number of absorbed molecules compared to the case without interference, as predicted by the proposed model. The analytical derivations are validated by means of particle based simulations

    Channel Characterization of Diffusion-based Molecular Communication with Multiple Fully-absorbing Receivers

    Get PDF
    In this paper an analytical model is introduced to describe the impulse response of the diffusive channel between a pointwise transmitter and a given fully-absorbing (FA) receiver in a molecular communication (MC) system. The presence of neighbouring FA nanomachines in the environment is taken into account by describing them as sources of negative molecules. The channel impulse responses of all the receivers are linked in a system of integral equations. The solution of the system with two receivers is obtained analytically. For a higher number of receivers the system of integral equations is solved numerically. It is also shown that the channel impulse response shape is distorted by the presence of the neighbouring FA interferers. For instance, there is a time shift of the peak in the number of absorbed molecules compared to the case without interference, as predicted by the proposed model. The analytical derivations are validated by means of particle based simulations

    Heuristic Barycenter Modeling of Fully Absorbing Receivers in Diffusive Molecular Communication Channels

    Get PDF
    In a recent paper it has been shown that to model a diffusive molecular communication (MC) channel with multiple fully absorbing (FA) receivers, these can be interpreted as sources of negative particles from the other receivers’ perspective. The barycenter point is introduced as the best position where to place the negative sources. The barycenter is obtained from the spatial mean of the molecules impinging on the surface of each FA receiver. This paper derives an expression that captures the position of the barycenter in a diffusive MC channel with multiple FA receivers. In this work, a heuristic model inspired by Newton’s law of gravitation is found to describe the barycenter, and the result is compared with particle-based simulation (PBS) data. Since the barycenter depends on the distance between the transmitter and receiver and the observation time, the condition that the barycenter can be assumed to be at the center of the receiver is discussed. This assumption simplifies further modeling of any diffusive MC system containing multiple FA receivers. The resulting position of the barycenter is used in channel models to calculate the cumulative number of absorbed molecules and it has been verified with PBS

    A Survey on Modulation Techniques in Molecular Communication via Diffusion

    Get PDF
    This survey paper focuses on modulation aspects of molecular communication, an emerging field focused on building biologically-inspired systems that embed data within chemical signals. The primary challenges in designing these systems are how to encode and modulate information onto chemical signals, and how to design a receiver that can detect and decode the information from the corrupted chemical signal observed at the destination. In this paper, we focus on modulation design for molecular communication via diffusion systems. In these systems, chemical signals are transported using diffusion, possibly assisted by flow, from the transmitter to the receiver. This tutorial presents recent advancements in modulation and demodulation schemes for molecular communication via diffusion. We compare five different modulation types: concentration-based, type-based, timing-based, spatial, and higher-order modulation techniques. The end-to-end system designs for each modulation scheme are presented. In addition, the key metrics used in the literature to evaluate the performance of these techniques are also presented. Finally, we provide a numerical bit error rate comparison of prominent modulation techniques using analytical models. We close the tutorial with a discussion of key open issues and future research directions for design of molecular communication via diffusion systems.Comment: Preprint of the accepted manuscript for publication in IEEE Surveys and Tutorial

    Channel modeling for diffusive molecular communication - a tutorial review

    Get PDF
    Molecular communication (MC) is a new communication engineering paradigm where molecules are employed as information carriers. MC systems are expected to enable new revolutionary applications such as sensing of target substances in biotechnology, smart drug delivery in medicine, and monitoring of oil pipelines or chemical reactors in industrial settings. As for any other kind of communication, simple yet sufficiently accurate channel models are needed for the design, analysis, and efficient operation of MC systems. In this paper, we provide a tutorial review on mathematical channel modeling for diffusive MC systems. The considered end-to-end MC channel models incorporate the effects of the release mechanism, the MC environment, and the reception mechanism on the observed information molecules. Thereby, the various existing models for the different components of an MC system are presented under a common framework and the underlying biological, chemical, and physical phenomena are discussed. Deterministic models characterizing the expected number of molecules observed at the receiver and statistical models characterizing the actual number of observed molecules are developed. In addition, we provide channel models for timevarying MC systems with moving transmitters and receivers, which are relevant for advanced applications such as smart drug delivery with mobile nanomachines. For complex scenarios, where simple MC channel models cannot be obtained from first principles, we investigate simulation-driven and experiment-driven channel models. Finally, we provide a detailed discussion of potential challenges, open research problems, and future directions in channel modeling for diffusive MC systems

    Heuristic Barycenter Modeling of Fully Absorbing Receivers in Diffusive Molecular Communication Channels

    Full text link
    In a recent paper it has been shown that to model a diffusive molecular communication (MC) channel with multiple fully absorbing (FA) receivers, these can be interpreted as sources of negative particles from the other receivers' perspective. The barycenter point is introduced as the best position where to place the negative sources. The barycenter is obtained from the spatial mean of the molecules impinging on the surface of each FA receiver. This paper derives an expression that captures the position of the barycenter in a diffusive MC channel with multiple FA receivers. In this work, an analytical model inspired by Newton's law of gravitation is found to describe the barycenter, and the result is compared with particle-based simulation (PBS) data. Since the barycenter depends on the distance between the transmitter and receiver and the observation time, the condition that the barycenter can be assumed to be at the center of the receiver is discussed. This assumption simplifies further modeling of any diffusive MC system containing multiple FA receivers. The resulting position of the barycenter is used in channel models to calculate the cumulative number of absorbed molecules and it has been verified with PBS data in a variety of scenarios.Comment: 30 pages, 10 figure
    • …
    corecore