
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/119433                             
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/119433
mailto:wrap@warwick.ac.uk


1

Channel Modeling for Diffusive Molecular
Communication – A Tutorial Review

Vahid Jamali, Student Member, IEEE, Arman Ahmadzadeh, Student Member, IEEE, Wayan Wicke, Student
Member, IEEE, Adam Noel, Member, IEEE, and Robert Schober, Fellow, IEEE

Abstract—Molecular communication (MC) is a new commu-
nication engineering paradigm where molecules are employed
as information carriers. MC systems are expected to enable new
revolutionary applications such as sensing of target substances in
biotechnology, smart drug delivery in medicine, and monitoring
of oil pipelines or chemical reactors in industrial settings. As for
any other kind of communication, simple yet sufficiently accurate
channel models are needed for the design, analysis, and efficient
operation of MC systems. In this paper, we provide a tutorial
review on mathematical channel modeling for diffusive MC sys-
tems. The considered end-to-end MC channel models incorporate
the effects of the release mechanism, the MC environment, and
the reception mechanism on the observed information molecules.
Thereby, the various existing models for the different components
of an MC system are presented under a common framework
and the underlying biological, chemical, and physical phenomena
are discussed. Deterministic models characterizing the expected
number of molecules observed at the receiver and statistical
models characterizing the actual number of observed molecules
are developed. In addition, we provide channel models for time-
varying MC systems with moving transmitters and receivers,
which are relevant for advanced applications such as smart
drug delivery with mobile nanomachines. For complex scenarios,
where simple MC channel models cannot be obtained from
first principles, we investigate simulation-driven and experiment-
driven channel models. Finally, we provide a detailed discussion
of potential challenges, open research problems, and future
directions in channel modeling for diffusive MC systems.

Index Terms—Molecular communications, diffusion, flow, re-
action, end-to-end CIR, statistical model, simulation-driven mo-
dels, and experiment-driven models.

I. INTRODUCTION

Wireless communication networks have permeated throug-
hout modern society, but existing systems are constrained
by where conventional radio frequency technologies can be
deployed. There are emerging applications where wireless
communication could be a vital component, but where con-
ventional implementations would be unsafe or impractical.
An alternative approach that has received increasing attention
within the communications research community over the last
decade is molecular communication (MC), where molecules are
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employed as the information carriers1. MC was first proposed
for the design of synthetic communication networks in [1].
The topic has received steady growth since the seminal survey
on nanonetworks in [2], which are networks of devices with
nanoscale functional components. MC is ubiquitous in natural
biological systems, which lends credibility to its potential
for biomedical applications such as targeting substances,
smart drug delivery, and designing lab-on-a-chip systems [3].
Furthermore, MC could be deployed in industrial settings,
including the monitoring of chemical reactors and nanoscale
manufacturing, or for larger activities such as monitoring the
emission of pollutants or the transport of oil [4]. A network of
nanomachines communicating with each other via MC can help
realize the Internet-of-BioNanothings and enable nanomachines
to perform complex tasks [5].

Motivated by natural MC systems, several different me-
chanisms have been considered for MC in the literature
including free diffusion [6]–[12], gap junctions [13]–[15],
molecular motors [16], and bacterial motors [17]; see Fig. 1.
In particular, diffusion is referred to as the random movement
of small particles suspended in a fluid medium as a result
of their collisions with other particles in the fluid. Diffusion
is one of the dominant propagation mechanisms in nature
including communication inside cells and between cells, e.g.,
in quorum sensing among bacteria and in the synaptic cleft
between neurons. Gap junctions enable another form of
communication between cells where the molecules pass through
small channels that connect the cytosols of neighboring cells.
Calcium signaling is an example of this form of MC that is
used by adjacent cells to regulate a large number of cellular
processes including fertilization, proliferation, and death of
mammalian cells [13], [18]. Molecular motors enable a form of
active transportation of large signaling molecules via a special
rail-like infrastructure, e.g., actin or microtubule filaments [19].
The motor moves along the rail by using repeated cycles of
coordinated binding and unbinding of its legs to the rail. This
type of MC is primarily used for intracellular communication
among organelles inside a cell [16]. Finally, bacterial motors
enable another kind of active transport where the bacteria can
pick up large signaling molecules, e.g., deoxyribonucleic acid
(DNA), and move in a specific direction, e.g., due to a food
concentration gradient, using their tiny propellers (known as
flagella) [17].

Diffusion-based MC, sometimes in combination with ad-
vection and chemical reaction networks (CRNs), has been the

1We note that, in this paper, we use the terms “molecule” and “particle”
interchangeably.
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Fig. 1. Bio-inspired mechanisms for MC between a transmitter (tx) and a receiver (rx); a) Free diffusion, b) gap junctions, c) molecular motors, and d)
bacterial motors.

prevalent approach considered in the literature thus far; see [3,
Table 4]. The main advantages of diffusion-based MC include
that, unlike gap junction-based MC, special infrastructure
is not needed, and unlike motor-based MC, external energy
for propagation of the signaling molecules is not required.
Moreover, the simplicity of diffusion makes it an attractive
propagation scheme, especially for ad hoc networks where
mobile nanorobots with limited computational resources form
a communication network among themselves and/or with living
cells in their close proximity. Hence, in this tutorial, we focus
on diffusion-based MC, where we also consider environments
with advection and CRNs.

A. Scope

The physics of diffusion and characterizing expected diffu-
sion in environments of different shapes have been extensively
studied in the physics, biology, and chemistry literature, cf.
e.g., [20], [21]. Thereby, the primary goal is to understand how
natural phenomena work, e.g., to understand the natural and
evolutionary MCs that exist within and among living organisms.
In contrast, in the emerging field of engineered MC, the aim
is to design, build, and control human-made MC systems
for a specific purpose2. To this end, the communications
research community has expanded the models obtained in
other disciplines to account for the behavior of the end-to-end
system, for the inclusion of non-diffusive phenomena that play
important roles in biophysical systems, and for the statistics
of molecular behavior.

Recent surveys, in particular [3], [23], have provided
excellent qualitative summaries of diffusive MC and included
some of the most common channel models available thus far.
A more complete mathematical treatment of diffusion-based

2Different options to build MC systems exist, e.g., to genetically modify
natural cells or to design fully-synthetic MC systems [22]. Therefore, an
engineered MC system may also include components that naturally developed
via evolution.

modeling of MC can be found in [24]. However, there have
been significant advances in channel modeling in the years
since the publication of [24], and also since the most recent
major survey of models in [3]. In particular, non-diffusive
effects that can be coupled with diffusion, such as advective
flow and chemical reaction kinetics, have been integrated in
many channel models to make them more practical and more
accurate.

Due to the rapid growth in channel models, it has become
difficult for an interested researcher to enter the MC field
and become familiar with the state-of-the-art in diffusion-
based channel modeling. It has also become more challenging
for practitioners in this field to stay up to date. The aim
of this tutorial review is to satisfy both audiences. We
present a detailed and rigorous mathematical development
of diffusive MC channel models. We seek to provide a
useful comprehensive reference on channel models that is
both approachable for an audience that is new to the field
and also convenient for active practitioners to assess and
select a model. To do so, we begin with a review of the
underlying fundamental laws that govern diffusive MC channels
and show how they are used in the literature to derive the
channel impulse responses (CIRs) of different MC systems.
In addition, we present different deterministic and statistical
models developed for the observation signal at the receiver.
We also discuss the complementary roles of simulations and
physical experiments to both support analytical modeling and
provide data-driven models when simple analytical models that
capture the underlying complex dynamics of the system cannot
be readily obtained.

B. Contributions

In this tutorial review, we make the following contributions:
1) By taking a mathematically rigorous approach, we first

provide a tutorial on the underlying phenomena from
biology, chemistry, and physics, and their effect on the
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components of MC systems. Specifically, we start with
Fick’s laws of diffusion and build towards the general
advection-reaction-diffusion equation. We discuss the
common assumptions and special cases that enable the
general equation to be solved for the CIR in closed form.

2) We review the major end-to-end channel models in the
diffusive MC literature including the effects of release
mechanisms, the physical channel, and reception mecha-
nisms. In particular, we include the relevant classical
models from the physical sciences literature, as well as a
comprehensive presentation of the models that have been
developed and the equations that have been derived within
the communications engineering community over the last
few years.

3) We present a unified definition for the observed signal at
a receiver. The unified definition encompasses both timing
and counting receivers and helps to better understand
the basic assumptions that have been made to arrive at
the well-known signal models used in the MC literature
and how they relate to each other. Then, we focus on
counting receivers and derive signal models relevant for
different time scales. We further generalize these models
to account for interfering noise molecules and inter-
symbol interference (ISI). Finally, we study the correlation
between the received signals observed at different time
scales.

4) We discuss the integral role of simulations and experi-
ments, in particular to gain insight from a data-driven
model when closed-form solutions for the CIR are not
readily available. We also describe how to implement
simple stochastic simulations as well as how to derive an
example data-driven model based on experimental data.

For clarity of presentation, the focus of the channel models
presented in this work is on a single communication link
between one transmitter and one receiver. Many of the
envisioned applications of diffusive MC systems will depend
on many links within a network of devices. While there have
been a number of relevant contributions that consider the
propagation of signals over multiple links, such as via relaying
and cooperative detection (cf. e.g., [25]–[29]), these models
can often be decomposed into a superposition of individual
links. In these cases, the analytical models developed in this
paper (cf. Sections III and IV) still apply to the individual
links. However, it is important to note that single-link analysis
cannot always be applied to multi-link systems. For example,
when other non-transparent entities (such as reactive receivers)
are present in the system and molecules can collide or react
with them, each of these entities will impact the signal received
at any receiver. In general, the impact of other reactive entities
on the received signal can be considered by modeling them via
additional boundary conditions. Then, the analytical channel
modeling methodologies presented in this paper can be used,
cf. Sections III and IV. Nevertheless, the resulting systems of
partial differential equations (PDEs) are typically too complex
to solve and hence, data-driven approaches have to be used
in practice, cf. Section V. For example, in [30], the CIR was
presented in closed form for the special case of having two

absorbing receivers placed on either side of a transmitter,
whereas in [31] a data-driven model was proposed for the
more general case of having multiple absorbing receivers at
arbitrary positions.

C. Organization

The rest of this tutorial review is organized as follows,
and also summarized in Table I to show how the content
of Sections II-V is connected. We review the fundamental
physical principles that govern diffusion-based MC systems
in Section II. In particular, we model diffusion, advection,
and chemical reactions, which leads to a general advection-
reaction-diffusion PDE to describe the spatio-temporal variation
in molecule concentrations.

In Section III, we discuss the components of MC systems and
their effect on the end-to-end CIR. Our definition of the end-
to-end channel includes the physical and chemical properties
of the transmitter and receiver, as well as the fluid medium
in which they are located. A table to summarize the reviewed
CIRs is also provided.

In Section IV, we present a unified definition for the diffusive
signal observed at the receiver. We focus on counting receivers
and derive deterministic and statistical signal models that are
valid for different time scales.

We discuss simulation- and experiment-driven models in
Section V. We describe the different physical scales for simu-
lating diffusion-based systems, summarize existing simulation
platforms for each scale, and discuss how to implement
simple stochastic simulations. Moreover, we review a selection
of experimental platforms and propose to employ either
physically-motivated parametric models or neural networks,
whose parameters are found using experimental data.

We end this tutorial review with a discussion of future
work and open challenges in Section VI before presenting our
conclusions in Section VII.

II. FUNDAMENTAL GOVERNING PHYSICAL PRINCIPLES IN
MC SYSTEMS

In this section, we review the fundamental laws that govern
the propagation of molecules. In particular, we mathematically
model the impact of diffusion, advection, and reaction on
the spatio-temporal distribution of molecules. This modeling
is essential for the development of channel models. A solid
understanding of these phenomena is needed to develop
intuition for molecule propagation in diffusive MC systems.
Furthermore, in Section III, we will use the mathematical tools
introduced in this section for the derivation of the CIR for
several different diffusive MC systems.

A. Free Diffusion

Molecules in a fluid environment, such as a liquid or a gas,
are affected by thermal vibrations and collisions with other
molecules. The resulting movement of the molecules is purely
random without any preferred direction and is referred to as
random walk or Brownian motion. Let di(t) = [x, y, z] denote
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a vector specifying the position of the i-th molecule in three-
dimensional (3D) Cartesian coordinates at time t. Thereby, the
random walk is modeled by [32, Eqs. (1.3) and (1.21)]

di(t+ ∆t) = di(t) +N (0, 2D∆t I) , (1)

where ∆t is the time step size and D in [m2s−1] is the diffusion
coefficient of the i-th molecule. Moreover, N (µ,Σ) denotes a
multivariate Gaussian random variable (RV) with mean vector
µ and covariance matrix Σ, 0 represents a vector whose
elements are all zeros, and I is the identity matrix. The diffusion
coefficient determines how fast the molecule moves. The larger
the diffusion coefficient, the larger the average displacement
of the molecule in a given time interval. The value of the
diffusion coefficient depends on the environment as well as
the shape and the size of the particle. For spherical particles
immersed in a fluid continuum, the diffusion coefficient can be
determined based on the Einstein relation [33, Chapter 5.2.1]

D =
kBT

6πηR
, (2)

where kB = 1.38× 10−23 JK−1 is the Boltzmann constant, T
is the temperature in kelvin, η is the (dynamic) viscosity of the
fluid (η = 10−3 kg m−1s−1 for water at 20 ◦C), and R is the
radius of the particle. Note that larger particles have a smaller
diffusion coefficient and are hence less affected by diffusion.

Remark 1: From [33, Chapter 5.2.1], the diffusion coefficient
can be determined from (2) as long as the surrounding liquid
can be modeled as a continuum. By experiment, this is an
accurate assumption if the particle size is at least five times
the size of the molecules of the liquid. For example, in water,
(2) is applicable for particles having a diameter larger than
1.5 nm. For small particles not satisfying this condition, the
diffusion coefficient tends to be larger than that predicted by
(2). Nevertheless, a general formula encompassing all physical
regimes does not exist. �

Remark 2: Besides the ideal free diffusion with constant
diffusion coefficient discussed above, there are also other
types of diffusion. For instance, in contrast to the typical
free diffusion where the mean squared displacement (MSD)
is linearly proportional to time, i.e., MSD ∝ D∆t, in
anomalous diffusion, the MSD follows a nonlinear relation,
i.e., MSD ∝ D∆tγ where γ 6= 1. Sub-diffusion occurs when
γ < 1 and can be used to model diffusion inside biological cells
where the presence of the organelles does not allow ideal free
diffusion to take place [34]. Super-diffusion occurs when γ > 1
and can be used to model active cellular transport processes
[35]. Moreover, in (1), we assumed the diffusion coefficient to
be constant. However, the diffusion coefficient may depend on
the local concentration of the molecules [33]. For the constant
diffusion coefficient assumption to hold, the temperature and
viscosity of the environment are assumed to be uniform and
constant and all solute molecules (dissolved molecules) are
assumed to be locally dilute everywhere, i.e., the number
of solute molecules is sufficiently small everywhere. These
assumptions allow us to ignore potential collisions between
solute molecules such that the diffusion coefficient does not
vary with the local concentration [8], [33]. We refer the readers
to [36] for the study of diffusion with non-constant diffusion

coefficients. Another example of a complex diffusion process
is the diffusion of protons in water. Here, the movement of
the protons is a combination of ideal free diffusion and the
so-called structural diffusion where protons hop from one water
molecule to the next. Nevertheless, it has been shown in [37]
that proton transport can be well approximated by free diffusion
with an effective diffusion coefficient. �

We let c(d, t) denote the concentration of the solute mole-
cules, i.e., the average number of solute molecules per unit
volume, at coordinate d and time t. The random movement of
molecules due to diffusion, described by (1), leads to variation
of c(d, t) across time and space that obeys Fick’s second law
of diffusion3

∂c(d, t)

∂t
= D∇2c(d, t), (3)

where ∇2 is the Laplace operator, e.g., ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

in Cartesian coordinates. The PDE in (3) can be solved for
simple initial conditions (ICs) and simple boundary conditions
(BCs). In the following, we consider a simple example, namely
diffusion in an unbounded 3D environment with an impulsive
point release, which has been the most widely studied case
in the MC literature due to its simplicity [3], [38]–[46]. In
the remainder of this paper, we denote the solutions of the
considered PDEs by c∗(d, t).

Example 1 (Diffusion in an Unbounded 3D Environment with
Impulsive Point Release): Consider a 3D diffusion process with
instantaneous release of N solute molecules from d0 at time
t0. To obtain c∗(d, t), we have to solve (3) with the following
initial and boundary conditions

IC1 : c(d0, t→ t0) = Nδ (d− d0) (4)
BC1 : c(‖d‖ → ∞, t) = 0, (5)

where δ(d) = δ(x)δ(y)δ(z), and δ(·) is the Dirac delta
function. Solving (3) with IC1 and BC1 yields [32, Eq. (2.8)]

c∗(d, t) =
N

(4πD(t− t0))3/2
exp

(
−‖d− d0‖2

4D(t− t0)

)
. (6)

�
In Fig. 2, the molecule concentration c∗(d, t)[

molecules/m3
]

in (6) is plotted versus time [µs] at
distance d = [d, 0, 0] with d ∈ {300, 400, 500} nm for an
initial release of N = 104 molecules with D = 4.5 × 10−10

m2/s from the origin d0 = [0, 0, 0] at time t0 = 0. From Fig. 2,
we observe that first c∗(d, t) increases with time, which is due
to the non-zero propagation time that the molecules need to
reach d, before it decreases since the molecules diffuse away.
Moreover, as distance increases, the peak of the concentration
decreases since the molecules are spread over a larger volume.
Furthermore, the time when the concentration peak occurs,
denoted by tp, increases with distance.

The assumption of an unbounded environment is accurate
when the actual boundaries of the system are far away from
the region of interest (i.e., from transmitter and receiver), such
that the impact of the boundaries on the diffusing molecules

3Fick’s first law of diffusion relates the diffusive flux, denoted by J(d, t),
to the concentration as J(d, t) = −D∇c(d, t).
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can be neglected. In the following, we present an example
where the effect of the boundaries cannot be neglected.

Example 2 (Diffusion in an Unbounded Straight Duct with
Impulsive Release from Cross-Section): We assume a straight
duct4 channel with circular cross-section and for convenience,
we employ cylindrical coordinates, i.e., d = [ρ, ϕ, z] with
0 ≤ ρ ≤ ac, 0 ≤ ϕ ≤ 2π, −∞ < z < +∞, where ac denotes
the radius of the circular cross-section of the duct. We assume
that, at the time of release, t0, the molecules are uniformly
distributed across the cross-section at z = z0. Therefore, we
have the following initial and boundary conditions

IC2 : c(d0 = [ρ, ϕ, z], t→ t0) =
N

πa2
c

δ(z − z0) (7)

BC2 :
∂c(d, t)

∂ρ

∣∣∣
ρ=ac

= 0 (8)

BC3 : c(d = [ρ, ϕ, z → ±∞], t) = 0, (9)

where BC2 enforces the reflection of the molecules at the wall,
i.e., a fully reflective wall is assumed. Solving (3) with IC2,
BC2, and BC3 yields [47]

c∗(d, t)

=
N

πa2
c

√
4πD(t− t0))

exp

(
− (z − z0)2

4D(t− t0)

)
, ρ < ac.(10)

�
As can be seen from (10), c∗(d, t) does not depend on

variables ρ and ϕ due to the symmetry of the initial condition
and the environment with respect to ρ and ϕ. This model can
be used to characterize the propagation of molecules in blood
vessels as is necessary for drug delivery applications of MC
in the cardiovascular system [48]–[52].

4A duct is a pipe, tube, or channel which carries a liquid or gas.

B. Advection

Besides diffusion, advection is another fundamental mecha-
nism for solute particle transport in a fluid environment. In the
following, we first specify how mass transport by advection
affects a single solute particle. Subsequently, we distinguish
between two types of advection, namely drift and fluid flow,
and give the particle velocity vector for some example cases.
Moreover, we present the advection equation which describes
the change in molecule concentration due to advection. Finally,
we introduce the advection-diffusion equation, which captures
the joint impact of diffusion and advection, and characterize
the relative importance of diffusion and advection.

In general, transport by advection can be described by a
velocity vector v(d, t) which generally may depend on position
d and time t. When considering the movement of the i-th
particle at position di due to advection, its position at time
t+ ∆t can be modeled by

di(t+ ∆t) = di(t) + v(di(t), t)∆t, (11)

where ∆t should be small enough such that the velocity vector
is constant between di(t) and di(t + ∆t). Next, we discuss
what may cause the velocity vector v(d, t) and what form it
may take.

1) Velocity Vector Field: Transport by advection can be
mediated by different physical mechanisms which we categorize
as force-induced drift and bulk flow [53], [54].

Force-Induced Drift: Advection can be caused by external
forces acting on the particles but not on the fluid containing
the particles. An external force can be modeled by force vector
F(d, t) which describes the force on a particle at position
d at time t. These external forces can be electrical, e.g., if
the particles are ions, or magnetic, e.g., if the particles are
magnetic nanoparticles, or gravitational, e.g., if the particles
have sufficient mass, or a combination of forces [54], [55].
When the force is not too large, the velocity vector can be
determined from the corresponding force by Stokes’ law via
[56, Eq. (2.65)]

v(d, t) =
F(d, t)

ζ
, (12)

where ζ is a proportionality constant referred to as the friction
coefficient. The friction coefficient can be related to the
diffusion coefficient via ζD = kBT . In other words, using
(2), we obtain ζ = 6πηR. Force F(d, t) may vary with time
(e.g., for ions if the electric field changes over time) and space
(e.g., for magnetic nanoparticles, the magnetic force generally
decreases rapidly with increasing distance from the magnet)
[54], [55].

Bulk Flow: If the particle movement is induced by the
movement of the fluid, then the resulting transport by advection
is referred to as flow. Flow can be encountered in many MC
environments such as blood vessels and microfluidic channels
[57]. In MC, we typically have dilute particle suspensions,
where the flow velocity v(d, t) is independent from the particle
concentration. Thereby, the velocity vector will depend on space
if there are boundaries or obstacles in the environment, e.g., in
a duct, the flow velocity is typically largest in the center and
smallest at the boundary where the fluid is subject to friction.
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The flow may also depend on time, e.g., in a blood vessel the
flow is generated by the periodic contractions of the heart.

Remark 3: Although both flow and external force cause the
particles to drift, which can be modeled by (11), they may
require quite different considerations. For instance, any object
in the environment influences the velocity vector caused by
bulk flow since the flow may not be able to penetrate the object
and has to go around the object. On the other hand, the drift
velocity vector caused by an external force is not necessarily
influenced by objects in the environment. �

Flow can be also categorized into two classes, namely
turbulent and laminar flow. In particular, when the variations
of the flow velocity, over space and/or time, are stochastic,
e.g., due to rough surfaces and high flow velocities [58], we
refer to the flow as turbulent. If the flow is not turbulent, it
is referred to as laminar. For flow in a bounded environment
of effective length deff and with an effective velocity of veff ,
the Reynolds number can be used as a criterion for predicting
laminar or turbulent flow and is given by [58, Eq. (1.24)]

Re =
deff · veff

ν
, (13)

where ν is the kinematic viscosity [m2/s] of the fluid5. For
example, for flow in a straight pipe with circular cross-section
of radius ac, the flow can be assumed to be laminar and
turbulent for Re� 2100 and Re� 2100, respectively, where
deff = ac [58]. For microfluidic settings, typically Re � 10
and hence laminar flow can be assumed [56]. For most blood
vessels, Re < 500 holds and hence the blood flow is typically
laminar [59], [60]. Only in large arteries such as the aorta (the
largest artery in the human body), the Reynolds number can
be in the range [3400, 4500] and thereby blood flow exhibits
turbulent behavior [60].

Generally, for a given environment, the flow velocity vector
v(d, t) as a function of space and time can be determined by
solving the so-called Navier-Stokes equation with appropriate
boundary conditions, see e.g. [56, Eq. (5.22)]. Let us review
two special cases of v(d, t), which have been widely studied
in the MC literature [3], [44], [53], [61], [62] and are also
considered in Section III.

Example 3 (Uniform and/or Constant Advection): For
uniform advection, the velocity vector is constant across space
but can be time-dependent, i.e., v(d, t) = v(t) [62]. For
advection by flow in an unbounded environment, uniform flow
solves the Navier-Stokes equation and hence can be physically
plausible. Moreover, for advection by drift, uniform drift is
applicable when the corresponding force vector does not depend
on space, see (12). As a special case, the velocity vector may
be constant across both space and time, i.e., v(d, t) = v. Due
to its simplicity, advection with constant velocity is the most
widely-studied advection model in the MC literature [3], [44],
[53]. �

Example 4 (Steady Flow in an Infinite Straight Duct with
Circular Cross-Section): For this example, we concentrate
on advection by fluid flow because force-induced drift is
completely specified by (12). In particular, in this case, the

5Kinematic viscosity ν is related to (dynamic) viscosity η according to
ν = η/ρd where ρd [kg m−3] is the fluid density.

flow velocity vector in cylindrical coordinates [ρ, ϕ, z] can be
obtained as [58, Eq. (4.134)]

v(ρ) =

[
0, 0, v0

(
1− ρ2

a2
c

)]
, 0 ≤ ρ ≤ ac, (14)

where v0 is the center velocity. The flow described in (14)
is laminar and can be interpreted as follows. For a given ρ,
the flow velocity in (14) is constant but increases from the
boundary where v(ac) = [0, 0, 0] towards the center where
v(0) = [0, 0, v0], i.e., for each ρ, we can think of a circular
layer within the duct that slides along its neighboring layers
with a constant velocity. The velocity vector in (14) is known
as the Poiseuille flow profile and is a common model for the
flow in blood capillaries [61]. �

While for other environments and boundary conditions the
velocity vector can still in principle be obtained from the Navier-
Stokes equation, it is often not possible to do so analytically.
In these cases, the Navier-Stokes equation can be solved by
numerical algorithms that are well-established in computational
fluid dynamics [58].

2) Advection Equation: Given v(d, t), the change in con-
centration with respect to time due to advective transport is
modeled by the following PDE, which is referred to as the
advection equation or continuity equation [56, Eq. (4.14)]

∂c(d, t)

∂t
= −∇ · (v(d, t)c(d, t)) , (15)

where ∇ = [ ∂∂x ,
∂
∂y ,

∂
∂z ] denotes the gradient operator and x ·y

denotes the inner product of two vectors x and y. In general,
(15) cannot be readily solved for a given velocity vector and
numerical methods have to be employed [63]. Nevertheless, for
the velocity vectors in Examples 3 and 4, (15) can be solved
as shown in the following.

Example 5: Assuming initial condition c(d, 0) at t = 0, the
advection equation (15) has the following solution for t > 0

c∗(d, t)

=


c

(
d−

∫ t

0

v(τ) dτ, 0

)
, Uniform Flow

c (d− vt, 0) , Constant Uniform Flow
c (d− v(ρ)t, 0) , Poiseuille Flow.

(16)

�
We note that while the solutions in (16) appear similar,

they are actually fundamentally different. In particular, for
constant uniform flow and uniform flow (space-independent
flow profiles), the initial concentration is simply translated to
a different position without changing its shape. However, for
Poiseuille flow (space-dependent flow profile), the concentra-
tion generally spreads in space over time depending on the
initial concentration.

3) Advection-Diffusion Equation: In many application scena-
rios, such as drug delivery via the capillary networks [48]–[52],
advection and diffusion are both present in the MC environment.
Thereby, the combined effect of both advection and diffusion
is characterized by the following PDE known as the advection-
diffusion equation

∂c(d, t)

∂t
= D∇2c(d, t)−∇ · (v(d, t)c(d, t)) . (17)
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Fig. 3. Molecule concentration c∗(d, t) [molecules/m3] versus time [µs] at
d = [400, 0, 0] nm for initial release of N = 104 molecules with D = 4.5×
10−10 m2/s from d0 = [0, 0, 0] at t0 = 0, and flow velocity v = [v, 0, 0]
with v ∈ {0, 2, 5} × 10−3 m/s.

Similar to diffusion equation (3), (17) cannot be solved
analytically for general velocity vectors v(d, t) and general
boundary and initial conditions. In the following, we first
provide the solution of (17) for constant uniform flow in an
unbounded environment. Subsequently, we quantify the relative
impact of diffusion over advection by introducing the notions
of Péclet number and dispersion factor.

Example 6: Consider an unbounded 3D environment with
instantaneous release of N solute molecules at d0 at time
t0. Solving (17) with initial condition IC1 in (4), boundary
condition BC1 in (5), and constant uniform velocity vector v
yields [44, Eq. (18)]

c∗(d, t) =
N

(4πD(t− t0))3/2

× exp

(
−‖d− (t− t0)v − d0‖2

4D(t− t0)

)
, t > t0.(18)

�
In Fig. 3, we show molecule concentration c∗(d, t)

[molecules/m3] in (18) versus time [µs] at d = [400, 0, 0] nm
for initial release of N = 104 molecules with D = 4.5×10−10

m2/s from d0 = [0, 0, 0] at t0 = 0, and flow velocity vector
v = [v, 0, 0] with v ∈ {0, 2, 5} × 10−3 m/s. From Fig. 3, we
observe that as the flow velocity increases, the concentration
peak increases and tp decreases. This is mainly due to the fact
that the flow is in the same direction as the point where the
concentration is measured, i.e., parallel flow is considered.
Parallel flow can considerably enhance the coverage of a
diffusion-based MC system, e.g., in blood vessels. Moreover,
by increasing v, the tail of c∗(d, t) over time is decreased,
which is useful for ISI reduction in MC systems [44], [64].

Relative Importance of Advection over Diffusion for Mo-
lecule Transport: Advection and diffusion can both displace
and transport molecules, albeit in different ways. An important

question is under what conditions is one more effective than
the other. The Péclet number, denoted by Pe, can be used to
answer this question. Let us assume a velocity vector with
strength v and transport over a distance dc which is referred
to as the characteristic length. The Péclet number quantifies
the ratio of time required for particles to be transported by
diffusion over distance dc (which is proportional to d2

c/D) with
the time required for particles to be transported by advection
over distance dc (given by dc/v). This ratio is given by [56,
Eq. (4.44)]

Pe =
d2
c

D
dc
v

=
v · dc
D

. (19)

Note that Pe is a dimensionless number. If Pe � 1 holds,
diffusion dominates advection and the spreading of molecules is
almost isotropic despite a weak biased transport in the direction
of the flow. In this case, the solution of the diffusion equation
(3) provides an accurate estimate of the molecule concentration.
On the other hand, if Pe � 1 holds, advection dominates
diffusion and is the main cause for molecule transport. In this
case, the advection equation (15) can be solved to obtain an
accurate estimate of the molecule concentration. Finally, for
Pe ≈ 1, molecule transport is sensitive to both diffusion and
advection and the advection-diffusion equation in (17) should
be solved.

Relative Importance of Advection over Diffusion for
Dispersion: Let us consider a straight duct with a circular
cross-section, see Examples 2 and 4, where advection is the
main transport mechanism along the duct. In other words,
Pez ,

veffdz
D � 1 holds where Pez denotes the Péclet number

for transport along the z-axis, veff = v0/2 is the effective
flow velocity in the duct (see (14)), and dz is the desired
transport length along the z-axis. In this case, we are interested
in studying the dispersion (spatial spreading) of individual
particles across the cross-section over the time when transport
along the z-axis occurs. In particular, one may distinguish
between the following two extreme regimes, namely the non-
dispersive and dispersive regimes:

i) Non-dispersive regime: Here, particles do not considerably
diffuse across the cross-section while being transported by
advection. Therefore, each particle is simply transported along
the z-axis by advection with a velocity strength that depends
on the radial position of the particle, ρ, according to (14).
We note that although the dispersion of individual particles is
negligible in this regime, the shape of the concentration profile
varies over time since the flow has a different effect at different
radial positions, i.e., particles closer to the center of the duct
travel faster.

ii) Dispersive regime: In the dispersive regime, particles fully
diffuse across the cross-section while also being transported
along the z-axis by advection. In addition to the dispersion
across the cross-section, there is also dispersion along the z-
axis, due to the combined impact of diffusion and advection
with space-dependent flow profile (14).

In the following, we mathematically quantify the dispersive
and non-dispersive regimes in terms of system parameters,
i.e., veff , D, dz , and ac. We choose the characteristic length
dc as the distance over which the velocity vector changes
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(usually a fraction of ac). Moreover, we define d̄z , dz/dc
as the corresponding dimensionless normalized distance with
respect to characteristic distance dc. Then, we can compare
the characteristic time required for particles to be transported
by advection over distance dz (given by dz/veff ) with the time
required for diffusion over distance dc (which is proportional
to d2

c/D). To compare these two time scales, we can define a
dispersion factor αd as

αd =

dz
veff

d2
c

D

=
Ddz
veffd2

c

=
d̄2
z

Pez
. (20)

Here, αd � 1 signifies that there is not enough time
for particles to diffuse across the cross-section while being
transported by advection over distance dz , i.e., we are in the
non-dispersive regime. On the other hand, for αd � 1, diffusion
causes considerable dispersion across the cross-section, which
in turn causes significant dispersion along the z-axis due to
space-dependent flow velocity (14), i.e., we are in the dispersive
regime. In other words, in terms of the Péclet number Pez , we
have non-dispersive and dispersive regimes if Pez � d̄2

z and
Pez � d̄2

z hold, respectively.
Fig. 4 illustrates different dispersion regimes for a 3D straight

duct. For clarity of presentation, we only show those particles
for which the x-component of their position lies in interval
[−0.1ac, 0.1ac]. As can be seen from Fig. 4, for αd = 0.1,
the positions of the particles simply follow the velocity profile
in (14) whereas for αd = 10, the particles are significantly
dispersed in the environment.

C. Chemical Reactions

Another important phenomenon affecting the propagation
of signaling molecules in diffusive MC systems is chemical
reactions. On the one hand, chemical reactions may occur
naturally in MC environments and their impact must be taken
into account for communication design. On the other hand,
chemical reactions have been exploited in the MC literature to
achieve certain objectives, such as ISI reduction [43], [44], [65],
[66] and ligand-based reception modeling [67], [68]. Therefore,
in the following, we first review general chemical reactions, the
corresponding reaction equations, and examples of reactions
widely considered in the MC literature. Subsequently, we study
the joint impact of all three phenomena discussed in this section,
namely diffusion, advection, and reaction, on the propagation of
the molecules and solve the corresponding advection-reaction-
diffusion equation for a simple example.

1) Reaction Equation: Consider a general reaction of the
form [69, Eq. (13)] ∑

I∈I
nII

κ→
∑
J∈J

nJJ, (21)

where I ∈ I are reactant molecules, I is the set of reactant
molecules, J ∈ J are product molecules, J is the set
of product molecules, nI and nJ are non-negative integers,
and κ is the reaction rate constant. Let cI(d, t) and cJ(d, t)
denote the concentration of type-I and type-J molecules at
coordinate d and time t, respectively. Reactions locally change
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Fig. 4. Illustration of different dispersion regimes in a 3D straight duct with
reflective walls, D = 10−11m2/s, ac = 10µm, dc = 0.1ac, dz = 50µm,
the flow velocity profile in (14), and v0 = 10−2, 10−3, 10−4m/s which leads
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represent the duct walls, the dashed vertical lines denote the initial positions
of the particles on the z-axis, and the dotted vertical lines denote the distance
of interest on the z-axis, i.e., dz .

the concentration of particles over time which is described by
the following PDEs, known as reaction equations

∂cI(d, t)

∂t
= −nIf(κ, cI ,∀I ∈ I), ∀I ∈ I (22a)

∂cJ(d, t)

∂t
= nJf(κ, cI ,∀I ∈ I), ∀J ∈ J , (22b)

where f(κ, cI ,∀I ∈ I) denotes the reaction rate function,
which depends on the reaction rate constant and the concen-
trations of the reactant molecules. The reaction rate function
has the following general form, known as the rate law [70, Eq.
(9.2)]

f(κ, cI ,∀I ∈ I) = κ
∏
I∈I

cεII (d, t), (23)

where εI is the order of the reaction with respect to type-I
reactant molecules and typically takes an integer value (but in
principle may also assume real values). The overall reaction
order is defined as

∑
I∈I εI [47], [70]. Note that the units of

reaction rate function f(κ, cA, cB) and reaction rate constant
κ are molecule

s·m3 and 1
s

(molecule
m3

)1−∑I∈I εI , respectively.
In the following, we present three important classes of reacti-

ons, namely unimolecular degradation, bimolecular reactions,
and enzymatic reactions, which can all play important roles in
MC systems [44], [65], [71]–[73]. In particular, degradation
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is a natural characteristic of some types of molecules and
its effect has to be accounted for in communication design,
see Section III-D and [44], [71]. Bimolecular reactions can be
used to analayze ligand-receptor binding [67], [68] and reactive
signaling [66], [74]. Enzymatic reactions have been studied in
the MC literature for the purpose of ISI reduction [65], [73].

Example 7 (Unimolecular Degradation): This reaction is
used to describe the degradation of a desired type of molecule,
e.g., type A, into a new type of molecule, denoted by φ,
which is of no interest for the considered communications. In
fact, unimolecular degradation is often used as a first-order
approximation of more complex reactions such as bimolecular
and enzymatic reactions, see Examples 8 and 9. Unimolecular
degradation is modeled by [70, Ch. 9]

A
κ→ φ, (24)

where κ [ 1
s

(molecule
m3

)1−εA] is the reaction rate constant,
f(κ, cA) = κcεAA (d, t) is the reaction rate function, and εA is
the reaction order. In the MC literature, first-order reactions are
used to model degradation, i.e., εA = 1 [44], [71]. However,
depending on the speed of reaction, higher and lower order
reactions may be relevant, e.g., zero-order (εA = 0) or second-
order (Type-I) (εA = 2) reactions [70, Ch. 9]. Assuming an
initial condition cA(d, t0) at t0, (22) has the following solution
for t > t0

c∗A(d, t) =


[cA(d, t0)− κ(t− t0)]+, if εA = 0

cA(d, t0) exp(−κ(t− t0)), if εA = 1

1/ (κ(t− t0) + 1/cA(d, t0)) , if εA = 2,

(25)

where [x]+ = max{0, x}. Note that the speed of molecule
concentration decay is hyperbolic for second-order degrada-
tions, which is faster than the exponential decay for first-
order degradations, which in turn is faster than the linear
decay for zero-order degradations. Nevertheless, for sufficiently
large t, c∗A(d, t) for second-order degradations is larger than
that for first-order degradations, whereas c∗A(d, t) = 0, t ≥
t0 + cA(d,t0)

κ , holds for zero-order degradations. �
Example 8 (Bimolecular Reactions): Some reactions may

involve the interaction of two reactant chemical species, e.g., A
and B, to produce product molecule(s), e.g., C. For instance, in
[67], the activation of ligand receptors via signaling molecules
was modeled by a second-order bimolecular reaction. Moreover,
in [66] and [74], acids and bases were used as reactive signaling
molecules to reduce ISI. Acids and bases cancel each other
out to produce salt and water. This process is modeled by a
second-order bimolecular reaction. In particular, the second-
order (Type-II) bimolecular reaction is given by [75]

A+B
κf


κb
C, (26)

where κf is the forward reaction rate constant
[ m3

s·molecule

]
, κb[

1
s

]
is the backward reaction rate constant, and f(κ, cA, cB) =

κfcA(d, t)cB(d, t) is the reaction rate function. The PDEs
corresponding to (26) are nonlinear and challenging to solve.
However, after introducing some approximations, in Section III,
we use (26) to derive the CIRs of MC systems affected by
bimolecular reactions. Moreover, let us assume κb → 0 and that

the concentration of type-B molecules is sufficiently large such
that the reaction in (26) does not considerably change cB(d, t)
over time, i.e., cB(d, t) ≈ cB(d, t = 0) , cB(d). In this case,
the bimolecular reaction in (26) can be approximated by the
first-order unimolecular reaction in (24) with κ = κfcB(d)
[67]. �

Example 9 (Enzymatic Reactions): For typical scenarios, the
speed of natural degradation might be too slow compared to the
desired time scale of communication. In this case, enzymes can
be used to accelerate the reaction process. Enzymes, denoted
by E, are specific proteins that bind to the desired molecule
A (also referred to as the substrate), and lower the activation
energy needed for a reaction to occur. Enzymatic degradations
are modeled by the following reactions [65, Eq. (1)]

A+ E
κf


κb
AE

κd→ E + φ, (27)

where AE is an intermediate chemical species and φ is the
product molecule. Moreover, κf

[ m3

s·molecule

]
, κb

[
1
s

]
, and κd

[
1
s

]
denote the reaction rate constants of the forward, backward6,
and degradation reactions, respectively. As can be seen from
(27), the enzyme molecules are not consumed in the reaction
process. The following set of PDEs, known as Michaelis-
Menten kinetics, describe the evolution of the concentrations
of the participating molecules

∂cA(d, t)

∂t
= −κfcA(d, t)cE(d, t) + κbcAE(d, t) (28a)

∂cE(d, t)

∂t
= −κfcA(d, t)cE(d, t) + (κb + κd)cAE(d, t) (28b)

∂cAE(d, t)

∂t
= κfcA(d, t)cE(d, t)− (κb + κd)cAE(d, t). (28c)

Solving the above system of coupled and nonlinear PDEs is
challenging. Let us consider very fast degradation reactions,
i.e., κd → ∞, slow backward reactions, i.e., κb → 0, and
that the concentration of enzyme molecules is much larger
than the concentration of type-A molecules. In this case, the
formation of intermediate AE molecules does not last long and
hence, we obtain cE(d, t) ≈ cE(d, t = 0) , cE(d). In [65],
it was shown that under the aforementioned assumptions, the
enzymatic reaction in (27) can be approximated by the first-
order unimolecular reaction in (24) with reaction rate constant
κ =

κfκd
κb+κd

cE(d) ≈ κfcE(d). �
2) Advection-Reaction-Diffusion Equation: Next, we con-

sider the joint effects of diffusion, drift, and reactions. For
simplicity, we focus on a single molecule type and drop the
corresponding subscript. In this case, the general advection-
reaction-diffusion equation is given by the following PDE [32],
[76]

∂c(d, t)

∂t
=D∇2c(d, t)

−∇ · (v(d, t)c(d, t)) + qf (κ, c(d, t)) , (29)

where q = 1 and q = −1 hold if the considered molecule
is the product and the reactant of the reaction, respectively.
Solving (29) for general initial and boundary conditions is

6The forward and backward reaction rate constants are also referred to as
binding and unbinding reaction rate constants, respectively.
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at d = [400, 0, 0] nm for an initial release of N = 104 molecules from
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again difficult for most practical MC environments. Hence, in
the following, we make some simplifying assumptions that
enable us to solve (29) in closed form for one example scenario
[65].

Example 10: Let us assume the impulsive release of N
molecules at time t0 by a point source located at d0 into an
unbounded 3D environment, i.e., initial condition IC1 in (4)
and boundary condition BC1 in (5) hold. Moreover, we assume
uniform flow v(d, t) = v and the first-order degradation
reaction in (24), i.e., q = −1 and f (κ, c(d, t)) = κc(d, t).
Based on these assumptions, (29) has the following closed-
form solution [77], [78]

c∗(d, t) =
N

(4πD(t− t0))
3/2

× exp

(
−κ(t− t0)− ‖d− (t− t0)v − d0‖2

4D(t− t0)

)
, t > t0.(30)

�
In Fig. 5, the molecule concentration c∗(d, t) [molecules/m3]

is shown versus time [µs] at d = [400, 0, 0] nm for an initial
release of N = 104 molecules from d0 = [0, 0, 0] and at t0 =
0, D = 4.5× 10−10 m2/s, flow velocity v = [10−3, 0, 0] m/s,
and κ ∈ {0, 1, 2} × 104 1/s. This figure shows that as the
degradation rate constant increases, the concentration peak
decreases, which is not desirable for an MC system, in general.
However, the tail of the concentration for large t fades away
much faster for larger degradation rates, which was exploited
for ISI reduction in [65].

III. COMPONENT MODELING

In this section, we review the existing component models
for the transmitter, receiver, and physical channel of diffusive
MC systems. To this end, in Section III-A, we first define
the end-to-end CIR of single-link diffusive MC systems, and

discuss the relevant mechanisms of each component and their
impact on the end-to-end CIR. We use the CIR to characterize
the components of MC systems, since the impulse response
fully characterizes the behavior of linear systems, and linearity
is commonly assumed in the MC literature7. Subsequently, in
Sections III-B, III-C, and III-D, we review the existing models
that have been developed by taking into account the impact of
the receiver, transmitter, and physical channel on the end-to-
end CIR, respectively. Finally, in Section III-E, we provide a
summary table of all reviewed end-to-end CIR models.

A. Channel Impulse Response

In this subsection, we first briefly discuss the relevant me-
chanisms that characterize the functionalities of the transmitter
and receiver, and the phenomena and impairments that occur
in the physical channel of diffusive MC systems. Then, we
provide a formal definition of what we refer to as the end-to-
end channel of diffusive MC systems and we show how the
CIR corresponding to the end-to-end channel can be obtained
using the tools introduced in Section II.

Similar to traditional communication systems, the end-to-end
chain of diffusive MC systems consists of three components,
namely the transmitter, the physical channel, and the receiver;
see Fig. 6. Each of these components has unique features and
responsibilities, which are outlined below; see also Fig. 7.
• Transmitter: The transmitter is responsible for the en-

coding and modulation of information bits. In MC, the
information is typically encoded in the number, type, or
time of release of signaling molecules. Furthermore, the
transmitter has to generate the signaling molecules (e.g. by
CRNs inside the transmitter), store the signaling molecules
(e.g. in vesicles), and control their release into the physical
channel.

• Physical Channel: The physical channel is the envi-
ronment in which the signaling molecules move and
propagate once they leave the transmitter. In diffusive
MC systems, the movement of signaling molecules, at its
most basic level, is described by the diffusion process.
However, during the course of diffusion, the random
walk of signaling molecules may be affected by several
other factors and noise sources such as advection, CRNs
degrading the signaling molecules, environment geometry,
and obstacles inside the physical channel, see Section II.

• Receiver: Signaling particles that reach the vicinity of the
receiver can be observed and processed by the receiver to
extract the information that is necessary for performing
detection and decoding. The reception mechanism of
the receiver may include the following functionalities,
depending on its structure: i) external sensory units for
detecting the presence of signaling molecules, membrane
receptors of cells in nature, or sensing component(s)
of macro-scale receivers such as the alcohol sensor in

7Linear models of MC systems provide first-order approximations of the
behavior of these systems and enable further investigation and analysis.
Capturing the nonlinear dynamics of complex MC systems can be achieved
typically only via simulation or direct experimentation, cf. Section V, which
may not provide much insight for system design.
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Fig. 6. Schematic presentation of the end-to-end chain of communication in typical diffusive MC systems.

Fig. 7. Example of a physical system model including a transmitter, physical channel, and receiver.

[64] and the magnetic coils of the susceptometer in
[79]; ii) internal relaying and interface components to
convey and convert the measurements of the sensory unit
into quantitites suitable for detection and decoding of
the information bits. For instance, in nature, this task is
performed by the CRNs inside cells, which are referred
to as downstream signaling pathways [18]. Downstream
signaling pathways may be driven by activated receptors
or directly by signaling molecules that passively enter the
cells.

In the following, we formally define the end-to-end channel
to study the reviewed CIR models in a unified manner.

Definition 1 (End-to-end Channel): We define the end-to-
end channel as the effective channel that not only includes
the physical channel but also the impact of the physical and
chemical properties of the transmitter and receiver, including the
effects of signaling molecule generation, release mechanisms,
sensory units, and internal receiver components. �

Note that our definition of the end-to-end channel does
not include the coding, modulation, detection, and decoding
operations that the transmitter and receiver may perform;
see also Fig. 6. This definition of the end-to-end channel
is analogous to that in traditional wireless communication
systems, where the antennas, power amplifiers, and filters of
the transmitter and receiver are also included in the model for
the wireless end-to-end channel. The input to the end-to-end
channel is the signal representing the modulated information
symbol, which we also refer to as the stimulation signal. The
stimulation signal can be an electrical (voltage or current),
magnetic, mechanical, optical, chemical, or temperature signal.
The output of the end-to-end channel is referred to as the
observed signal and should be in a form that is suitable for the
subsequent detection and decoding operations. Depending on
the structure of the receiver, the observed signal can be either
a number of output molecules or any secondary signal derived

from the output molecules. In particular, output molecules may
represent: i) signaling molecules that can passively enter the
receiver; ii) absorbed molecules that hit the receiver surface;
or iii) activated receptors. Furthermore, the secondary signal
derived from output molecules may be an electrical signal,
e.g., the output voltage or output current of the alcohol sensor
in [64]. In the following, for the definition of the CIR of the
end-to-end channel, we emphasize that we consider the number
of output molecules as the observed signal, as it is commonly
assumed in the MC literature, although our definition can be
easily extended to other forms of the observed signal.

Definition 2 (Channel Impulse Response): We define the
CIR of the end-to-end channel, denoted by h(t), as the
probability of observation of one output molecule at time t at
the receiver when the transmitter is stimulated in an impulsive
manner at time t0 = 0. �

We note that defining the CIR as a probability has several
advantages. In particular, it facilitates the definition of the
received signal in Section IV. There, we propose a general
received signal model that takes into account both the arrival
time and the numbers of observed output molecules. As is
shown in Section IV, both of these quantities can be readily
obtained from the probability of observation of one output
molecule.

In our definition of the CIR, the quantitative meaning of
the term observation depends on the type of receiver and is
defined for each considered receiver model in detail in the
next subsection, e.g., for passive receivers the observed signal
is defined as the number of signaling molecules inside the
receiver, while for reactive receivers it is defined as the number
of activated receptor molecules. Furthermore, we assume that
the transmitter stimulation is an impulsive input that either
controls the opening and closing of the signaling molecule
reservoir or drives the CRNs inside the transmitter responsible
for the generation of the signaling molecules.
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In this section, we assume that the parameters of the
considered MC system are constant, i.e., the end-to-end CIR
h(t) is time-invariant. In the following, we refer to the signaling
molecules as A molecules. The following phenomena may
affect the propagation of the A molecules, and as a result,
h(t):

1) Particle generation: Generation of the A molecules is
performed, e.g., by the CRNs inside the transmitter.

2) Release mechanism: The release mechanism can be
chemical, electrical, or mechanical and controls the release
of the A molecules into the physical channel.

3) Diffusion: Diffusion refers to the propagation of molecu-
les by Brownian motion.

4) Degradation and production: CRNs may degrade or
produce A molecules in the physical channel.

5) Advection: Advection may affect the transportation of
the A molecules in the physical channel.

6) Geometry: Potentially, the geometry of the individual
components of the end-to-end channel can influence the
propagation of signaling molecules.

7) Receptor kinetics: Receptor kinetics affect the interaction
of the A molecules with the receptors of the sensory unit
at the receiver.

8) Signaling pathways: The signaling pathways transducing
the observed A molecules into a secondary signal affect
the received signal.

In order to obtain h(t) for a specific MC system, one
has to solve the advection-reaction-diffusion equation (29)
or a simplified version thereof, depending on the MC system
under consideration, with the appropriate initial and boundary
conditions. The initial conditions of the system capture the
initial states of the CRNs, the time of production of the A
molecules, and the location of the produced A molecules.
The boundary conditions capture the physical and chemical
properties of the components of the end-to-end channel. As
discussed in the previous section, the solution to this system
of PDEs does not exist in closed-form for many environments.
However, as we will see in the remainder of this section, in the
MC literature, different approximations have been developed
to arrive at approximate yet meaningful solutions for h(t)
that can still capture the main effects and phenomena of the
end-to-end channel. These approximate models focus on one
of the components of the MC system and make simplifying
assumptions about the other two. Accordingly, we will consider
such receiver, transmitter, and channel centric models in the
following three subsections.

B. Receiver Models

In this section, we review some of the existing end-to-end
CIR models that focus particularly on the properties of the
receiver, while simplifying assumptions for the transmitter and
MC environment are made. The reception mechanism of the
receiver can be categorized into two classes: i) passive reception,
where the receiver does not impede the movement of signaling
molecules; and ii) active reception, where the receiver may
affect the movement of signaling molecules either by their
absorption on its surface, or by chemically reacting with them

via receptors (and thereby forming ligand-receptor complexes)
embedded in the receiver surface. For active reception, both
mechanisms can be described by a form of chemical reaction.
Moreover, the received signaling molecules may be converted
via signaling pathways into secondary molecules, which can
later be used for detection or decoding of the information.
In nature, cells have diverse types of signaling pathways,
each of which is responsible for relaying a particular type of
measurement taken in the extracellular space to the organelles
in the cytosol, which ultimately causes a response by the cell.
For more information on the signaling pathways in natural
cells, we refer the interested reader to [18].

For the CIR models considered in the following, we adopt
rather simple models for the transmitter and the physical
channel. Specifically, we assume that the transmitter is a
point that releases one A molecule instantaneously upon
stimulation at time t0 = 0 at location dtx, where dtx

denotes the location of the center of the transmitter; see
Section III-C for more details on the point transmitter model.
In other words, a point transmitter implicitly implies that upon
stimulation, the A signaling molecule is immediately produced
and enters the physical channel. We denote the location of
the center of the receiver by drx, and the distance between
the center of the transmitter and the center of the receiver by
d0 = ‖dtx − drx‖. Furthermore, for the physical channel, we
consider an unbounded environment affected only by diffusion
noise; see Section III-D for more complex MC environments.

Passive receiver: Passive receivers (also referred to as
transparent receivers or perfect monitoring receivers) employ
passive reception mechanisms and are commonly considered in
the MC literature, see e.g. [3], [38]–[46]. In particular, signaling
A molecules in the vicinity of the receiver can enter and leave
the receiver via free diffusion; see e.g. Fig. 8a). The passive
receiver model is a good approximation for the diffusion of
small uncharged molecules such as ethanol, urea, and oxygen.
These molecules can enter and leave a cell by passive diffusion
across the plasma membrane [18]. A passive receiver model
is also valid for the experimental system in [79], where the
susceptometer that serves as the receiver does not impede
the movement of the magnetic nanoparticles passing through
it. For passive receivers, the set of all points d inside the
volume of the receiver, Vrx, constitutes the sensing area, and the
number of A molecules in Vrx constitutes the observed signal.
Let Ntx denote the number of molecules that the transmitter
releases. Since we are interested in computing CIR h(t), i.e., the
probability that a molecule released by the transmitter at t0 = 0
is observed at the receiver at time t, we set Ntx = 1. Moreover,
we define p(d, t) = c(d, t)|Ntx=1 which can be interpreted as
the PDF of a molecule released by the transmitter at t0 = 0
with respect to d at time t. In other words, p∗(d, t)dxdydz
is the probability that the molecule is observed at time t in
a rectangular cuboid of length dx, height dy, and depth dz,
centered at coordinate d. Since we focus on linear systems,
solving c∗(d, t) with Ntx 6= 1 and solving p∗(d, t) for Ntx = 1
are related as p∗(d, t) = c∗(d, t)/Ntx. For the considered MC
system with a point transmitter and unbounded environment, the
CIR of a passive receiver can be obtained by first finding p(d, t)
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Fig. 8. Schematic depiction of three common receiver models; a) passive receiver, b) fully absorbing receiver, and c) reactive receiver.

from (3) with the following initial and boundary conditions

IC3 : p(d, t0) = δ (d− dtx) (31)
BC3 : p(‖d‖ → ∞, t) = 0. (32)

Given the solution of (3), p∗(d, t), h(t) can be written as

h(t) =

∫
d∈Vrx

p∗(d, t)dd. (33)

The solution of the integral in (33) can be readily obtained
when the receiver is sufficiently far away from the transmitter,
i.e., d0 is very large relative to the largest dimension of
the receiver. In this case, a common approach, which is
referred to as the uniform concentration assumption (UCA),
is to approximate p∗(d, t) everywhere inside the volume of
the receiver by its value at the center of the receiver, i.e.,
p∗(d, t) ' p∗(drx, t),∀d ∈ Vrx. This leads to the following
simple expression for h(t), [3], [38]–[46]

h(t) =
Vrx

(4πDt)3/2
exp

(
− d2

0

4Dt

)
, (34)

where Vrx is a constant denoting the volume of the receiver.
We note that (34) is valid independent of the geometry of
the receiver. Specifically, the UCA is one of the most useful
approximation methods in the MC literature, since it directly
relates the solution of (3), (17), and (29) to the CIR of the
corresponding system. Thus, many results in the rich literature
on solving PDEs, see [21], can be used to obtain the CIR in
MC systems with passive receivers under the UCA.

The problem of solving (33) may become cumbersome when
the receiver is close to the transmitter. In this case, the solution
of the integral depends on the geometry of the receiver and
the UCA does not hold. It has been shown in [40, Eq. (27)]
that for a spherical passive receiver with radius arx, h(t) is
given by

h(t) =
1

2

(
erf

(
arx − d0√

4Dt

)
+ erf

(
arx + d0√

4Dt

))
+

√
Dt

arx
√
π

(
exp

(
− (arx − d0)2

4Dt

)
+ exp

(
− (arx + d0)2

4Dt

))
, (35)

where erf(·) denotes the error function. Eq. (34) provides an
accurate approximation for (35) if arx < 0.15 d0 [40].

Remark 4: We refer the interested reader to [40] for an
analytical expression for h(t) for a passive receiver with
rectangular geometry. �

Fully-absorbing Receiver: For fully-absorbing receivers
[31], [71], [80]–[84] (also referred to as perfect sinks), unlike
the passive receiver model, the physical and chemical properties
of the receiver geometry are taken into account. In particular,
the signaling A molecules that reach the receiver via diffusion
are absorbed as soon as they hit the receiver surface, see
Fig. 8b). The sensing area of a fully-absorbing receiver is
defined as all points d on the surface of the receiver, Srx,
and the observed signal is the number of absorbed molecules
during an infinitesimally small time dt. Here, a useful quantity
that facilitates the derivation of h(t) is the rate of absorption
of the A molecule, which we denote by k(t). Given k(t), we
have h(t) = k(t)dt. In other words, an absorbing receiver that
measures the hitting rate of molecules on its surface can be
seen as a receiver that counts the number of molecules that
it absorbs in each interval of length dt and divides it by dt.
Now, to derive h(t), we first have to solve (3) with IC3 (31),
BC3 (32), and the following boundary condition that models
the absorption of the A molecule on the surface of the receiver

BC4 : p(d ∈ Srx, t) = 0, (36)

where in a spherical coordinate system, d = [ρ, ϕ, θ], for a
spherical receiver with radius arx located at the origin of the
coordinate system, i.e., drx = [0, 0, 0], we have Srx = {d|ρ =
arx}. Given p∗(d, t), i.e., the solution of (3) with IC3, BC3,
and BC4, k(t) is given by [85, Eq. (3.106)]

k(t) = 4πa2
rxD

∂p∗(d, t)
∂ρ

∣∣∣∣
ρ=arx

. (37)

In [80], p∗(d, t) for a spherical absorbing receiver is provided
and h(t) is calculated as [80, Eq. (22)]

h(t) =
arx(d0 − arx)

td0

√
4πDt

exp

(
− (d0 − arx)2

4Dt

)
dt. (38)

Another quantity of interest is the probability that a given A
molecule is absorbed by time t, g̃(t), which can be obtained
as

g̃(t) =

∫ t

t′=0

k(t′)dt′ =
arx

d0
erfc

(
d0 − arx√

4Dt

)
, (39)

where erfc(·) is the complementary error function.
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Remark 5: Alternatively, when the receiver counts the number
of absorbed molecules during observation window [tu, tl], h(t)
can be defined as

h(t) = g̃(tu)− g̃(tl)

=
arx

d0

[
erfc

(
d0 − arx√

4Dtu

)
− erfc

(
d0 − arx√

4Dtl

)]
. (40)

�
Remark 6: For a fully-absorbing receiver, it is implicitly

assumed that the whole surface of the receiver is fully-absorbing.
The extension of this model to the case where the receiver
surface is partially covered by fully absorbing receptor patches
is considered in [81]. Moreover, the extension of the fully-
absorbing receiver to take the impact of degradation and
production noise into account, is considered in [71]. �

Remark 7: We note that one of earliest CIR models taking
the absorption of particles in a 1D diffusion channel with
uniform drift into account is proposed in [86]. There, a closed-
form expression is derived for the probability of the time of
absorption of the signaling molecules. �

Reactive Receiver: Large or polar signaling molecules
cannot passively diffuse through the membrane of cells and are
detected by external receptors embedded in the cell membrane.
In particular, the diffusive signaling A molecules that reach
the cell may participate in a reversible bimolecular second-
order reaction with receptor protein B molecules on the cell
surface and form ligand-receptor complex C molecules; see
Fig. 8c). The ligand-receptor interaction can be modeled as
shown in (26) with binding reaction rate constant κf in
[molecule−1 ·m3 · s−1] and unbinding reaction rate constant
κb in [s−1]. For such reactive receivers, the sensing area is that
part of the receiver surface that is covered by receptors, denoted
by S̃rx, and the number of activated receptors C constitute the
received signal. We refer the interested reader to [67] for a
closed-form CIR expression for reactive receivers.

Remark 8: In [68], a reactive receiver with an infinite number
of receptor B molecules covering the whole surface of the
receiver, Srx (i.e., a homogeneous receiver surface, which is a
special case of [67]), was considered and the corresponding CIR
was numerically evaluated. Furthermore, in the MC literature,
first steps to take the impact of ligand-receptor interaction
on the CIR into account are made in [6] and [87]. There,
for the evaluation of h(t), the diffusion equation and the
reaction equation are solved separately, unlike [67], [68] where
a coupled diffusion-reaction equation is considered. �

Remark 9: The fully-absorbing receiver is a special case of
the reactive receiver when the whole surface of the receiver
is covered with infinitely many B molecules, κb = 0, and
κf → ∞. In this case, reaction equation (26) becomes a
pseudo first-order reaction of the form A−→C, with binding
reaction rate constant κf →∞, where now C corresponds to
the number of absorbed molecules. However, κf →∞ implies
that any collision of a signaling A molecule with the receiver
surface leads to the formation of a C molecule, i.e., the reaction
is deterministic. We refer the interested reader to [67] where
it is shown how the CIR of the reactive receiver, under the
above assumptions, simplifies to the CIR of the fully-absorbing
receiver. �

Fig. 9. Schematic depiction of transmitter models; a) point transmitter, b)
volume transmitter, and c) ion-channel based transmitter.

Remark 10: A receiver model that, unlike the CIR models
reviewed in this section so far, also accounts for the impact of
the signaling pathways, is proposed in [88]. In that model, two
simple approximate signaling pathways, modeled via first-order
and second-order CRNs, are considered. The CIR model in
[88] is derived based on a mesoscopic modeling approach; see
Section V for more details on mesoscopic modeling. �

C. Transmitter Models

In this section, we review some of the existing end-to-end
CIR models developed in the MC literature that mainly focus
on the properties of the transmitter. The main features of
the transmitter that can potentially affect the end-to-end CIR
include: i) the geometry of the transmitter, i.e., the volume,
boundaries, and shape of the transmitter [2], [23]; ii) the particle
generation via chemical reactions, which can take different
forms ranging from a simple zero-order production reaction to
more complex CRNs that take several aspects of A molecule
generation into account including, e.g., energy consumption
via hydrolization of adenosine triphosphate (ATP) molecules
[18]; and iii) the release mechanism controlling the release
of the A molecules into the physical channel. In particular,
after production, the A molecules can leave the transmitter
either passively, for instance by passive diffusion through
channels or gates embedded in the hull of the transmitter,
or actively, for example via pumps integrated in the hull of the
transmitter. In nature, passive and active transportation occur
in cells via ion channels and transporters, respectively, see [18].
In the following, we study transmitter models that partially take
the effects of the geometry, release mechanisms, and particle
generation into account.

Point Transmitter: The point transmitter is the most widely
used transmitter model in the MC literature mainly due to
its simplicity, see [3]. However, this model takes none of
the above mentioned features into account. In particular, the
point transmitter, as the name suggests, is modelled as a
zero-dimensional point, i.e., the impact of the geometry of a
physical transmitter is not included in the model; see Fig. 9a).
Furthermore, it is commonly assumed that the A molecules
are produced instantaneously and enter the physical channel
immediately. These assumptions imply that the effects of the
particle generation and the release mechanism on h(t) are
neglected.

Volume Transmitter: Unlike point transmitters, where all
A molecules are generated at the same location, volume
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transmitter models take the transmitter geometry into account
by assuming that the A molecules are initially distributed
over the transmitter volume8 [89]; see Fig. 9b). This leads
to more realistic models since, in reality, signaling molecules
are physical quantities that occupy space. However, volume
transmitter models assume that the A molecules are generated
instantaneously, and that the surface of the transmitter is
transparent and does not impede the diffusion of the A
molecules. With these two assumptions, volume transmitters
neglect the effect of the particle generation and the impact
of the release mechanisms. Let us, for the moment, denote
the CIR models obtained for a point transmitter model, e.g.,
(35), (34), (38), by h•(t, d0). Then, employing the principle of
superposition and assuming a uniform particle distribution over
the volume of the transmitter, Vtx, the CIR of the corresponding
volume transmitter can be written as [89, Eq. (12)]

h(t) =
1

Vtx

∫
d∈Vtx

h• (t, ‖d− drx‖) dd, (41)

where Vtx denotes the volume of the transmitter.
Remark 11: In [89], (41) is solved numerically for a 3D

spherical transmitter and both passive and fully-absorbing
receivers. Furthermore, in [89], closed-form expressions are
given for corresponding one-dimensional scenarios. �

One useful approximation of (41) can be obtained when the
transmitter is sufficiently far away from the receiver. Then, the
distance of any point inside the transmitter to the receiver can
be approximated by d0 and (41) simplifies to

h(t) ≈ h• (t, d0)

Vtx

∫
d∈Vtx

dd =
h• (t, d0)

Vtx
× Vtx = h•(t).

(42)

We refer the interested reader to [89], where the accuracy
of the above approximation has been investigated for several
environments.

Remark 12: The analytical transmitter models in [89] assume
that the A molecules are generated throughout Vtx. The authors
of [89] and [90] simulated a volume transmitter model where
the A molecules are generated on the surface of a reflective
spherical transmitter. In [90], a parametric model is proposed for
the CIR of an MC system employing the considered transmitter
and a fully-absorbing receiver. A machine learning approach
is used to obtain the parameters of the parametric model. �

Ion-Channel Based Transmitter: Ion-channel based (IC)
transmitters are considered in [91] to model the effect of the
release of the signaling molecules into the physical channel.
IC transmitters take both the transmitter geometry and the
release mechanism into account. In particular, IC transmitters
are modelled as spherical objects with ion-channels embedded
in their membrane; see Fig. 9c). The opening and closing of the
ion-channels is controlled via a so-called gating parameter such
as a voltage or a ligand. When the gating parameter is applied,
e.g., in the form of a voltage across the transmitter membrane,
the ion-channels open and the A molecules can leave the
transmitter via passive diffusion. The impact of the particle

8We note that, here, the term “volume” is generic and may refer to a volume
or a surface in a 3D space, a surface or a line in a 2D space, and a line in a
1D space.

generation is neglected in [91]. In particular, it is assumed that
the A molecules diffuse with different diffusion coefficients
inside and outside the transmitter. In [91] an expression is
derived for the average rate of signaling molecules entering
the physical channel upon transmitter stimulation. Furthermore,
an approximate solution for the CIR of the corresponding end-
to-end channel is provided under the conditions that the entire
surface of the transmitter is covered by a large number of open
ion-channels and that the signaling molecules diffuse with the
same diffusion coefficient inside and outside the transmitter.
There, a passive receiver under the UCA and an unbounded
environment are assumed. Then, the CIR is approximated as
[91, Eq. (42)]

h(t) =
atx

d0

√
2Dt

exp

(
−
(
d2

0 + a2
tx

)
4Dt

)
sinh

(
d0atx

2Dt

)
, (43)

where sinh(·) denotes the hyperbolic sine function. In fact,
(43) is actually the CIR of a volume transmitter, since the
assumption of having many open ion-channels is equivalent
to assuming that the entire surface of the transmitter is a
transparent membrane.

Remark 13: The transmitter models reviewed so far do not
consider the impact of particle generation via CRNs inside the
transmitter. This is mainly due to the fact that to take particle
generation into account, a coupled reaction-diffusion equation
has to be solved, which is a challenging task. Nevertheless,
the effect of particle generation has been studied in [9], [92],
[93]. A common methodology for solving the corresponding
reaction-diffusion equation is to adopt mesoscopic models and
to numerically solve the problem; see Section V-A for a review
of numerical methods. �

D. Physical Channel Models

In this section, we review some of the existing end-to-end
CIR models that emphasize the phenomena or impairments of
the physical channel. In diffusive MC systems, the signaling
molecules that enter the physical channel may be affected by
several factors and noise sources besides diffusion, including:
i) advection that can be constructive or destructive depending
on the direction and strength of the velocity vector; ii) the
geometry of the physical channel, e.g., bounded or unbounded
environments, constraining the dispersion of the particles; and
iii) degradation and production of A molecules. For the CIR
models reviewed in this section, in order to be able to focus
on how h(t) is affected by the phenomena in the physical
channel, we adopt the point or volume transmitter model and
the passive receiver model.

Bounded Diffusion Channels: The CIR models reviewed
previously were obtained under the assumption of an un-
bounded physical channel. Now, we focus on CIR models
that assume a more elaborate physical channel geometry. To
determine h(t) for bounded physical channels, generally, one
has to solve a diffusion equation (3) with appropriate boundary
conditions reflecting the physical and chemical properties of
the geometry of the channel. Unfortunately, for many practical
geometries, simple and insightful solutions of (3) do not exist.
Thus, approximations are needed to model practical geometries.
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Fig. 10. Schematic presentation of two duct channels with a) rectangular and
b) circular cross sections.

In the following, we focus on a class of bounded physical
channels that are referred to as duct channels. In particular,
we consider duct channels with rectangular and circular cross
sections; see Fig. 10. These two duct channels are of particular
importance since they approximate the geometry of microfluidic
channels and blood vessels, respectively.
• Rectangular Duct Channel: For a rectangular duct channel

with dimensions −∞ < z < +∞, 0 < x < lx, 0 < y <
ly, fully reflective walls, a point transmitter at dtx =
[xtx, ytx, ztx], and a receiver at drx = [xrx, yrx, zrx], the
CIR can be obtained by solving (3) for p(d, t) with IC3

and the following boundary conditions

BC5 :
∂p(d, t)

∂x

∣∣∣∣
x={0,lx}

= 0, (44)

BC6 :
∂p(d, t)

∂y

∣∣∣∣
y={0,ly}

= 0, (45)

BC7 : p(d = [x, y, z → ±∞], t) = 0, (46)

where BC5 and BC6 capture the reflection of the A mole-
cule on the duct walls. Since, for the considered geometry,
the diffusion of the A molecule in one Cartesian coordinate
does not influence its diffusion in the other coordinates,
we can write p(d, t) = p(x, t) × p(y, t) × p(z, t). Now,
solving (3) for p(x, t), p(y, t), and p(z, t) with BC5, BC6,
and BC7, respectively, and considering a passive receiver
under the UCA, h(t) can be obtained as follows [21,
Eq. (14.4.4)]

h(t) =
Vrx

lxly

[
1 + 2

∞∑
n=1

e−Dn
2π2t/l2x cos

(
nπxrx

lx

)

× cos

(
nπxtx

lx

)]
×
[

1 + 2

∞∑
n=1

e−Dn
2π2t/l2y

× cos

(
nπyrx

ly

)
cos

(
nπytx

ly

)]

×
[

1√
4Dπt

exp

(−(zrx − ztx)2

4Dt

)]
. (47)

• Circular Duct Channel: For a circular duct channel with
dimensions 0 < ρ < ac, 0 < θ < 2π, −∞ < z <
+∞ in cylindrical coordinates, fully reflective walls, a
point transmitter at dtx = [ρtx, ϕtx, ztx], and a receiver at
drx = [ρrx, ϕrx, zrx], the CIR can be derived by solving
(3) with IC3 (31) and the following boundary conditions

BC8 :
∂p(d, t)

∂ρ

∣∣∣∣
ρ=ac

= 0, (48)
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Fig. 11. Channel impulse response, h(t), as a function of time t, for an
unbounded environment and a bounded circular duct channel. The duct radius
increases in the direction of the arrow.

BC9 : p(d = [ρ, ϕ, z → ±∞], t) = 0. (49)

Here, BC8 models the reflection of the A molecule at
the wall of the duct with radius ac. Employing the same
technique as for rectangular duct channels, using [21,
Eq. (14.13.7)] and considering a passive receiver under
the UCA, h(t) can be obtained as follows

h(t) =
Vrx exp

(
−(zrx − ztx)2/4Dt

)
2πa2

c

√
πDt

×
[

1 +

+∞∑
n=−∞

cos (n (ϕrx − ϕtx))

×
∑
α

exp
(
−Dα2t

) α2Jn(αρrx)Jn(αρtx)

(α2 − n2/a2
c) J2

n(acα)

]
,(50)

where the summation in α is over the positive roots of
J ′n(αac) = 0. Here, Jn(·) denotes the n-th order Bessel
function of the first kind and J ′n(·) denotes its derivative.

The CIR expressions in (47) and (50) indicate that even for
simple bounded environments, the solution to h(t) may be quite
complicated and difficult to interpret. To gain more insight,
in Fig. 11, we compare the CIR of an unbounded physical
channel to that of a circular duct channel for system parameters
dtx = [0, 0,−1.15] µm, drx = [0, 0, 0] µm, receiver radius
arx = 0.15 µm, and ac ∈ {5, 6, 9, 12} × arx. Fig. 11 shows
that when duct radius ac is small, the CIR of the duct channel
is much larger than the CIR of the unbounded channel, i.e.,
for a given time t it is more likely to observe the signaling
molecule. This is because when ac is small, the signaling
molecule is reflected more frequently on the duct walls which
increases its chance of being observed at the receiver compared
to the unbounded case where the A molecules can diffuse away.
However, for large ac, the CIR of the duct channel approaches
the CIR of the unbounded environment, i.e., the CIR of the
unbounded channel provides a good approximation for the CIR
of a large bounded circular duct channel.
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Remark 14: We note that the necessary condition for
the validity of the UCA developed for passive receivers in
unbounded channels, i.e., arx < 0.15d0, is not applicable
for bounded physical channels. However, we expect that as
arx/d0 → 0, the accuracy of (47) and (50) improves. �

Advection Channels: Next, we consider physical channels
in which the signaling molecules experience advection in
addition to their random walk. In particular, for the CIR
models reviewed in this section, for mathematical tractability,
we consider advection processes with a time-invariant velocity
field, i.e., we assume v(d, t) = v(d), ∀t > t0.
• Uniform constant advection: In this case, the magnitude

and the direction of the velocity field are identical at any
point d in space, i.e., v(d) = v = [vx, vy, vz], ∀d ∈ R3,
where R3 is the set of all points in the 3D Cartesian
coordinate system, see Example 3 in Section II. Vector
v can be effectively decomposed into two components, a
parallel component v‖ and an orthogonal component v⊥
with respect to d0 = dtx − drx. Let us assume, without
loss of generality, a point transmitter at dtx = [0, 0,−ztx]
and a passive receiver located at drx = [0, 0, 0], such
that d0 = [0, 0,−ztx]. Then, v‖ = vz , and we can write

v⊥ =
√
v2
x + v2

y .

– Unbounded Channel with UCA: For an unbounded
channel and a passive receiver under the UCA, h(t)
can be obtained by solving advection-diffusion equation
(17). Using the method of moving reference frame, i.e.,
assuming that the reference of the coordinate system is
moving with v, it can be readily verified that h(t) can
be obtained from (34) as [44, Eq. (18)]

h(t) =
Vrx

(4πDt)
3/2

× exp

(
− (v⊥t)2 + (z + ztx − v‖t)2

4Dt

)
. (51)

Eq. (51) can be also directly obtained from (18) after
setting N = 1, multiplying c∗(d, t) with Vrx, and using
the v, dtx, and drx mentioned above.

– Unbounded channel without UCA: For the case when
the UCA does not hold, v‖ 6= 0, and v⊥ 6= 0, h(t) can
be solved numerically. However, it is shown in [44] that
for the special case of v⊥ = 0, h(t) can be obtained
from (35) after substituting d0 with −(ztx − v‖t).

– Bounded channel with UCA: In this case, i.e., when
we have bounded channels such as duct channels, and
for the general case where v‖ 6= 0, v⊥ 6= 0, we cannot
apply the technique of moving reference frame in the
dimensions of the coordinate system where the physical
channel is bounded. Thus, h(t) has to be directly
evaluated via the corresponding advection-diffusion
equation. However, for the special case of v⊥ = 0,
after substituting ztx with ztx − v‖t, the corresponding
CIRs of the rectangular and circular duct channels can
be obtained from (47) and (50), respectively.

– Bounded channel without UCA: In this case, the general
form of h(t) depends on the geometries of the bounded
physical channel and the passive receiver. However,

Fig. 12. Schematic presentation of a circular duct channel with radius ac
and laminar flow; a) cross-section and b) along the z axis. The receiver is
depicted in blue color.

for a rectangular duct channel, a rectangular passive
receiver, and v‖ 6= 0, v⊥ 6= 0, an analytical expression
for h(t) is derived in [54]. We note that in [54], it is
assumed that v‖ and v⊥ are a fluid velocity field and a
drift velocity caused by a magnetic field, respectively.
However, the derived expression for h(t) is valid
independent of the origin of v‖ and v⊥. Furthermore,
in [54], the case of partially absorbing duct channel
walls is also considered.

• Laminar flow: In this case, we only focus on bounded
channels, and in particular on circular duct channels, since
laminar flow arises in bounded environments. Thus, we
consider v(d) given in (14). For the CIR models reviewed
here, we distinguish between point and volume transmitter
models with axial position ztx = 0, and consider the
passive receiver model with the following dimensions
in cylindrical coordinates ac − lρ ≤ ρrx ≤ ac, |ϕrx| ≤
lϕ/2, |zrx − dz| ≤ lz/2; see Fig. 12. In particular, we
distinguish between two cases, namely the dispersion
regime (αd � 1) and the flow dominant regime (αd � 1),
see (20).
– Dispersion regime with UCA: In the dispersion regime,
αd � 1 holds in (20). As a result, the time required for
transportation of the A molecule in the z direction via
flow, dz/veff , is much larger than a2

c/D, which is the
characteristic time for diffusion of the A molecule over
distance ac. This fact has two immediate consequences:
i) by the time that the released A molecule reaches
the receiver, it experiences the average flow velocity,
i.e., veff , due to its fast diffusion across the cross
section; ii) there is no difference between point and
uniform release and h(t) only depends on z. Thus,
the corresponding advection-diffusion equation in three
dimensional space can be effectively approximated by
its one dimensional equation with effective velocity veff

and effective diffusion coefficient Deff as follows

∂tp(z, t) = Deff∂
2
zp(z, t)− vefft, (52)

where Deff is the Aris-Taylor effective diffusion coeffi-
cient and can be obtained as [57, Eq. (4.6.35)]

Deff =

(
1 +

1

48

(
(veffac)2

D

))
. (53)
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Solving (52) with the UCA approximation, BC9, and
the following initial condition for uniform release across
the cross section

IC4 : p(z, t0) =
1

πa2
c

δ(z) (54)

leads to [61, Eq. (11)]

h(t) =
Vrx

πa2
c

× 1√
4πDefft

exp

(
− (dz − vefft)

2

4Defft

)
.

(55)

– Dispersion regime without UCA: In this case, h(t) can
be obtained by taking the integral of the solution of
(52) over the volume of the receiver, which leads to
[61, Eq. (13)]

h(t) =
lϕ(2aclρ − l2ρ)

2πa2
c

×
[
Q

(
dz − lz/2− vefft

2Defft

)
+ Q

(
dz + lz/2− vefft

2Defft

)]
, (56)

where Q(·) denotes the Gaussian Q-function.
Remark 15: We note that the accuracy of both (55) and
(56) depends on the value of αd in (20). For example,
by increasing D and dz , αd increases and the accuracy
of the dispersion regime improves; see [61]. �

– Flow dominant regime with volume transmitter: In this
case, i.e., αd � 1, the impact of diffusion is negligible.
Thus, the signaling molecules do not have sufficient time
to disperse across the cross section of the duct channel
before they arrive at the receiver. As a result, a particle
released at radial position ρ is observed approximately
at the same radial position at the receiver. Thus, we have
to distinguish between the volume and point transmitter
models. For the case of uniform release, h(t) can be
approximated as [61, Eq. (16)]

h(t) =


0, t ≤ t1
cϕ(2aclρ−l2ρ)

2πa2
c

− lϕ
2π

dz−lz/2
2veff t

, t1 < t < t2
lϕ
2π

lz
2veff t

, t ≥ t2.
(57)

where

t1,2 =
dz ∓ lz/2

2veff(1− (1− lρ/ac)2)
. (58)

In (58), t1 and t2 are the times when the parabolic
velocity field first hits and leaves the receiver volume,
respectively.

– Flow dominant regime with point transmitter: For the
case of a point transmitter, when the A molecule is
released dz away from the receiver but within the ρ and
ϕ coordinates defining the dimensions of the receiver,
i.e., at ρtx ∈ [ac − lρ, ac] and ϕtx ∈ [−lϕ/2, lϕ/2], we
observe the A molecule with certainty if dz − lz/2 ≤
v(ρtx)t ≤ d+ lz/2

h(t) = rect

(
v(ρtx)t− dz

lz

)
, (59)

where rect(x) = 1 if −1/2 ≤ x ≤ 1/2.

Remark 16: In the MC literature, first steps towards the
extension of some of the CIR models reviewed for the advection
channel to more complex networks of interconnected bounded
duct channels are provided in [49], [52], [94], [95]. For
example, in [94], the Aris-Taylor effective diffusion coefficient
approximation is employed to calculate the end-to-end CIR
of multiple interconnected blood vessels for drug delivery
applications. Furthermore, in [52], the uniform advection model
is adopted to model blood vessel networks for abnormality
detection applications in biological systems. �

Degradation Channels: In degradation channels, the arrival
of the signaling molecules is affected by their possible degra-
dation and production. In this case, h(t) can be obtained by
solving the diffusion-reaction equation (29) (with v(d, t) = 0)
given appropriate initial and boundary conditions. However,
the solution to (29) depends very much on the structure of
the corresponding CRN described by reaction rate function
f(·). Often, the reaction terms in f(·) are highly nonlinear
and coupled, which makes the problem of solving (29) very
challenging. Here, in order to arrive at mathematically tractable
and insightful results describing the general behaviour of
degradation channels, we focus on two particular forms of
degradation and production noise, namely first-order degrada-
tion and enzymatic degradation; see Examples 7 and 9, and
[27], [65], [67], [71].
• First-order degradation: Let us for the moment denote

the CIR expressions developed in the previous sections
by h̃(t). It can be shown that h(t), for a physical channel
with first-order degradation reaction of the form (24) and
reaction rate constant κ can be readily obtained from h̃(t)
when the following assumptions hold. A1) The signaling A
molecule is affected by the degradation reaction uniformly
and equally throughout the entire end-to-end channel, and
A2) it is not involved in any other CRN from stimulation
time t0 until observation time t. In this case, we can write

h(t) = h̃(t)× exp (−κt) . (60)

In (60), the term exp (−κt) captures the surviving proba-
bility of the signaling molecule, which is a monotonically
decreasing function of time, i.e., as t increases, it becomes
more likely that the signaling molecule A is degraded
in the channel. As a result, for degradation channels, at
any instant, h(t) is smaller than the corresponding CIR
without degradation.
Assumption A2) holds for all CIR models presented so
far except the CIR model for the reactive receiver in
Section III-B. This is because for reactive receivers, the
signaling molecule is involved in a ligand-receptor kinetic
reaction (26), in addition to the degradation reaction, and
may experience several binding/unbinding events before
reception time t. We refer the interested reader to [67],
where a closed-form expression is derived for the CIR
of an MC system with a reactive receiver in a first-order
degradation channel.

• Enzymatic degradation: The impact of enzymatic degrada-
tion reactions in the channel is studied for passive receiver
and point transmitter models in [65]. Enzymatic reactions
include a second-order reaction, and as a result, in order
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to obtain h(t), we have to solve (29) with IC3, BC3, and
f(·) driven by (28). However, this system of nonlinear
equations does not facilitate a closed-form solution for
h(t). As a result, in [65], several approximate solutions
were proposed for the CIR of an MC system with point
transmitter, passive receiver, and unbounded environment
as follows:
– If the concentration of signaling molecules, cA(d, t),

and the concentration of the intermediate species AE,
cAE(d, t), remain constant over time and space, then
f(·) is described only by (28a) and h(t) has the
following solution

h(t) ≈ Vrx

(4πDt)
3/2

exp

(
−κfcEt−

d0

4Dt

)
+ κbcAEt.

(61)

– If κd →∞ and κb → 0, then the total concentration of
the enzyme E molecules remains constant and cAE = 0.
Then, a lower bound for h(t) is obtained via (61) after
setting cAE = 0.

– Another useful approximation is obtained by assuming
that cAE is constant [65]. This is a valid assumption
when κf → ∞ and κb → 0. Then, as explained
in Section II, the enzymatic reaction in (27) can be
approximated by the first-order unimolecular reaction
in (24) and the corresponding h(t) can be written as

h(t) ≈ Vrx

(4πDt)
3/2

exp

(
− κfκd
κb + κd

cEtt−
d0

4Dt

)
,

(62)

where cEt denotes the total concentration of the enzyme
E molecules, including both bound and unbound
enzyme. We refer the interested reader to [65] for
verification of the accuracy of the proposed approximate
expressions for h(t).

Remark 17: Signaling molecules of different types may
also degrade each other. For instance, the MC testbed
in [66] uses acids and bases as signaling molecules that
can participate in a bimolecular reaction and cancel each
other out, cf. (26). Unfortunately, the underlying PDEs
that describe the bimolecular reaction are coupled and
nonlinear and closed-form expressions for the CIR are
not available. In [74], a numerical method was developed
which decouples reaction and diffusion in each time slot
and computes the channel response in an iterative manner.
�

E. Summary of End-to-End CIR Models

To conclude this section, we provide a summary of the
reviewed CIR models in Table II. Although the keywords,
notations, and variables used in this table are mostly self-
explanatory, for clarity and completeness, we briefly explain
them in the following. For the transmitter, “Ωtx” indicates
whether a point transmitter is assumed or a volume transmitter
releasing the molecules from its volume (Vtx) or surface (Stx).
In the latter case, we also specify whether the surface is

“transparent” or “reflective”. Furthermore, we specify whether
“Particle generation” and the “Release mechanism” are taken
into account in the CIR model, respectively. For the physical
channel, we indicate whether “Diffusion” and “Advection”
processes are taken into account. In the case of advection,
we distinguish between “uniform” and “laminar” advection.
The category “Geometry” specifies whether a “bounded” or
an “unbounded” environment is considered. Reactions inside
the physical channel involving the signaling molecules are
indicated in the column “Degradation & production”. For the
receiver, “Ωrx” indicates whether the volume of the receiver,
Vrx, a surface, Srx, or a partial surface, S̃rx, constitute the
sensing area of the receiver. Furthermore, “Passive” and
“Active” refer to the reception mechanism of the receiver.
In the latter case, “Deterministic” and “Stochastic” specify
whether the corresponding reaction for active reception is
modeled deterministically or stochastically, respectively. We
also indicates whether “Signaling pathways” in the receiver
are considered. Moreover, we provide the “Dimension” of
the considered end-to-end channel. “Numerical” indicates that
the CIR h(t) is obtained numerically. Whenever possible, we
also provide the equation number of the corresponding CIR
h(t). Finally, whenever the reaction-diffusion equation (29) was
employed to obtain h(t), we highlight whether the reaction and
diffusion processes were considered “Separately” or “Jointly”.

IV. RECEIVED SIGNAL MODELING

In this section, we provide mathematical models for the
signals used for estimation of the system parameters and
detection of the transmitted data by MC receivers. To this
end, we first present a unified signal representation for MC
systems. Next, we introduce three time scales for the signal
observed at the receiver, and subsequently, we provide signal
models for each of these time scales. In addition, we generalize
these models to account for the interfering noise molecules
in the environment. Subsequently, time-slotted communication
is considered and a corresponding signal model is developed
which accounts for the impact of ISI. Finally, the correlation
of the signals received at different time instants is discussed
for the considered time scales.

The models that we present in this section are general in the
sense that they apply to all MC systems discussed in Section III.
More specifically, these models only depend on the CIR h(t)
within the considered observation window or at the considered
sampling times. We note that for most MC environments,
derivation of the CIR in closed form, as was done for specific
cases in Section III, is challenging. In Section V, we present
numerical and simulation methods to obtain the CIR of more
complex MC systems. In addition, in practical MC systems,
the transmitter may send known pilot symbols that enable
the receiver to estimate the CIR from its observations (see
e.g. [45] and [96] for channel parameter estimators for MC
systems). The models developed in this section are applicable
for analytically derived, simulated, and estimated CIRs.

A. Unified Signal Definition
In the MC literature, different physical quantities have

been modeled as the received signal. Important examples
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TABLE II
SUMMARY OF CIR MODELS REVIEWED IN SECTION III.
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include i) the number of molecules observed at a given time
within the volume of a transparent receiver [38]–[46], ii) the
number of molecules bound at a given time to the receptors
of a reactive receiver [67], [68], [81], iii) the accumulated
number of molecules observed by a fully-absorbing receiver
within a given observation time window [11], [80], [97]–
[99], and iv) the arrival times of the molecules at a fully-
absorbing receiver [10], [100]–[104]. In the following, we
first provide a unified definition of the received signal of
general MC receivers including the aforementioned special
cases. Since the presented general signal model is difficult to
analyze, subsequently, we introduce the concept of counting
receivers, which are widely considered in the literature and
allow for simple mathematical modeling. The main purpose
for introducing a general representation of the received signal
is to highlight the basic assumptions that have been made to
arrive at specific signal models used in the literature and to
unveil the connections between different signal models.

1) Generalized Receivers: Since different molecules of the
same type are indistinguishable for the receiver, the most
detailed information that the receiver could access at a given
time t is the arrival (and departure, if relevant) times of the
molecules at (or from) the receiver up to that time. We use this
fact to introduce a unified representation of the received signal
of general MC receivers. For mathematical rigor, let us first
formally distinguish between two types of receivers, namely
recurrent and non-recurrent receivers.

Definition 3: If a given molecule can be observed by the
receiver at most once, then the receiver is referred to as non-
recurrent; otherwise, it is referred to as recurrent.

Transparent and reactive receivers with unbinding rate
κb 6= 0 are recurrent since a given molecule can be observed
multiple times by the receiver. On the other hand, fully-
absorbing receivers and reactive receivers with κb = 0 are
non-recurrent since after a molecule has been observed at
the receiver, it cannot be observed again. For non-recurrent
receivers, the time instants at which the molecules are observed
constitute the most general signal representation. Let us define

~Tarv(t) =
[
t1, t2, . . . , tnarv(t)

]
, (63)

as the vector containing the arrival times tn, n =
1, 2, . . . , narv(t), of all narv(t) molecules observed by time
t in an ascending order. We note that both the number of
molecules observed by time t, i.e., narv(t), and their arrival
times tn, n = 1, . . . , narv(t), are RVs. On the other hand, for
recurrent receivers, in addition to ~Tarv(t), we need to keep
track of the molecules that have been un-observed, i.e., have
left the receiver. To this end, let us define

~Tdpr(t) =
[
t′1, t

′
2, . . . , t

′
ndpr(t)

]
, (64)

as the vector containing the departure times t′n, n =
1, 2, . . . , ndpr(t), of all ndpr(t) molecules that have left the
receiver by time t in an ascending order. We note that by
the above formulation, non-recurrent receivers can be seen as
a special case of recurrent receivers where ndpr(t) = 0, ∀t.
In summary, ~Tarv(t) and ~Tdpr(t) constitute a complete and
unified representation of the received signal of MC receivers.

As will be shown in the following, different notions of received
signal used in the MC literature can be seen as special cases
of ~Tarv(t) and ~Tdpr(t).

2) Timing-based Receivers: In the MC literature, timing
channels have been used as a model for non-recurrent receivers
[10], [100]–[103]. Let Trls denote the vector containing the
release times of the molecules by the transmitter and let
Tarv be the vector containing the respective arrival times of
the molecules at the receiver. Thus, Tarv is related to Trls

according to [10], [100]–[104]

Tarv = Trls + Tdly, (65)

where Tdly is a vector containing the random delays between
the release of the molecules by the transmitter and their
observation at the receiver. Moreover, it is typically assumed
that the release, propagation, and reception of molecules
are independent from each other, which we refer to as the
independent molecule behavior assumption [102], [103]. Based
on this assumption, the elements in Tdly are independent and
identically distributed and assume only non-negative real values.
For an unbounded 1D environment, the random observation
delay follows a Levy distribution if no flow is present [10]
and the inverse Gaussian distribution if flow in the direction
of the receiver is present [100].

We note that, in practice, Tarv is not available at the
receiver since i) different molecules of the same type are
indistinguishable by the receiver and ii) out of the total number
of released molecules, only narv(t) molecules are observed
by time t. In fact, ~Tarv(t) is the actual observation signal
available to the receiver. To arrive at a model for ~Tarv(t),
we introduce the following definitions and assumptions. Let
us assume that Ntx molecules are released by the transmitter
within interval [0, t] and their release times are collected in
Trls. Since the narv(t) molecules observed at the receiver are
indistinguishable, we do not know which narv(t) molecules
out of the total Ntx released molecules have been observed.
In general, there are at most Ntx!

(narv(t)−1)! possibilities for
selecting narv(t) (observed) molecules from the Ntx (released)
molecules. Therefore, we define pp, p = 1, . . . , Ntx!

(narv(t)−1)! ,
as a vector which contains the p-th possible order index of the
observed molecules. Moreover, let fX(x) and FX(x) denote
the probability density function (PDF) and cumulative density
function (CDF) of RV X at X = x, respectively. We note that
due to causality, fTdly(t) = 0, t < 0, has to hold where RV
T dly denotes the random delay of a given molecule. Following a
similar framework as developed in [102], [103], the PDF of the
observation vector ~Tarv(t) = ~tarv conditioned on the molecule
release time vector Trls, denoted by f~Tarv(t)|Trls

(
~tarv|Trls

)
,

is obtained as

f~Tarv(t)|Trls

(
~tarv|Trls

)
=

Ntx!
(narv(t)−1)!∑

p=1

f~Tarv(t)|Trls

(
~tarv|Trls,pp

)

=

Ntx!
(narv(t)−1)!∑

p=1

[
narv(t)∏
m=1

fTdly

(
tm −Trls[pp[m]]

)
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×
Ntx∏

m=narv(t)+1

[
1− FTdly

(
t−Trls[pp[m]]

) ]]
(a)
=

Ntx!

(narv(t)− 1)!

(
fTdly(tm)

)narv(t)

×
(
1− FTdly(tm)

)Ntx−narv(t)
, (66)

where equality (a) holds when all Ntx molecules are released
at time zero. The above formulation provides a general
framework for modeling the arrival times of non-recurrent
receivers. Unfortunately, (66) cannot be easily simplified and
its generalization to recurrent receivers or the cases when
interfering noise molecules or ISI are present is cumbersome. In
fact, the results reported in [10], [100]–[104] are valid for non-
recurrent receivers when ISI and interfering noise molecules
do not exist. In addition, perfect synchronization is a key
underlying assumption for most timing channels considered in
the literature [10], [100]–[104] and hence the performance of
timing receivers is very sensitive to synchronization errors.
Therefore, in the remainder of this section, we consider
special receivers, namely molecule counting receivers, whose
signal is a function of narv(t) and ndpr(t) only. Molecule
counting receivers are widely adopted in the literature and the
corresponding received signal lends itself to more tractable
models and analysis.

3) Counting Receivers: These receivers consider the number
of observed molecules as the received signal. In general, the
receiver may count the number of observed molecules multiple
times, which is referred to as a multi-sample detector [38], [39],
[42], [53], [90], [105]. Let r(tm) denote the received signal
at sample time tm = m∆t, m = 1, 2, . . . , where ∆t is the
sample interval. To formally characterize r(tm), we distinguish
two types of counting receivers, namely arrival-counting and
observation-counting receivers.

Definition 4: If a receiver counts the number of molecules
that have arrived within the observation window (tm−∆t, tm]
at its reception site, i.e., r(tm) = narv(tm)− narv(tm −∆t),
then it is referred to as an accumulative-molecule-counting
(AMC) receiver, whereas if the receiver counts the number of
molecules that are observed at a given time t at its reception
site, i.e., r(tm) = narv(tm)− ndpr(tm), then it is referred to
as an instantaneous-molecule-counting (IMC) receiver.

In general, there are four types of receivers based on the
recurrent/non-recurrent and AMC/IMC classifications. In the
following, we present the different counting receivers used in
the MC literature as special cases of these four categories:

Non-Recurrent Accumulative-Molecule-Counting (nR-
AMC) Receivers: The signal in this case is r(tm) =
narv(tm)−narv(tm−∆t) where narv(tm) ≥ narv(tm−∆t) ≥
0. For instance, for fully-absorbing receivers, r(tm) denotes
the number of molecules that have arrived within interval
(tm −∆t, tm] [11], [80], [97]–[99].

Recurrent Accumulative-Molecule-Counting (R-AMC)
Receivers: The signal in this case is r(tm) = narv(tm) −
narv(tm − ∆t) where narv(tm) ≥ narv(tm − ∆t) ≥ 0.
Although the mathematical form looks identical to that for
nR-AMC receivers, the modeling for R-AMC receivers is
much more cumbersome since one molecule might be counted

multiple times within the observation window (tm −∆t, tm].
Furthermore, we note that the expected number of observed
molecules for R-AMC receivers is larger than that for nR-AMC
receivers because some molecules may be counted multiple
times.

Recurrent Instantaneous-Molecule-Counting (R-IMC)
Receivers: The signal in this case is r(tm) = narv(tm) −
ndpr(tm) where narv(tm) ≥ ndpr(tm) ≥ 0. For instance, for
transparent receivers, r(tm) denotes the number of molecules
within the receiver volume at time tm [38]–[46], and for reactive
receivers, r(tm) is the number of molecules bound to the
receiver’s receptors at time tm [67], [68], [81].

Non-Recurrent Instantaneous-Molecule-Counting (nR-
IMC) Receivers: The signal in this case is r(tm) =
narv(tm) − ndpr(tm) = narv(tm) where narv(tm) ≥ 0 and
ndpr(tm) = 0. We note that since the received molecules do not
leave the receiver, r(tm) is a non-decreasing function of time.

In the remainder of this section, we focus on the modeling
of r(tm) for R-IMC receivers as a function of CIR h(t), i.e.,
the probability of a molecule being observed at time t seconds
after its release by the transmitter; see Section III. This model
is also valid for nR-AMC and nR-IMC receivers if h(tm) is
substituted by the probability of observing a molecule within
intervals (tm−∆t, tm] and (0, tm], respectively, after its release
by the transmitter at time t = 0, cf. (40). Modeling of r(tm)
for R-AMC receivers is cumbersome due to the possibility of
counting a given molecule multiple times within the observation
window. This type of signal is relevant, e.g., for ligand-based
receivers when a ligand molecule can activate the receptors on
the receiver surface multiple times. However, this problem has
not yet been studied in the MC literature and is a potential topic
for future research. Finally, in the following, we assume that the
sampling interval ∆t is sufficiently large such that consecutive
samples are statistically independent. Therefore, we drop index
m in Sections IV-B, IV-C, and IV-D for simplicity. How large
∆t should be chosen to guarantee sample independence will
be discussed in Section IV-F.

B. Three Time-Scale Signal Representation
Let us define r(t, τ) as the number of molecules observed

at the receiver t seconds after their release is stimulated by the
transmitter at time τ . Then, r(t, τ) can be modeled as

r(t, τ) = r̄(t, τ) + w(t, τ), (67)

where r̄(t, τ) = E {r(t, τ)} denotes the mean of the signal for
a fixed set of channel parameters, w(t, τ) denotes the random
fluctuations around the mean (e.g., caused by diffusion), and
E {·} denotes expectation. We note that the channel parameters
may also change over time; however, this is over a scale that
is much slower than the signal variations. In other words, the
mean of the signal, r̄(t, τ), varies over time t due to diffusion,
advection, and reactions in the channel, but it also varies over
the larger time scale τ due to variations of system parameters
such as temperature, viscosity, and the distance between a
mobile transmitter and receiver [72], [106], [107]. In summary,
we have variations on three time scales in r(t, τ):
• Time Scale 1: Variations of r(t, τ) around its mean r̄(t, τ),

i.e., noisy fluctuations w(t, τ).
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Fig. 13. Schematic illustration of the number of molecules observed at the
receiver t seconds after their release by the transmitter at time τ . The three
time scales are illustrated as follows: 1) the actual received signals, r(t, τ),
are denoted by colored solid lines; 2) the black dashed lines denote the signal
mean r̄(t, τ); and 3) the variations of the signal due to changes in the system
parameters over time scale τ are represented by different colors.

• Time Scale 2: Variations of the signal mean r̄(t, τ) over
observation time t, which are slower than the variations
of w(t, τ).

• Time Scale 3: Variations of r̄(t, τ) over the release time
τ , which are slower than the variations of r̄(t, τ) with
respect to t.

For instance, for typical MC systems at microscale, e.g.,
cell-to-cell communication, the noisy fluctuations vary on the
order of a few µs, the variations of the signal mean over time
t are on the order of tens or hundreds of µs, and the change in
the parameters, e.g., due to the mobility of the nodes, can be on
time scales much larger than ms [67]. Fig. 13 illustrates r(t, τ)
versus t for three values of τ . The aforementioned three time
scales are illustrated in this figure: 1) the actual received signals,
r(t, τ), are denoted by colored solid lines; 2) the black dashed
lines denote the signal mean r̄(t, τ); and 3) the variations of
the signal due to changes in the system parameters over time
scale τ are represented by different colors.

Remark 18: The three time-scale signal representation
for MC is analogous to a similar signal representation in
wireless communications. In particular, in a wideband wireless
communication system impaired by additive white Gaussian
noise (AWGN) and fading, the AWGN is analogous to the
random fluctuations of the signal in MC, the CIR of the wireless
communication channel is analogous to the signal mean in MC,
and the variations of the CIR over time (due to the movement
of the transmitter and/or receiver) are analogous to the time-
variant signal mean in MC [108, Chapter 4]. �

C. Signal Models

In the following, we first derive the expected number of
molecules observed at the receiver, which we refer to as the
deterministic model of the received signal. Subsequently, we

derive statistical models of the received signal that capture the
random fluctuations of the observed molecules. Finally, we
study time-variant channels and derive stochastic models to
capture the effect of the time variance.

1) Deterministic Models: In Section III, we derived the CIR
h(t) which can be interpreted as the probability of a molecule
released at time t = 0 being observed at the receiver at time t.
Let us define h(t, τ) as the probability of a molecule released
by the transmitter at time τ being observed at the receiver
at time t. In the following, we first assume a time-invariant
MC channel which leads to h(t, τ) = h(t− τ), t ≥ τ . Then,
in Section IV-C3, we analyze the impact of time variance of
the channel. Following the independent molecule behavior
assumption [8], [11], the expected number of molecules
observed at the receiver at time t due to the release of Ntx

molecules by the transmitter at time τ = 0 is readily obtained
as

r̄(t, τ) = Ntxh(t, τ). (68)

For a given set of system parameters, the expected behavior is
non-random and we have a deterministic signal model. Thus,
each of the CIR expressions derived in Section III constitutes
a deterministic representation of the respective MC system.

Remark 19: The independent molecule behavior assumption
has to hold for (68) to be valid. However, for some practical
MC systems, this assumption does not hold. For instance, if a
high fraction of receptors on the surface of a reactive receiver is
occupied, r̄(t, τ) becomes a nonlinear function of the released
molecules Ntx and cannot be described by the simple linear
expression in (68). This effect is known as receptor occupancy
[67]. In these cases, r̄(t, τ) has to be found for a given Ntx

either numerically or via simulation, cf. Section V-A for a
detailed discussion on simulation methods. �

Remark 20: The deterministic model in (68) assumes an
impulsive release of Ntx molecules at time τ = 0 by
the transmitter. In general, the transmitter may release the
molecules continuously over a finite time interval [0, T rls] of
length T rls. Let g(t) denote the release function satisfying∫ T rls

t=0
g(t)dt = Ntx and g(t) = 0, t /∈ [0, T rls]. Then, the

expected number of molecules observed at the receiver at time
t due to the release of molecules by the transmitter with release
function g(t) is given by

r̄(t, τ) =

∫ t

t′=0

g(t′)h(t− t′, τ)dt′. (69)

We note that (69) reduces to (68) for g(t) = Ntxδ(t). In the
remainder of this section, we focus on impulsive release, as
this is typically assumed in the MC literature. �

2) Statistical Models: In the following, we develop statistical
models for the number of molecules observed at the receiver
as a function of h(t, τ) for time-invariant MC channels.

Binomial Model: Based on the independent molecule
behavior assumption and since any given molecule released
by the transmitter is either observed by the receiver or not,
a binary state model applies and the number of observed
molecules follows the Binomial distribution with Ntx trials
and success probability h(t, τ), i.e.,

r(t, τ) ∼ B (Ntx, h(t, τ)) , (70)
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where B (N, p) represents a Binomial distribution with pa-
rameters N and p denoting the number of trials and the
success probability, respectively. Under the Binomial model,
the probability mass function (PMF) of r(t, τ), denoted by
fBr (n), is given by

fBr (n) =

(
Ntx

n

)(
h(t, τ)

)n(
1− h(t, τ)

)Ntx−n
, (71)

for n ∈ {0, 1, . . . , Ntx}. Unfortunately, the Binomial distri-
bution considerably complicates the analysis of MC systems.
Therefore, in the following, we present two approximations of
the Binomial model with better mathematical tractability.

Gaussian Model: If the expected number of molecules
observed at the receiver, i.e., r̄(t, τ), is sufficiently large, then
we can apply the central limit theorem (CLT) and approximate
r(t, τ) by a Gaussian RV with mean and variance identical to
that of the Binomial RV. This leads to

r(t, τ) ∼ N (Ntxh(t, τ), Ntxh(t, τ)(1− h(t, τ))) . (72)

Under the Gaussian model, the PDF of r(t, τ), denoted by
fNr (n), is given by

fNr (n) =
1√

2πNtxh(t, τ)(1− h(t, τ))

×exp

(
− (n−Ntxh(t, τ))

2

2Ntxh(t, τ)(1− h(t, τ))

)
, n ∈ R.(73)

The Gaussian distribution is much more amenable to analysis
than the Binomial distribution. However, the basic assumption
behind the applicability of the Gaussian distribution, namely
large r̄(t, τ), may not hold in MC systems. In fact, although
the number of released molecules Ntx can be quite large, the
expected number of observed molecules r̄(t, τ) can be very
small. Moreover, Gaussian RVs are continuous and can assume
non-integer and negative values, which contradicts the true
nature of RV r(t, τ) as discrete and non-negative.

Poisson Model: For the case when the number of trials is
large and the mean of the Binomial RV is small, the Binomial
distribution can be well approximated by a Poisson distribution
with the same mean r̄(t, τ) = Ntxh(t, τ), i.e.,

r(t, τ) ∼ P (Ntxh(t, τ)) , (74)

where P (λ) represents the Poisson distribution with parameter
λ denoting the mean of the RV. Under the Poisson model, the
PMF of r(t, τ), denoted by fPr (n), is given by

fPr (n) =
(Ntxh(t, τ))

n

n!
exp (−Ntxh(t, τ)) , n ∈ N. (75)

In fact, assuming r̄(t, τ) is fixed, the proof simply follows
from [47]

lim
Ntx→∞

fBr (n)

= lim
Ntx→∞

(
Ntx

n

)(
r̄(t, τ)

Ntx

)n(
1− r̄(t, τ)

Ntx

)Ntx−n

(a)
=

(r̄(t, τ))
n

n!
exp (−r̄(t, τ)) = fPr (n), (76)

where for equality (a) we used lim
x→∞

(
x
y

)
= xy

y! and

lim
x→∞

(
1− y

x

)x
= exp(−y) [109].

Comparison: In order to quantify the accuracy of the
Gaussian and Poisson approximations, we define the root
mean square error (RMSE) between the approximated Gaussian
and Poisson CDFs, denoted by F xr (n), x ∈ {N ,P}, and the
Binomial CDF, denoted by FBr (n), as [11], [98], [110]

RMSEx =

√√√√ 1

Ntx + 1

Ntx∑
n=0

|F xr (n)− FBr (n)|2. (77)

In Fig. 14, the RMSE between the approximate Gaussian
and Poisson CDFs and the Binomial CDF versus h(t, τ) is
shown for Ntx ∈ {102, 103, 104, 105}. We observe from this
figure that by increasing h(t, τ), the accuracy of the Poisson
model deteriorates whereas the accuracy of the Gaussian model
improves, which is consistent with the respective assumptions
that led to their derivation. Moreover, as Ntx increases, the
Gaussian model becomes more accurate whereas this is not
true for the Poisson model if h(t, τ) is very small. In fact, for
small h(t, τ) and small Ntx, both the Binomial and Poisson
distributions approach the binary distribution, i.e., either zero
or one molecule is observed and the probability of observing
more than one molecule becomes negligible, i.e., r̄(t, τ)� 1.
Thus, for a fixed value of h(t, τ), the accuracy of assumption
r̄(t, τ)� 1 improves as Ntx decreases. Since for typical MC
systems, the value of h(t, τ) is expected to be much smaller
than 0.1, the Poisson model is generally a more accurate model.
Nevertheless, the fact that the accuracy of the Gaussian model
increases with increasing Ntx makes it a suitable model for
macroscale applications when Ntx is potentially very large.
Moreover, the Gaussian model is attractive for asymptotically
high signal-to-noise ratio (SNR) analysis. These observations
are consistent with the results reported in [11].

3) Time-Variant Models: Until now, we have assumed time-
invariant MC channels where the channel parameters are fixed.
Hence, h(t, τ) and consequently r̄(t, τ) were only functions
of t− τ . Now, we consider time-variant MC channels where
h(t, τ) and r̄(t, τ) are in general functions of both t and τ .
More specifically, we study the impact of system parameter
variations on the mean received signal r̄(t, τ). In principle,
each of the system parameters such as D, v(d, t), the physical
and chemical properties of the boundaries of the end-to-end
channel, the reaction rates of the involved CRNs, and dtx and
drx can potentially vary over time, which in turn leads to a
variation of r̄(t, τ). For instance, the diffusion coefficient D
appears in the expressions for h(t, τ) for all diffusive MC
systems, and consequently in r̄(t, τ). As we can see from
(2), changes in the parameters of the fluid environment, e.g.,
the viscosity or temperature, will result in a change in D.
In fact, the impact of variations in D on r̄(t, τ) for a point
transmitter and passive receiver in 1D is investigated in [107].
The authors in [72] consider a point transmitter with impulsive
release, a passive receiver with the UCA, and an unbounded
3D environment with uniform flow and uniformly distributed
enzymes, cf. (33) and (30). There, the impact of Gaussian
variations in the diffusion coefficient, flow velocity, and enzyme
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concentration is modeled by a parametric model where the
parameters of the model are obtained via curve fitting. The
impact of the mobility of a point transmitter and a passive
receiver on the CIR r̄(t, τ) is studied in [106] and a stochastic
model for r̄(t, τ) is derived. Similarly, a stochastic model for
mobile MC systems with a point transmitter and fully-absorbing
receiver is derived in [99]. We note that mobile transceivers
are relevant for many envisioned applications of synthetic MC
systems such as targeted drug delivery and health monitoring
[49]–[52]. Therefore, in the following, we focus on diffusive
mobile MC systems and review some of the results reported
in [106].

We assume a point transmitter, a passive receiver with the
UCA approximation, and an unbounded diffusive channel
without advection. Furthermore, we model the mobility of
transmitter and receiver via 3D diffusion, since diffusion
is a common cause of mobility and can also be used to
model more elaborate movements such as cell migrations and
bacteria chemotaxis [111], [112]. In particular, we denote the
diffusion coefficients of transmitter and receiver by Dtx and
Drx, respectively, and their corresponding locations at time τ
by dtx(τ) and drx(τ), respectively. Then, it can be shown that
d(τ) = dtx(τ)− drx(τ) follows a Gaussian distribution [106,
Eq. (2)]

fd(τ)(d) =
1

(4πD2τ)3/2
exp

(−‖d− d(0)‖2
4D2τ

)
, (78)

where D2 = Dtx + Drx is an effective diffusion coefficient
capturing the relative motion of transmitter and receiver, see
[113, Eq. (10)]. Then, given (34), the CIR of the end-to-end
channel can be rewritten as

h(t, τ) =
Vrx

(4πD1t)3/2
exp

(−d2(τ)

4D1t

)
, (79)

where d(τ) = ‖d(τ)‖ and D1 = D + Drx is the effective
diffusion coefficient capturing the relative motion of the
signaling molecules and the receiver, see [113, Eq. (8)]. The
movement of the receiver affects both (78) and (79) via D2

and D1, respectively, as long as its movement with respect
to the transmitter and the signaling molecules is accounted
for. For any given t, h(t, τ) is a stochastic process with RVs
h(t, τi), i ∈ {1, 2, 3, . . . }. In the following, we analyze the
mean, the variance, and an approximate expression for the PDF
of r̄(t, τ).

Mean: Let d0 denote the distance between the transmitter
and receiver at τ = 0, i.e., ‖d(0)‖ = d0. Given (78) and (79),
the mean of the time-variant channel, denoted by m(t, τ), can
be evaluated as [106, Eq. (14)]

mr̄(t, τ) = E {r̄(t, τ)}
=

∫
d∈R3

r̄(t, τ |d0) fd(τ)(d)dd,

=
NtxVrx

(4π (D1t+D2τ))
3/2

exp

( −d2
0

4 (D1t+D2τ)

)
, (80)

where in E {r̄(t, τ)}, the expectation is taken with respect
to the RV d(τ). As we expected, r̄(t, τ) is a function of τ ,
because of the mobility of transmitter and receiver. As a result,
r̄(t, τ) is a non-stationary stochastic process. Moreover, due
to the assumption of an unbounded environment, on average
the transmitter and receiver diffuse away from each other.
Therefore, when at least one of the transceivers is mobile, i.e.,
D2 6= 0, we obtain r̄(t, τ)→ 0 as τ →∞.

Variance: The variance of r̄(t, τ), denoted by σ2
r̄(t, τ), is

given by

σ2
r̄(t, τ) = E

{
r̄2(t, τ)

}
−m2

r̄(t, τ), (81)

where the second order moment φr̄(t, τ) , E
{
r̄2(t, τ)

}
is

obtained as [106, Eq. (21)]

φr̄(t, τ) =
(Ntx)2V 2

rx exp
(

−d2
0

2(D1t+2D2τ)

)
(4πD1t)

3/2
(4π (D1t+ 2D2τ))

3/2
. (82)

We note that σ2
r̄(t, τ)→ 0 as τ →∞, which is due to the fact

that r̄(t, τ)→ 0 as τ →∞. On the other hand, it can be shown
that the normalized variance σ2

r̄(t,τ)

m2
r̄(t,τ)

→∞ as τ →∞. In other
words, the normalized variance increases as τ increases. This
in turn implies that due to the random walk, the uncertainty
that we have about r̄(t, τ) increases as τ increases.

Approximate PDF: In the following, we present the ap-
proximated PDF of the considered time-variant channel with
mobile transceivers and refer the interested reader to [106] for
the exact expressions of the CDF and PDF. In particular, it is
shown in [106] that when D2τ ≤ d2

0/200 holds for any τ > 0,
then the PDF of the CIR can be accurately approximated via
a log-normal distribution [106, Eq. (29)]

fh(t,τ)(h) ∼ Lognormal
(
µ̃, σ̃2

)
(83)

with µ̃ = ln
(

Vrx

(4πD1t)3/2

)
− D2τ

4D1t

(
6 +

d2
0

D2τ

)
σ̃2 =

(
D2τ
2D1t

)2 (
6 +

2d2
0

D2τ

)
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where µ̃ and σ̃2 denote the mean and the variance of the log-
normal distribution. Given (83), the PDF of r̄(t, τ), denoted
by fr̄(t,τ)(r̄), can be written as

fr̄(t,τ)(r̄) =
1

Ntx
× fh(t,τ)

(
r̄

Ntx

)
. (84)

The above stochastic model can be used for the design and
performance analysis of time-variant MC systems. For instance,
(84) was used in [113] to compute the expected error probability
of a mobile MC system when the knowledge of CIR h(t, τ)
used for detection becomes gradually outdated due to the
mobility of the transceivers. Moreover, in [72], a stochastic
channel model was used to develop non-coherent detectors.
In contrast to the stochastic model in (84) for mobile MC
systems, it was shown in [72] that the Gamma distribution is
a good fit for (Gaussian) variations in the diffusion coefficient,
flow velocity, and enzyme concentration in a non-mobile MC
system.

D. Interfering Noise Molecules

In the previous section, we have considered statistical models
for the number of molecules observed at the receiver due to
the release of signaling molecules by the transmitter. However,
MC systems may be impaired by noise molecules that are
not released by the transmitter but originate from interfering
natural or synthetic sources. In the following, we introduce
statistical models to account for the number of noise molecules
that are observed at the receiver. Since information and noise
molecules are indistinguishable, the receiver treats the total
numbers of observed signaling molecules, denoted by rsig(t, τ),
and interfering noise molecules, denoted by rint(t, τ), as the
received signal r(t, τ), i.e.,

r(t, τ) = rsig(t, τ) + rint(t, τ). (85)

To derive a statistical model for rint(t, τ), we focus on a
passive receiver. Similar arguments apply for other receiver
types. We make the following assumptions. A1) Let r̄int(τ)
denote the expected number of noise molecules observed within
the receiver volume Vrx at a given sample time t. We assume
that the value of r̄int(τ) is constant over observation time
t. Nevertheless, r̄int(τ) may change over larger time scale
τ due to variations in the system parameters such as the
temperature, cf. Section IV-B and Section IV-C3. A2) It is
further assumed that the observation of one noise molecule
at the receiver is independent from the observations of other
noise molecules. A3) Finally, we assume that the expected
number of noise molecules observed within a given volume in
space is proportional to the size of that volume.

Based on assumptions A1-A3, the statistics of the observed
noise molecules is Poisson following the law of rare events
(LRE) [114]. In particular, suppose the receiver volume is
divided into J subvolumes where J � r̄int(τ). Thus, r̄int(τ)

J
can be interpreted as the probability that one noise molecule
is observed in one of these subvolumes at the receiver.
The probability that two noise molecules are simultaneously
observed in one subvolume becomes negligible for large J .
Therefore, the number of noise molecules observed over the

entire volume of the receiver follows a Binomial distribution
B
(
J, r̄int(τ)

J

)
with J trials and success probability r̄int(τ)

J .
Consequently, since J is a free variable, one can assume
J → ∞ such that the Binomial distribution approaches the
Poisson distribution P (r̄int(τ)), cf. (75). In summary, under
assumptions A1-A3, we obtain rint(t, τ) ∼ P (r̄int(τ)).

Remark 21: The choice of the Poisson distribution for
the number of environmental noise molecules observed at
the receiver, rint(t, τ), can be further justified from an
information-theoretic perspective [115]. Let us define RV
D = [d1,d2, . . . ,drint ] where di denotes the coordinates of
the i-th noise molecule observed at the receiver and we drop
argument (t, τ) of rint(t, τ) in D for notational simplicity. In
particular, the maximum entropy distribution for D corresponds
to a Poisson distribution for the number of observed noise
molecules rint(t, τ). Therefore, the most random noise under
assumptions A1-A3 is Poisson noise, i.e., a worst-case scenario.
To see this, let fD(D) denote the distribution of RV D. Using
the chain rule, we have fD(D) = fD|rint

(D|rint)frint
(rint)

where fD|rint
(D|rint) is the conditional distribution of D given

rint(t, τ), and frint
(rint) denotes the distribution of rint(t, τ).

For maximum entropy, fD|rint
(D|rint) should be a uniform

distribution across the receiver volume. Substituting this result
in fD(D), we obtain that frint(rint) has to be the Poisson
distribution to maximize the entropy of D [115, Appendix 8].
�

We note that the Poisson distribution P (λ) approaches
a Gaussian distribution N (λ, λ) for λ → ∞. Therefore,
for very noisy environments, the approximation rint(t, τ) ∼
N (r̄int(τ), r̄int(τ)) becomes valid.

Remark 22: Assumption A1 states that the mean of the
observed interfering molecules is constant, i.e., r̄int(t, τ) =
r̄int(τ), ∀t. This assumption is accurate for natural sources
that continuously secrete molecules. However, for multi-user
interfering sources, the mean number of observed molecules is
in general time-dependent. Nevertheless, when no information
about the activity of the interfering users is available, it is
reasonable to assume that the mean number of observed
interference molecules is constant. We note that examples
of time-dependent interference were studied in [78], [116],
[117]. In [78], the authors assumed that an external noise
source starts to release molecules into the environment with a
constant rate at t = 0. They derived the expected number of
noise molecules observed at the receiver at time t > 0, denoted
by r̄int(t, τ), as a function of the system parameters such as
the distance between the noise source and the receiver. It was
shown that asymptotically as t→∞, r̄int(t, τ) converges to a
constant value, i.e., r̄int(τ), which is consistent with assumption
A1 made earlier in this section. In [116], [117], statistical
models for the number of received noise molecules originating
from multiple interfering sources were derived for various
scenarios regarding the distribution of interfering sources in
the environment and their molecule release patterns. �

E. Continuous Transmission

The statistical models developed so far are appropriate for
one-shot transmission. Nevertheless, in most communication
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systems, the transmitter may send multiple symbols consecuti-
vely to the receiver. To develop a model valid for continuous
transmission, we consider a time-slotted communication system
where one symbol is transmitted in each time slot, also
referred to as a symbol interval, of length T symb. We focus
on concentration shift keying (CSK) modulation where the
transmitter releases s[k]Ntx molecules at the beginning of the
k-th symbol interval to convey information symbol s[k] ∈ [0, 1]
[3]. We assume synchronous transmission and that the receiver
counts the number of observed molecules multiple times in
each symbol interval with sampling interval ∆t [105]. Because
of the memory of the MC channel, ISI occurs. To take this
into account, we assume that the MC channel has a memory of
L symbol intervals, i.e., the ISI in symbol interval k originates
from the symbols transmitted in the L − 1 previous symbol
intervals. We further take into account that communication
may be impaired by noise molecules that originate from
interfering natural or synthetic sources. Finally, we assume
that the MC channel parameters remain unchanged for the
considered observation window, and hence, we drop argument
τ in r(t, τ), r̄int(τ), and h(t, τ) for notational simplicity. In
the following, we first provide the signal model for a general
case and subsequently simplify it for extreme SNR regimes to
obtain further insight.

1) General Case: Let r[k,m] denote the total number of mo-
lecules observed at the receiver for sample m in symbol interval
k, i.e., r[k,m] = r(tk,m) where tk,m = (k− 1)T symb +m∆t
and r(tk,m) is given in (67). Then, following the discussion in
Section IV-C2, r[k,m] can be accurately modeled as a Poisson
RV, i.e.,

r[k,m] ∼ P
(

L∑
l=1

r̄sig[l,m]s[k − l + 1] + r̄int

)
, (86)

where r̄sig[l,m] = Ntxh (tl,m). Moreover, we used the
superposition property of Poisson RVs, i.e., if X and Y are two
independent Poisson RVs with means λx and λy , respectively,
then X + Y is also a Poisson RV with mean λx + λy [118].
Alternatively, defining r̃[k,m] = r[k,m]− r̄int, one can obtain
the following more familiar additive signal model

r̃[k,m] =

L∑
l=1

r̄sig[l,m]s[k − l + 1]︸ ︷︷ ︸
signal component

+rdfn[k,m]︸ ︷︷ ︸
diffusion noise

+ rint[k,m]︸ ︷︷ ︸
interference noise

, (87)

where rdfn[k,m] ∼ P0

(∑L
l=1 r̄sig[l,m]s[k − l + 1]

)
denotes

the diffusion noise and rint[k,m] ∼ P0 (r̄int) denotes the
interfering noise molecules. Here, we use the notation X ∼
P0(λ) when X = Y −λ where Y ∼ P (λ), i.e., X is a Poisson
RV whose mean has been subtracted.

When the expected numbers of information and in-
terfering noise molecules are large, one may use the
Gaussian model for the number of observed molecules,
i.e., r[k,m] ∼ N (r̄[k,m], r̄[k,m]) where r̄[k,m] =∑L
l=1 r̄sig[l,m]s[k − l + 1] + r̄int. One can also write r̃[k,m]

in the form of (87) where for the Gaussian model, we

have rdfn[k,m] ∼ N
(

0,
∑L
l=1 r̄sig[l,m]s[k − l + 1]

)
and

rint[k,m] ∼ N (0, r̄int). We note that unlike for the AWGN
channel in conventional wireless communication, the Gaussian
diffusion noise in MC is signal dependent.

Remark 23: In (87), we distinguish between two types
of additive noise, namely rdfn[k,m], which originates from
signaling molecules, and rint[k,m], which originates from
external interfering noise molecules. We note that the rand-
omness of rdfn[k,m] and rint[k,m] can be attributed to the
random Brownian motion of the signaling and noise molecules,
respectively. In addition to the aforementioned noises, other
types of noises may be present. For instance, in a reactive
receiver, the noisy measurements of the activated receptors,
caused by the randomness of diffusion and ligand-receptor
interactions, may be relayed by signaling pathways to the
interior of the receiver (e.g. a cell), which may add extra noise
[6], [110]. We refer to this noise as counting noise to contrast
it with the diffusion noise. �

2) Simplifications for Extreme SNR Regimes: In the fol-
lowing, we further simplify the model in (87) for two
asymptotic SNR regimes, namely the diffusion-noise-limited
and interference-limited regimes. To do so, we first formally
define SNR as [119]

SNR

=
Power of Signal

Variance of Diffusion Noise + Variance of Interfering Noise

=
r̄2
sig

r̄sig + r̄int
, (88)

where r̄sig denotes the expected number of signaling molecules
received at the sampling time. In the following, we focus on
the ISI-free channel, i.e., L = 1, and a single-sample detector.
Therefore, we drop indices l and m for notational simplicity.

Remark 24: One approach to obtain an approximately ISI-
free channel is to choose a sufficiently large symbol interval
such that the CIR practically fully decays to zero within one
symbol interval. In such a case, the transmission rate may
be severely reduced which may lead to an inefficient system
design. Fortunately, it has been shown in the literature that
reactions can be beneficial for ISI mitigation [65], [66], [74]. In
particular, enzymes [65] and reactive signaling molecules, such
as acid and base molecules [66], [74], may be used to speed
up the decay of the CIR as a function of time, which would
increase the accuracy of the assumption of an ISI-free channel,
see Fig. 5. For instance, in [74], a reactive signaling MC system
was assumed where the transmitter employs different molecules
that react with each other, e.g., acids and bases. Then, after the
release of the signaling molecules (e.g., an acid), the transmitter
may release so-called cleaning molecules (e.g., a base). It is
shown that the resulting CIR is considerably shortened, which
makes the ISI-free channel an accurate model, see Fig. 15.
Moreover, the peak of the received signal remains unchanged
since the cleaning molecules are released after the peak is
observed at the receiver. �

Diffusion-Noise-Limited SNR Regime: In this case, we
assume r̄sig � r̄int holds. Thus, the model in (87) simplifies



29

 

 

PSfrag replacements
With Reaction
Without Reaction

ISI signal

desired signal

injection of the cleaning molecules

r̄(
t,
τ
)

Time t

Fig. 15. Expected number of molecules observed at the receiver versus time.
The dotted vertical lines indicate the beginning of symbol intervals. The
injection of the reactive cleaning signal helps to shorten the CIR.

to

r̃[k] = r̄sigs[k] + rdfn[k], (89)

where rdfn[k] ∼ P0 (r̄sigs[k]) and rdfn[k] ∼ N (0, r̄sigs[k])
hold for the Poisson and Gaussian models, respectively. The
SNR in this case is obtained as SNR = r̄sig.

Interference-Limited SNR Regime: In this case, we as-
sume r̄sig � r̄int holds. Thus, the model in (87) simplifies
to

r̃[k] = r̄sigs[k] + rint[k], (90)

where rint[k] ∼ P0 (r̄int) and rint[k] ∼ N (0, r̄int) hold for
the Poisson and Gaussian models, respectively. The SNR in
this case is obtained as SNR = r̄2

sig/r̄int. We note that this
special case yields a signal-independent (Gaussian) model as
it is widely adopted in conventional wireless communications.

Finally, we note that it may be necessary to use a combination
of both of the above special cases for the analysis of MC
systems. For instance, for a simple on-off keying (OOK)
modulation, i.e., s[k] ∈ {0, 1}, the interference noise molecules
are dominant for bit s[k] = 0 whereas the diffusion noise is
dominant for bit s[k] = 1. This is schematically illustrated
in Fig. 16 where it can be observed that the noise power
for symbol s[k] = 1 (diffusion-noise-limited regime) is larger
than that for symbol s[k] = 0 (interference-limited regime). A
similar observation has also been reported for photon-counting
receivers in optical wireless communications where the shot
noise at the receiver has two components, one generated by
the laser transmitter (analogous to diffusion noise) and one
generated by the ambient background light (analogous to
interfering noise molecules) [120].

F. Time Correlation

In the following, we discuss the signal correlation with
respect to observation time scale t and release time scale τ .

 

 

PSfrag replacements

Limited Regime
Interference-

Limited Regime
Diffusion-Noise-

r̄(t)

r(t)

R
ec

ei
v
ed

S
ig

n
al

Time t

Fig. 16. Received signal versus time. Illustration of diffusion-noise-limited
and interference-limited regimes.

1) Sample Correlation: In (86) and (87), we assume that
the number of molecules counted at different time instants t
within one symbol interval or in different symbol intervals
are independent from each other. However, this assumption
holds only if the sampling interval is chosen large enough such
that the independence of consecutive samples is guaranteed. In
[53], the mutual information between two samples r(t1, τ) and
r(t2, τ) was numerically computed and the minimum spacing
needed to ensure independence between consecutive samples
was found such that the corresponding mutual information is
below some threshold. Since the mutual information between
two samples is difficult to derive in closed form, one may
consider the Pearson correlation coefficient [121] among two
consecutive samples instead, i.e.,

ρt(t1, t2)

=
E
{(
r(t1, τ)− r̄(t1, τ)

)(
r(t2, τ)− r̄(t2, τ)

)}√
E

{(
r(t1, τ)− r̄(t1, τ)

)2}
E

{(
r(t2, τ)− r̄(t2, τ)

)2}
(a)
=
E {r(t1, τ)r(t2, τ)} − r̄(t1, τ)r̄(t2, τ)√

r̄(t1, τ)r̄(t2, τ)
, (91)

where equality (a) follows from the fact that under both
Poisson and Gaussian statistics, the variance of r(t, τ) is
r̄(t, τ). The cross-correlation term E {r(t1, τ)r(t2, τ)} depends
on the specific adopted receiver type. Note that by definition,
−1 ≤ ρt(t1, t2) ≤ 1 holds. Typically, the sample times t1
and t2 should be separated such that ρt(t1, t2) falls below a
certain threshold, denoted by ζt, i.e., |t2 − t1| should be large
enough such that ρt(t1, t2) < ζt holds. In Fig. 17, we show
the absolute correlation |ρt(tp, tp + ∆t)| versus ∆t where tp

denotes the peak of the expected received signal. As can be
seen from this figure, the correlation decreases as ∆t increases.
Moreover, as an example, we choose the value of the threshold
as ζt = 0.2. One can observe from Fig. 17 that as the diffusion
coefficient of the molecules increases, the minimum sample
spacing ∆t needed to ensure |ρt(tp, tp + ∆t)| < ζt decreases.
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Fig. 17. Absolute correlation |ρt(tp, tp + ∆t)| versus ∆t [µs] where tp =
maxt r̄(t, τ) for a point transmitter, an unbounded environment, a passive
receiver of radius arx = 50 nm, d = 200 nm, Ntx = 2000, and D =
{1, 5, 10} × 10−11 m2/s.

2) Mean Correlation: Recall that if the system parameters
change, the mean signal r̄(t, τ) varies over time scale τ . In
a similar manner as for sample correlation, one can define a
correlation factor ρτ (τ1, τ2) between the mean signals at time
τ1 and τ2 as follows

ρτ (τ1, τ2) =
E {r̄(t, τ1)r̄(t, τ2)} −mr̄(t, τ1)mr̄(t, τ2)

σr̄(t, τ1)σr̄(t, τ2)
. (92)

For the case when transmitter and receiver mobility are
the cause of the variations in r̄(t, τ), cf. Section IV-C3,
mr̄(t, τ) and σr̄(t, τ) are given by (80) and (81), respectively.
Moreover, the cross-correlation, denoted by φr̄(t, τ1, τ2) ,
E {r̄(t, τ1)r̄(t, τ2)}, for two arbitrary times τ1 and τ2 > τ1 is
derived in [106, Eq. (19)]

φr̄(t, τ1, τ2)

=

∫∫
d1,d2∈R3

r̄(t, τ1|d(τ1) = d1)r̄(t, τ2|d(τ2) = d2)

×fd(τ1),d(τ2) (d1, d2) dd1dd2,

=
(Ntx)2(2π)3φ2λ(τ1)λ(τ2 − τ1)(

4θ(τ1, τ2)
)3/2

× exp

(
−β (τ1) d2

0

[
1− (α+ β(τ2 − τ1))β(τ1)

θ(τ1, τ2)

])
, (93)

where for compactness φ, λ(τ), α, β(τ), and θ(τ1, τ2) are
respectively defined as

φ =
Vrx

(4πD1t)3/2
, λ(τ) =

1

(4πD2τ)3/2
,

α =
1

4D1t
, β(τ) =

1

4D2τ
, and

θ(τ1, τ2) = (α+ β (τ1)) (α+ β (τ2 − τ1)) + αβ (τ2 − τ1) .

In order to quantify the time variations of the end-to-end MC
channel, we define the coherence time, Tc, as the minimum time
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Fig. 18. Absolute correlation |ρτ (τ1, τ1 + ∆τ)| versus ∆τ [ms] for a
point transmitter, an unbounded environment, a passive spherical receiver
of radius arx = 50 nm, d0 = 200 nm, τ1 = 1 ms, observation time at
tp = maxt r̄(t, τ = 0), Ntx = 2000, D = 10−11 m2/s, and Dtx =
Drx = {0.01, 0.05, 0.1} ×D. Markers denote simulation results and lines
denote the analytical results based on (92).

∆τ for which ρτ (τ1, τ1 + ∆τ) falls below a certain threshold
value 0 < ζτ < 1, i.e., [106]

Tc = arg min
∀∆τ>0

(ρτ (τ1, τ1 + ∆τ) < ζτ ) . (94)

The coherence time of the channel is a metric which determines
the time over which the channel does not change substantially.
As such, the particular choice of ζτ depends on the application
of interest. Future applications of synthetic MC systems that are
more robust to CIR variations can assume smaller values of ζτ ,
whereas applications that are more sensitive to CIR variations
may require larger values of ζτ . For example, typical values
of ζτ reported in the conventional wireless communications
literature span the range from 0.5 to 1 [122]–[124]. Smaller va-
lues of ζτ are often employed for resource allocation problems,
while larger values of ζτ are used for channel estimation. In
Fig. 18, we show the absolute correlation |ρτ (τ1, τ1 + ∆τ)|
versus ∆τ for different scenarios of transmitter and receiver
mobility, i.e., Dtx = Drx = {0.01, 0.05, 0.1} × D. As can
be seen from Fig. 18, the channel mean decorrelates as ∆τ
increases. Moreover, assuming a fixed threshold ζτ = 0.5,
the coherence time decreases as the diffusion coefficients of
transmitter and receiver increase.

V. SIMULATION- AND EXPERIMENT-DRIVEN MODELS

The analytical results presented thus far in this tutorial have
focused on tractable solutions based on the underlying physical
principles of advection, reaction, and diffusion. In order to
arrive at these results, we often had to make assumptions
that simplify the physical transmitter, receiver, and channel.
However, this approach has limitations. Assumptions are
generally constrained by specific channel parameters or the
conditions for which they accurately apply. For example,
we can assume that an environment’s outer boundary is



31

unbounded if it is sufficiently larger than the signaling range;
see Fig. 11 and [125]. Similarly, we can model the locally-
varying concentration due to a molecule source as uniform if
we are observing from a distance that is sufficiently far from
the source; see the UCA in Section III and [40].

Sometimes we are able to relax assumptions and still
maintain analytical tractability, cf. Section III. When this occurs,
we can define a reliable rule of thumb that dictates explicit
conditions under which the assumption can be satisfied to some
degree of accuracy. For instance in [40], it was shown that the
simplified CIR with UCA was within 2 % of the ideal CIR for
most of the time of interest if the radius of a spherical receiver
was no more than 15 % of the distance from the molecule source
to the center of the receiver. However, we generally do not
have the option to relax assumptions for analytical tractability
while maintaining sufficient accuracy. Furthermore, we might
encounter a channel with complex or novel phenomena where
we do not yet know what suitable assumptions might be.

In the absence of reliable analytical results, we must rely on
data-driven approaches to model a channel. Such approaches
can also be used to help verify analytical results. This section
reviews simulation and experimental approaches for generating
data. Simulations can provide an efficient means for channel
modeling, even in the presence of complex and coupled physical
phenomena. Reliable experimental data may be preferred, but
can be time-consuming and expensive to obtain.

A. Simulation-Driven Models

Simulations of reaction-diffusion systems can be performed
over a range of physical scales. As such, there are a range of
simulation classes available, which we summarize in Fig. 19
and also discussed in [125]. We refer to these classes as
continuum simulations, mesoscopic simulations, microscopic
simulations, and molecular dynamics simulations. Generally,
each class is suitable for a particular scale. Not surprisingly,
there is an inherent trade-off between the physical resolution
of a simulation and the computational resources (whether
measured in time or memory) that are required to simulate
it. The continuum approach is most suitable for macroscale
systems. Both the microscopic and mesoscopic approaches can
be appropriate for microscale systems. The molecular dynamics
approach is most suitable for systems at the nanoscale and
smaller. While the microscopic approach has been the most
common simulation method within the MC research community,
here we discuss all four approaches, their relevance, and also
the potential to combine them in a single simulation. For the
microscopic and mesoscopic approaches, we also describe how
to implement a simple simulation.

1) Continuum Simulations: When the physical scale of a
simulation, including the number of molecules, is sufficiently
large, then the evolution of the system can be directly described
using the corresponding spatio-temporal PDEs, see e.g. (29).
We refer to these as continuum simulations. Specifically, finite
element analysis is used to spatially partition the system into
a grid (see Fig. 19a)), and the system is simulated over a
sequence of time steps. The molecule concentrations at each
node in the grid are updated in every time step according to the

(a) Continuum (b) Mesoscopic

(c) Microscopic

(d) Molecular Dynamics

Fig. 19. Physical scales of molecular simulation. a) Continuum simulations
solve the PDEs that describe the system. Molecular concentrations are non-
negative and real-valued. b) Mesoscopic simulations proceed as a sequence
of events, where each event is an occurrence of a chemical reaction or a
molecule moving between adjacent subvolumes. c) Microscopic simulations
individually track each molecule of interest. The solute molecules diffuse
within a continuum of solvent molecules. d) Molecular dynamics simulations
model all individual atoms and molecules, including intermolecular forces and
collisions.

differential equations that describe the phenomena. The updated
concentrations are always non-negative real values. Popular
commercial solvers that follow this approach include COMSOL
Multiphysics [126] and ANSYS [127]. This approach was used
in an MC context in [128] for the characterization of the
diffusion of autoinducer molecules in a bacterial environment.

Unless the differential equations are stochastic or explicit
noise sources are introduced, the continuum simulation of a
system is deterministic. Generally, the accuracy depends on
the resolution of the grid and the size of the time step; more
accurate simulations can be performed by increasing the grid
resolution and decreasing the size of the time step. However,
as the nodes in the grid become increasingly close, the number
of molecules associated with each node decreases. When the
molecule concentrations get sufficiently small, it becomes more
appropriate to consider integer numbers of molecules instead
of continuous-valued concentrations. Thus, we next discuss
mesoscopic simulations.

2) Mesoscopic Simulations: Like continuum simulations,
mesoscopic simulations also partition the system into a
grid. The resulting containers are commonly referred to as
subvolumes or voxels, and have also been referred to as
lattices; see [129]. However, instead of tracking continuous
molecule concentrations, mesoscopic modeling counts discrete
numbers of molecules in each subvolume; see Fig. 19b) and
implementations for MC systems in [125], [129]. Instead of
deterministically solving the system’s set of PDEs, mesoscopic
simulations proceed by stochastically generating event times,
where each event is the occurrence of a chemical reaction
or a molecule’s transition between two subvolumes. The key
physical assumptions to justify using a mesoscopic approach
are that i) molecules within a given subvolume are uniformly
distributed, and ii) the solvent molecules in a subvolume
can be treated as a homogeneous continuum that is in
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thermal equilibrium. When these assumptions are satisfied, the
mesoscopic approach can simulate chemical reactions exactly
(in a statistical sense, as proven in [130]). Furthermore, if the
subvolume sizes are appropriately chosen, advection-reaction-
diffusion systems can also be simulated exactly; see [131],
[132]. An important constraint is that the subvolume size (e.g.,
cube length) ` must be much smaller than both

√
2nDtr and

2D/|v|, where n is the dimension of the subvolume, tr is the
characteristic time of the fastest reaction in the system, D is
the diffusion coefficient of the largest corresponding reactant,
and |v| is the magnitude of the flow velocity. If this is not
satisfied, then we cannot safely assume that the subvolumes are
well-stirred (i.e., that the molecules are uniformly distributed).

Simple Implementation: A basic implementation of a
mesoscopic simulation with equal-sized subvolumes (of length
`) is as follows. Let Us,m be the number of molecules of the
m-th type that are in the s-th subvolume. Events are associated
with propensities. The propensity αs,q,m of a transition of a
molecule of the m-th type to diffuse from the s-th subvolume to
the q-th subvolume, where these two subvolumes are adjacent
and share a face, is [133, Eq. (1.6)]

αs,q,m =
Dm

`2
Us,m, (95)

where Dm is the diffusion coefficient of the m-th molecule
type. The propensity βs,p of the p-th chemical reaction in the
s-th subvolume is [134, Eq. (6)]

βs,p =κpV, (96)
βs,p =κpUs,m, (97)

βs,p =
κpUs,mUs,n

V
, (98)

for zeroth-, first-, and second-order reactions, respectively,
where the order corresponds to the number of reactants. κp is
the corresponding reaction rate constant, V is the subvolume
volume, and Us,m and Us,n are the corresponding numbers of
reactant molecules. For the entire system, the total propensity
γtot is then

γtot =
∑
s,q,m

αs,q,m +
∑
s,p

βs,p, (99)

and we can simulate the time tnext of the next event in the
system by generating exponential random variable

tnext = − log u

γtot
, (100)

where u is a random number uniformly distributed between 0
and 1. We can determine which of the possible events occurred
by tossing a weighted die, where the likelihood of each event
is proportional to its associated propensity. Once the event
is determined, we update the molecule counts, update the
corresponding propensities, and repeat the process to find the
next event.

Remark 25: We note that there are mathematically equi-
valent but more computationally efficient implementations,
particularly when updating propensities. These include Gibson
and Bruck’s Next Reaction Method; see [135]. Furthermore,
different accuracy-efficiency trade-offs can be introduced to

provide more flexible scalability. For example, tau-leaping can
be used to execute multiple events in a constant time step, where
“tau” refers to the time step size; see [136]. Tau-leaping enables
a transition between continuum and mesoscopic simulations;
if the number of events during one “leap” is sufficiently large,
then it can be treated as a deterministic value. As long as the
propensities do not significantly change between time steps,
then tau-leaping’s computational efficiency gains can be made
with minimal losses in accuracy. �

3) Microscopic Simulations: In some sense, microscopic
simulations are the dual of the mesoscopic approach. Whereas
the (non-leaping) mesoscopic approach is continuous over time
and discrete over space, the common microscopic approach
implementation is discrete over time and continuous over
space; see [76]. Instead of relying on well-stirred subvolumes,
microscopic simulations track every molecule individually (i.e.,
particle-based simulation); see Fig. 19c). Nevertheless, they
still assume that the solvent is a continuum of molecules, which
means that the diffusion of the molecules of interest is still
governed by a diffusion coefficient.

Simple Implementation: A basic implementation of a
microscopic simulation with flow and first-order reactions in
the propagation environment is as follows. In each time step ∆t,
every molecule is tested for every possible first-order reaction.
If there is only one potential reaction, and the associated
reaction rate is κ, then the corresponding reaction probability
Prxn is [76, Eq. (14)]

Prxn = 1− exp (−κ∆t) . (101)

If a coin flip with this probability is successful, then the
molecule is converted to the corresponding reaction product.
After all of the possible reactions have been tested, the remai-
ning molecules are diffused along every available dimension
by adding a displacement of

√
2D∆t×N (0, 1) towards each

dimension of the Cartesian coordinate system, cf. (1). The
realizations are independent for every molecule and along
every dimension. Furthermore, if the environment has a bulk
flow with a component v along a particular dimension, then
every molecule should have an additional displacement of v∆t
along that dimension, cf. (11). Diffusion should be unimpeded,
unless there are boundaries in the environment. For example, if
a molecule crosses a solid reflective surface, then the coordinate
that is normal to the surface is reverted to its value before
diffusion. If a molecule crosses an absorbing surface, then it
should be consumed by the absorbing reaction.

Due to their simplicity and their suitability for simulations
over a range of nanometers to micrometers, microscopic
simulations have been common for cellular systems and also
specifically for MC systems. Mature tools from the physical
chemistry community include Smoldyn (see [76], [145]).
Microscopic tools that have been developed specifically for the
MC community include BiNS2 [142], N3Sim [143], MUCIN
[97], and AcCoRD [125].

4) Molecular Dynamics Simulations: At a more precise
scale, solvent molecules and their interactions with solute
molecules and with each other can be modeled in detail; see
Fig. 19d). These are molecular dynamics simulations, and
they might account for intermolecular forces (including those
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TABLE III
SUMMARY OF THE SIMULATION METHODS REVIEWED IN SECTION V-A.

Class Typical System Scale Physical Chemistry Examples and Algorithms MC Community Examples Notes

Continuum Greater than micron COMSOL Multiphysics [126],
ANSYS [127], Virtual Cell [137] nanoNS3 [138] Solving PDEs. Requires large concentrations.

Mesoscopic Micron and larger Gillespie’s Method [130], [136], URDME [139] BNSim [140] Counting molecules inside subvolumes.
Requires homogeneous concentration within a subvolume.

Microscopic Micron and smaller Smoldyn [137], [141] BiNS2 [142], N3Sim [143],
MUCIN [97], AcCoRD [125]

Tracking molecules in solvent.
Most common approach for MC simulation.

Molecular Dynamics Nanometer LAMMPS [144] n/a Tracking all molecules and intermolecular forces.

Hybrid Multiple Smoldyn (+mesoscopic), URDME (+microscopic),
LAMMPS (+Continuum), Virtual Cell (+microscopic) AcCoRD (+mesoscopic)

Combining multiple classes.
Needs special treatment at interface between classes.

Can improve scalability.

imposed by charge potentials) and collision dynamics. One
such example is the Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS); see [144]. Due to the very large
density of molecules to be considered, molecular dynamics
simulations are best suited for very small systems, e.g., on a
nanoscale. For instance, molecular dynamic simulations can
be used to study how the conformation of receptor proteins
change after binding to a specific molecule. Thus, they have
generally not been applied to study MC systems.

Remark 26 (Hybrid Simulations): The aforementioned dis-
cussion of simulation classes has emphasized their suitability
for simulations over different physical scales. However, a
particular system might have multiple scales of interest. In
order to avoid constraining the entire simulation by the most
granular approach needed, hybrid simulation tools have sought
to integrate different classes within a single simulation. One
approach has been to combine microscopic and mesoscopic
models, using hybrid interfaces such as that proposed in [133]
and later implemented in Smoldyn (see [141]) and AcCoRD
(see [125]). Other examples include the integration of the
molecular dynamics solver LAMMPS with a continuum model
(see [146]), and the integration of the continuum solver Virtual
Cell with the microscopic approach in Smoldyn (see [137]). �

The aforementioned different simulation methods, their
characteristics, and example implementations are concisely
summarized in Table III. In the following, we present an
example for CIR characterization of an MC system using
the AcCoRD simulator.

Example 11 (Example Simulation): We complete our discus-
sion of simulations with a brief demonstration. We consider an
extension of the bounded rectangular-duct channel discussed in
Section III-D that has no readily available analytical channel
response. Nevertheless, we can simulate the system. The
environment is a microfluidic system where two chambers are
connected via a long pipe, as shown and described in Fig. 20.
We place Ntx = 500 molecules uniformly within one of the
chambers (i.e., a cube). These molecules can diffuse out through
the rectangular pipe and into the other chamber and no flow
is considered. The second chamber has a perfectly-absorbing
surface and we count the number of molecules that are absorbed.
We assume that the receiver counts the number of molecules
absorbed by time t. Therefore, the receiver can be classified
as nR-AMC, i.e., non-recurrent and accumulative-molecule-
counting, with received signal r(t) = narv(t), cf. Section IV-A.
A realization of this system is simulated using a microscopic
approach in the AcCoRD simulator with a simulation time
step of ∆t = 1 ms. The number of absorbed molecules r(t)

Fig. 20. Example environment to simulate. This “dumbbell”-shaped environ-
ment represents two connected microfluidic chambers with a rectangular duct
between them. It is composed of two cubes of length 32µm that are connected
by a rectangular pipe of size 60µm x 12µm x 12µm. We can also vary the
length of the pipe. The left cube has molecules initialized throughout it. The
right cube has an absorbing surface on the far side. An analytical channel
response for this environment is not readily available.

is plotted in Fig. 21 for different pipe lengths. We see that
all released molecules are absorbed within about 850 s for the
shortest pipe length (i.e., 60µm). As the distance between the
two chambers increases, fewer molecules get absorbed within
the same time. We note that one can obtain the CIR of this
system, i.e., h(t) defined as the probability of a molecule being
absorbed at the receiver in interval (0, t] after its release by
the transmitter at t = 0, by simulating the system for many
realizations and averaging the result, i.e., h(t) = E {r(t)/Ntx}.
�

B. Experiment-driven Models

In the previous subsection, we have seen how elaborate
simulations can be used for scenarios where it is difficult or
even impossible to derive an analytical model based on physical
principles. However, for practical systems, we may also face
situations where even simulation of certain phenomena is
challenging. In fact, even complex simulation methods typically
cannot account for all characteristics of a real experimental
environment. In the following, we first highlight some of the
unique characteristics of two existing experimental platforms
for MC [64], [147] that cannot be easily modeled or simulated.
Subsequently, to cope with the aforementioned challenges, we
present a general data-driven modeling approach which is then
applied to an example experimental system.

1) Challenges in Modeling Existing Experimental Systems:
Several experimental systems exist for demonstrating MC.
These testbeds include both non-biological systems [64], [66],
[79], [148]–[152] and biological systems [147], [153]–[156].
To show the need for experiment-driven models, we review
the challenges of channel modeling for two of these testbeds.
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Fig. 21. Number of absorbed molecules in the simulation of the system
described in Fig. 20. 500 molecules are instantaneously released throughout
the molecule source, which freely diffuse with a diffusion coefficient of
10−10 m2

s
. A single realization is shown for different pipe lengths using a

simulation time step of 1 ms.

Example 12 (Non-biological Testbed [64]): An early expe-
rimental MC system was presented in [64] and is based on
spraying and detecting alcohol in open space. In [157], it was
shown that a simple model based on diffusion and the flow
generated by a fan cannot accurately explain the measurements
obtained from the testbed in [64] due to system nonlinearities
whose exact cause is not known. For example, the spray that is
used for releasing the chemicals may not produce consistently-
sized droplets in the spray stream across different trials, the
flow may show turbulent behavior that is difficult to model,
and the receiver sensor is prone to long response and recovery
times. �

Example 13 (Biological Testbed [147]): The biological MC
testbed reported in [147] converts an electrically controlled
optical signal into a chemical signal. In particular, for this
testbed, E. coli bacteria were genetically modified to incorporate
light-driven proton pumps in their cell membranes. Upon a light
stimulus, the modified bacteria then pump protons out into the
environment which increases the proton concentration outside
the bacteria. The resulting proton concentration was measured
by a pH sensor playing the role of the receiver. Although
complex models were developed in the biology literature for
describing the proton release rate of proton pumps as a function
of a given induced optical intensity [158]–[160], they typically
do not account for all of the dynamics inherent to living cells.
In fact, the growth, dying, and varying living conditions of
the bacteria due to constant exposure to light may impact the
channel model of the MC system in [147] and cannot be easily
captured analytically or via simulation. �

We note that similar inherent randomness and nonlinearities
as discussed for the two examples above also exist for other
experimental testbeds [66], [79], [148]–[156], [161] and are
challenging to model analytically or even simulate since their
exact cause is unknown.

2) Data-Driven Model: To address the aforementioned
shortcomings of analytical and simulation models, we propose
to employ data-driven models to account for the unpredictable
randomness and nonlinearities of real MC systems. The basic
idea behind these models is to select an appropriate parametric
model and choose its corresponding parameters to fit the
measurement data. In the following, we describe two different
approaches for selecting a suitable parametric model.

Physically-Motivated Parametric Models: Here, the mo-
del is chosen based on physics’ first principles. For instance,
in [157], a mathematical model is developed for the testbed
in [64] which is based on the solution to the advection-
diffusion equation with uniform flow, cf. (18). Nevertheless,
the parameters of the original analytical model were modified
to fit the model to the experimental data. As another example,
we consider the system in [79]. The model uses magnetic
nanoparticles in duct flow that are detected upon moving
through a coil enclosing the duct. Here, the parametric model
is based on laminar flow, cf. (14), and depends on the initial
distribution of the particles released across the cross-section
of the duct. The adopted parametric model was then shown
to accurately model the complex advection-diffusion process
in the duct after fitting its parameters to the measurement
data. In general, after choosing the parametric model, standard
curve fitting toolboxes can be employed to find the model
parameters. One common approach is to use the parameter set
that minimizes the mean square error between the model and
the measurement data [79], [147], [157].

Blind Models based on Neural Networks: In the absence
of an appropriate physically-motivated model, an alternative
option is to employ blind models based on neural networks to
jointly learn the model and its parameters [169], [170]. One
suitable network architecture for this purpose is the generative
adversarial network (GAN) which is able to generate a model
that creates artificial data very similar to the measurement
data [171]. The advantage of such blind parametric models is
that they can be universally applied to general MC systems,
whereas physically-motivated models have to be carefully
chosen according to the MC system under consideration. On
the other hand, the parameters of a physically-motivated model
have physical meaning, which is not the case for the parameters
of a trained neural network. The other challenge of channel
modeling based on neural networks is that they typically
require much more experimental data than parametric models
to construct the model. This is not surprising since without
domain knowledge, the number of parameters to be learned
for a neural network is much larger than that for a parametric
model.

Table IV summarizes the components (i.e., the transmitter,
the receiver, the channel, and the signaling messenger), the
characteristics (synthetic versus biological), and if available,
the corresponding data-driven channel models of several MC
testbeds that have been reported in recent years. In the
following, we explain a data-driven modeling methodology
for one example in detail.

3) Example of an Experiment-driven Model: In order to
further familiarize the reader with the main steps of developing
an experiment-driven channel model and to highlight some
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TABLE IV
SUMMARY OF COMPONENTS, CHARACTERISTICS, AND CORRESPONDING DATA-DRIVEN MODELS OF SEVERAL MC TESTBEDS.

Testbed Messengers Channel Transmitter Receiver Model

Synthetic Systems

Farsad et al. [64] Ethanol Open air; turbulent flow via fan Spray pump Semiconductor gas sensor Parametric analytical model; unbounded
diffusion; constant uniform flow [157]

Farsad et al. [66] Acid and base Water in vessel;
laminar flow via water pump Injection pump pH electrode

Continuum simulation; unbounded 1D;
finite difference method [162]

Continuum and microscopic simulations;
unbounded 1D-3D;

hybrid analytical-numerical method [74]

Unterweger et al. [79] Magnetic nanoparticles Water in vessel;
laminar flow via water pump Injection pump Magnetic susceptometer Parametric analytical model;

flow-dominated

Kennedy et al. [150], [161] Isopropyl alcohol Air in pipe; flow via fan Spraying pump Photoionization gas sensor Parametric data-driven model [163]

Giannoukos et al. [151] Chemical odorants
(e.g. Acetone, n-Hexane)

Nitrogen gas in pipe;
flow via mass flow controller Spraying pump Mass spectrometer

Parametric analytical model; 1D diffusion;
constant uniform flow; transparent receiver [164]

Approximate analytical model; 3D diffusion;
constant uniform flow; absorbing receiver [165]

Atthanayake et al. [148] Fluorescent dye Water in chamber; turbulent flow Injection pump Fluorescence detector -

Abbaszadeh et al. [166] Vortex ring (specific
structure of gas molecules) Open air; turbulent flow Injection piston Motion camera -

Leo et al. [152] Microfluidic droplet Fluorinated oil FC-3283 in
microfluidic channel; turbulent flow Injection pump Camera Continuum simulation using OpenFOAM [167]

Tuccitto et al. [168] Fluorescent chemicals Liquid pH buffer in tube;
laminar flow Injection pump Fluorescence detector Continuum simulation

Biological Systems

Krishnaswamy et al. [153] Molecule C6-HSL 2×YT broth in microfluidic channel;
diffusion and laminar flow Injection pump E. coli bacteria Modeling GFP production

via bacterial CRNs [156]

Felicetti et al. [154] Protein CD40L Liquid in confinement; diffusion Platelet cells
via manual stimulation

Endothelial cells visualized
by fluorescence detector

Approximate model;
diffusion in infinite cylinder

Grebenstein et al. [147] Proton H+ Liquid pH buffer in
confinement; diffusion

E. coli bacteria
via light stimulus pH electrode Parametric analytical model;

state-dependent diffusion

Nakano et al. [155]
Lucifer yellow Diffusion through gap junctions

expressed by HeLa cells
Manual injection Fluorescence detector

-
Calcium ion C2+ Photolysis of caged-ATP Calcium imaging

peculiarities that may arise, we present the modeling metho-
dology for the biological testbed in [147] in some detail, cf.
Example 13 and Fig. 22.

Simple Physically-Motivated Parametric Model: In order
to arrive at an analytical model, the following assumptions
are made in [147]. It is assumed that the bacteria (i.e., the
transmitter) are uniformly distributed in their container and
that all bacteria are subject to the same light stimulus at the
same intensity because the bacteria suspension is continuously
stirred. It is further assumed that the bacteria begin and stop
pumping protons (i.e., signaling molecules) instantly when the
light is activated and deactivated, respectively. Furthermore,
it is assumed that the bacteria take up protons in a passive
manner, i.e., protons are consumed by the bacteria which lowers
the measured proton concentration. Finally, it is assumed that
the pH measuring device (i.e., the receiver) is passive and
that its presence does not change the proton concentration
or the behavior of the bacteria. These assumptions do not
strictly hold but are reasonable in consideration of the size
of the setup, the pumping speed of a proton pump, and the
characteristics of the bacteria [147]. We note that counting
the individual molecules observed at the receiver, r(t), might
be a reasonable assumption for nanomachines; however, for
experimental testbeds such as [147], computing r(t) is not
feasible. Hence, in [147], the proton concentration obtained
from the measured pH was considered as the received signal
and was modeled as

rc(t) =
r(t)

Vrx
= cb(t) + w(t), (102)

where cb(t) is the expected proton concentration and w(t) is
a random additive noise. It was shown that w(t) follows a
Gaussian distribution and this was justified using the CLT since
w(t) consists of different types of noises including diffusion
(counting) noise, pH sensor circuitry noise, and the noise

inherent to the biological machinery of the bacteria. We assume
that the light stimulates the bacteria over a time interval (i.e.,
a rectangular input pulse) since an impulsive stimulus (i.e.,
a delta input) does not effectively stimulate the bacteria to
release a sufficient number of protons into the MC channel,
see Remark 20. Under the aforementioned assumptions, the
expected proton concentration cb(t), depending on whether the
light is on (i = 1) or off (i = 0), can be obtained as

cb(t) = cb(t0) + (c∞i − cb(t0))

(
1− exp

(
− t− t0

τi

))
,

(103)
where cb(t0) is the initial concentration at starting time t0, c∞i
is the saturation concentration, and τi is a time constant. The
parameters of this model are cb(t0), c∞i , t0, and τi, which are
found using nonlinear least square error minimization to fit
the measurement data. For example, in Fig. 23a), we apply
constant illumination for 54 minutes followed by darkness.
The corresponding measurement signal and the fitted model
using (103) are shown in Fig. 23b) using blue and black lines,
respectively. As expected, the concentration increases upon
illumination and decreases quickly in darkness. Nevertheless,
the model in (103) fails to accurately follow the measurement
data. In fact, there exists an additional persistent decreasing
bias in the measurement signal which is not anticipated by the
saturation model in (103).

Enhanced Parametric Model: The assumptions made to
arrive at (103) do not account for the dynamics inherent to
living cells. As such, cells can be growing in number or dying,
or their fidelity can change. Motivated by the observations
from the measurement data in Fig. 23b), it was suggested in
[147] to enhance the model (103) with a simple additive linear
offset as follows

cd(t) = md · (t− t0), (104)
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a b

Fig. 22. Biological testbed. (a) Benchtop experimental setup; (b) Schematic illustration. Taken from [147].
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Fig. 23. Experimental data. a) Optical signal versus time. b) The measured
proton concentration as well as the simple and enhanced models versus time.
Data taken from [147].

where md is a parameter controlling the slope of the bias. The
extended model is then given by rc(t) = c(t) + w(t) where
c(t) = cb(t) + cd(t). From Fig. 23b), we can observe that
the enhanced model, shown in red, fits the measurement data
well. This example shows that further modification of a model
that was obtained solely based on physical principles may be
needed to arrive at an appropriate parametric model for an
experimental system.

VI. CHALLENGES AND DIRECTIONS FOR FUTURE WORK

MC is still in its early stages of development and our
understanding of MC channels is still quite limited. In the
following, we review some potential challenges and open
research problems which have to be addressed for successful
deployment of MC systems.

Particle Generation and Signaling Pathways: Although
the impact of CRNs in the physical channel (e.g. degradation
reactions) on the CIR of MC systems has been studied, see

Section III-D and [43], [44], [65]–[68], [74], less attention has
been dedicated to the analysis of the influence of the CRNs
at the transmitter and receiver. Such CRNs include particle
generation reaction networks at the transmitter and signaling
pathways at the receiver. In the MC literature, there are some
preliminary works that have studied the impact of particle
generation reaction networks and also simplified signaling
pathways; see e.g. [9], [88]. However, the corresponding models
are derived with a mesoscopic modeling approach. Analytical
CIR models that take the impact of these CRNs into account
are crucial for system design and hence constitute an interesting
research challenge.

Turbulent Flow: The majority of the CIR models in the MC
literature for advection channels have been developed based
on the assumption of a uniform or laminar flow velocity field,
cf. Section III-D. However, for several MC environments, such
as large arteries (e.g. the aorta) and macroscale environments
(e.g. oil pipe lines), flow may exhibit turbulent behavior [60].
In particular, turbulence can occur when the MC channel is
non-homogeneous, e.g., due to the presence of obstacles in the
physical channel. Therefore, studying and analyzing advection
channels with a turbulent velocity field is an important open
research problem. First results towards analyzing turbulent flow
for MC systems were reported in [148].

Sample Correlation: Multiple-sample detectors are used
in the MC literature to improve the detection performance
[38], [39], [42], [44], [53], [65], [90], [96], [105]. It is
typically assumed that different samples are statistically in-
dependent from each other. However, this assumption holds
only when the sampling interval is chosen large enough such
that the independence of consecutive samples is ensured. In
Section IV-F1, we have numerically evaluated the correlation
among consecutive samples, and in [53], the mutual information
between consecutive samples is numerically evaluated. We
note that sample correlation significantly depends on the
type of receiver, e.g., a recurrent, non-recurrent, AMC, or
IMC receiver, and its physical and chemical properties, e.g.,
the size, the number of receptors, and the reaction rate
constants of the binding and unbinding reactions for a reactive
receiver. Therefore, a careful study of sample correlation
and the minimum sampling interval needed to ensure sample
independence for different receiver types is essential for the
applicability and performance analysis of the multiple-sample
detectors proposed in the literature.

Complex Networks: In this tutorial, we focused on a single
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one-way communication link from a transmitter to a receiver.
This is the simplest communication architecture and hence
the basis for more complex network typologies. We note that
although multi-node networks can often be decomposed into
a superposition of individual links, there are certain scenarios
where such a decomposition is invalid. For instance, if multiple
reactive receivers are in the environment, the presence of each
receiver will impact the signal received at any other receiver,
see e.g. [30], [31], and the discussion in Section I-B. Moreover,
in Section III, we considered MC environments with simple
boundary and initial conditions in order to derive analytical
channel models. However, some important MC environments,
such as the cardiovascular system, are quite complex and
cannot be fully modeled based on physics’ first principals.
One approach is to develop simulation environments for such
complex networks, see [142] and Section V-A. Nevertheless,
for system design, it is desirable to have simple yet sufficiently
accurate analytical models for complex multi-node networks.
Developing such analytical models constitutes an important
future research topic, see [49], [82], [154], [172] for some
related works.

Microscale and Macroscale Models: MC systems have
numerous potential applications which range from targeted
drug delivery and health monitoring for microscale systems
to communication in oil pipelines or chemical reactors and
environmental monitoring for macroscale systems. Neverthe-
less, most of the current literature has targeted microscale
applications and the available models are typically developed
for microscale MC environments. However, macroscale and
microscale MC systems may require quite different conside-
rations. For instance, the number of molecules needed for
communication at macroscale is typically much larger than
that needed for communication at microscale. Moreover, while
at microscale, molecules can be counted at the receiver (e.g.
via ligand-receptors), at macroscale, receivers usually measure
a quantity that is a function of the molecule concentration (e.g.
a pH sensor was used in [66], [79] and mass spectroscopy
was used in [151], [165]), see also Table IV. In summary, the
development of channel models for macroscale MC systems is
an important and interesting topic for future research. We refer
the interested reader to [4], [79], [151], [157], [165], [173] for
preliminary results on channel modeling for macroscale MC
systems.

Generally-Accepted and Experimentally-Verified Mo-
dels: Over the past years, several non-biological experimental
testbeds [64], [66], [79], [148]–[152] and biological experi-
mental testbeds [147], [153]–[156] have been developed to
demonstrate MC, see Table IV. Most of these experimental tes-
tbeds were developed as proofs-of-concept for human-designed
MC and mathematical models that explain the corresponding
measurement data are usually too simplistic if available at all,
see Table IV. However, for the advancement of MC research, it
will be crucial to specify generally-accepted test channels with
corresponding experimentally-verified mathematical channel
models. Then, researchers in the MC community can use these
established models for the design and performance analysis of
newly-developed communication schemes.

VII. CONCLUSIONS

This paper provided a comprehensive tutorial review of the
diffusive MC channel models available in the literature. To
this end, we first presented the underlying fundamental laws
that govern diffusion, advection, and chemical reactions in MC
channels and constitute the essential mathematical tools from
biology, chemistry, and physics required for the development of
MC channel models. Subsequently, we reviewed the main end-
to-end channel models reported in the diffusive MC literature
and showed how they were developed from basic physical
principles. The reviewed end-to-end channel models included
the joint effects of release mechanisms, the physical channel,
and reception mechanisms. Moreover, we provided a unified
definition for the received signal that included the representation
obtained by both timing and counting receivers as special cases.
Furthermore, for counting receivers, we derived signal models
relevant for different time scales. We generalized these models
to account for interfering noise molecules and ISI and studied
the correlation among the received signals observed at different
time scales. In addition, simulation-driven and experiment-
driven channel models were investigated for complex scenarios
where simple MC channel models cannot be obtained from
basic physical principles. Finally, we provided a discussion of
challenges, open research problems, and future directions for
channel modeling of diffusive MC systems.
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[114] M. Falk, J. Hüsler, and R.-D. Reiss, Laws of Small Numbers: Extremes
and Rare Events. Springer Science & Business Media, 2010.

[115] W. Bialek, Biophysics: Searching for Principles. Princeton Univ. Press,
2012.

[116] M. Pierobon and I. F. Akyildiz, “Intersymbol and Co-channel Interfe-
rence in Diffusion-based Molecular Communication,” in Proc. IEEE
Int. Conf. Commun. (ICC), Jun. 2012, pp. 6126–6131.

[117] ——, “A Statistical-Physical Model of Interference in Diffusion-Based
Molecular Nanonetworks,” IEEE Trans. Commun., vol. 62, no. 6, pp.
2085–2095, Jun. 2014.

[118] D. Guo, S. Shamai, and S. Verdu, “Mutual Information and Conditional
Mean Estimation in Poisson Channels,” IEEE Trans. Inf. Theory, vol. 54,
no. 5, pp. 1837–1849, May 2008.

[119] V. Jamali, A. Ahmadzadeh, N. Farsad, and R. Schober, “Constant-
Composition Codes for Maximum Likelihood Detection without CSI in
Diffusive Molecular Communications,” IEEE Trans. Commun., vol. 66,
no. 5, pp. 1981–1995, May 2018.

[120] M. Khalighi and M. Uysal, “Survey on Free Space Optical Communi-
cation: A Communication Theory Perspective,” IEEE Commun. Surveys
Tutorials, vol. 16, no. 4, pp. 2231–2258, 2014.

[121] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson Correlation
Coefficient,” in Noise Reduction in Speech Processing. Springer, 2009,
pp. 1–4.

[122] J. Lopez, A. Bel, J. A. Lopez-Salcedo, and G. Seco-Granados,
“Opportunistic Relay Selection with Outdated CSI: Outage Probability
and Diversity Analysis,” IEEE Trans. Wireless Commun., vol. 8, no. 6,
pp. 2872–2876, Jun. 2009.

[123] V. Jamali, N. Waly, N. Zlatanov, and R. Schober, “Optimal Buffer-Aided
Relaying With Imperfect CSI,” IEEE Commun. Lett., vol. 20, no. 7, pp.
1309–1312, Jul. 2016.

[124] Y. Ma, D. Zhang, A. Leith, and Z. Wang, “Error Performance of
Transmit Beamforming with Delayed and Limited Feedback,” IEEE
Trans. Wireless Commun., vol. 8, no. 3, pp. 1164–1170, Mar. 2009.

[125] A. Noel, K. C. Cheung, R. Schober, D. Makrakis, and A. Hafid,
“Simulating with AcCoRD: Actor-based Communication via Reaction–
Diffusion,” Nano Commun. Net., vol. 11, pp. 44–75, Mar. 2017.

[126] COMSOL Inc., “COMSOL Multiphysics.” [Online]. Available:
http://www.comsol.com

[127] ANSYS Inc., “ANSYS.” [Online]. Available: http://www.ansys.com
[128] S. Abadal and I. F. Akyildiz, “Automata Modeling of Quorum Sensing

for Nanocommunication Networks,” Nano Commun. Netw., vol. 2, no. 1,
pp. 74 – 83, 2011.

[129] “NanoNS: A Nanoscale Network Simulator Framework for Molecular
Communications,” Nano Commun. Netw., vol. 1, no. 2, pp. 138 – 156,
2010.

[130] D. T. Gillespie, “A Rigorous Derivation of the Chemical Master
Equation,” Physica A: Statistical Mechanics and its Applications, vol.
188, no. 1-3, pp. 404–425, Sep. 1992.

[131] R. Ramaswamy and I. F. Sbalzarini, “Exact On-Lattice Stochastic
Reaction-Diffusion Simulations Using Partial-Propensity Methods,” J.
Chemical Physics, vol. 135, no. 24, p. 244103, 2011.

[132] A. Noel and D. Makrakis, “Algorithm for Mesoscopic Advection-
Diffusion,” IEEE Trans. NanoBiosci., vol. 17, no. 4, pp. 543–554, Oct.
2018.

[133] M. B. Flegg, S. J. Chapman, L. Zheng, and R. Erban, “Analysis of
the Two-Regime Method on Square Meshes,” SIAM J. Sci. Comput.,
vol. 36, no. 3, pp. 561–588, Jun. 2014.

[134] D. Bernstein, “Simulating Mesoscopic Reaction-Diffusion Systems
Using the Gillespie Algorithm,” Physical Review E - Statistical,
Nonlinear, and Soft Matter Physics, vol. 71, no. 4, pp. 1–13, Apr.
2005.

[135] M. A. Gibson and J. Bruck, “Efficient Exact Stochastic Simulation of
Chemical Systems with Many Species and Many Channels,” J. Physical
Chemistry A, vol. 104, no. 9, pp. 1876–1889, 2000.

[136] D. T. Gillespie, “Approximate Accelerated Stochastic Simulation of
Chemically Reacting Systems,” J. Chemistry Physics, vol. 115, no. 4,
pp. 1716 – 1733, 2001.

[137] D. C. Resasco, F. Gao, F. Morgan, I. L. Novak, J. C. Schaff, and
B. M. Slepchenko, “Virtual Cell: Computational tools for modeling
in cell biology,” Wiley Interdisciplinary Reviews: Systems Biology and
Medicine, vol. 4, no. 2, pp. 129–140, Mar. 2012.

[138] Y. Jian, B. Krishnaswamy, C. M. Austin, A. O. Bicen, A. Einolghozati,
J. E. Perdomo, S. C. Patel, F. Fekri, I. F. Akyildiz, C. R.
Forest, and R. Sivakumar, “NanoNS3: A Network Simulator for
Bacterial Nanonetworks Based on Molecular Communication,” Nano
Commun. Netw., vol. 12, pp. 1 – 11, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1878778916300941

[139] B. Drawert, S. Engblom, and A. Hellander, “URDME: A Modular
Framework for Stochastic Simulation of Reaction-Transport Processes
in Complex Geometries,” BMC Syst. Biology, vol. 6, no. 1, p. 76, Jun
2012.

[140] G. Wei, P. Bogdan, and R. Marculescu, “Efficient Modeling and
Simulation of Bacteria-Based Nanonetworks with BNSim,” IEEE J.
Select. Areas Commun., vol. 31, no. 12, pp. 868–878, Dec. 2013.

[141] M. Robinson, S. S. Andrews, and R. Erban, “Multiscale Reaction-
Diffusion Simulations with Smoldyn,” Bioinformatics, vol. 31, no. 14,
pp. 2406–2408, Jul. 2015.

[142] L. Felicetti, M. Femminella, and G. Reali, “Simulation of Molecular
Signaling in Blood Vessels: Software Design and Application to
Atherogenesis,” Nano Commun. Net., vol. 4, no. 3, pp. 98–119, 2013.

[143] I. Llatser, I. Pascual, N. Garralda, A. Cabellos-Aparicio, M. Pierobon,
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