102,890 research outputs found

    Feature Selective Networks for Object Detection

    Full text link
    Objects for detection usually have distinct characteristics in different sub-regions and different aspect ratios. However, in prevalent two-stage object detection methods, Region-of-Interest (RoI) features are extracted by RoI pooling with little emphasis on these translation-variant feature components. We present feature selective networks to reform the feature representations of RoIs by exploiting their disparities among sub-regions and aspect ratios. Our network produces the sub-region attention bank and aspect ratio attention bank for the whole image. The RoI-based sub-region attention map and aspect ratio attention map are selectively pooled from the banks, and then used to refine the original RoI features for RoI classification. Equipped with a light-weight detection subnetwork, our network gets a consistent boost in detection performance based on general ConvNet backbones (ResNet-101, GoogLeNet and VGG-16). Without bells and whistles, our detectors equipped with ResNet-101 achieve more than 3% mAP improvement compared to counterparts on PASCAL VOC 2007, PASCAL VOC 2012 and MS COCO datasets

    Plug-in, Trainable Gate for Streamlining Arbitrary Neural Networks

    Full text link
    Architecture optimization, which is a technique for finding an efficient neural network that meets certain requirements, generally reduces to a set of multiple-choice selection problems among alternative sub-structures or parameters. The discrete nature of the selection problem, however, makes this optimization difficult. To tackle this problem we introduce a novel concept of a trainable gate function. The trainable gate function, which confers a differentiable property to discretevalued variables, allows us to directly optimize loss functions that include non-differentiable discrete values such as 0-1 selection. The proposed trainable gate can be applied to pruning. Pruning can be carried out simply by appending the proposed trainable gate functions to each intermediate output tensor followed by fine-tuning the overall model, using any gradient-based training methods. So the proposed method can jointly optimize the selection of the pruned channels while fine-tuning the weights of the pruned model at the same time. Our experimental results demonstrate that the proposed method efficiently optimizes arbitrary neural networks in various tasks such as image classification, style transfer, optical flow estimation, and neural machine translation.Comment: Accepted to AAAI 2020 (Poster
    • …
    corecore