6,394 research outputs found

    Multi-Modal Aesthetic Assessment for MObile Gaming Image

    Full text link
    With the proliferation of various gaming technology, services, game styles, and platforms, multi-dimensional aesthetic assessment of the gaming contents is becoming more and more important for the gaming industry. Depending on the diverse needs of diversified game players, game designers, graphical developers, etc. in particular conditions, multi-modal aesthetic assessment is required to consider different aesthetic dimensions/perspectives. Since there are different underlying relationships between different aesthetic dimensions, e.g., between the `Colorfulness' and `Color Harmony', it could be advantageous to leverage effective information attached in multiple relevant dimensions. To this end, we solve this problem via multi-task learning. Our inclination is to seek and learn the correlations between different aesthetic relevant dimensions to further boost the generalization performance in predicting all the aesthetic dimensions. Therefore, the `bottleneck' of obtaining good predictions with limited labeled data for one individual dimension could be unplugged by harnessing complementary sources of other dimensions, i.e., augment the training data indirectly by sharing training information across dimensions. According to experimental results, the proposed model outperforms state-of-the-art aesthetic metrics significantly in predicting four gaming aesthetic dimensions.Comment: 5 page

    The Impact of Generative AI on the Future of Visual Content Marketing

    Full text link
    In today's world of marketing, it is necessary to have visually appealing content. Visual material has become an essential area of focus for every company as a result of the widespread availability of gadgets for mass communication and extended visual advancements. Similarly, artificial intelligence is also gaining ground and it is proving to be the most revolutionary technological advancement thus far. The integration of visual content with artificial intelligence is the key to acquiring and retaining loyal customers; its absence from the overarching marketing strategy of any production raises a red flag that could ultimately result in a smaller market share for that company.Comment: 15 pages, 5 figure

    A study of how Chinese ink painting features can be applied to 3D scenes and models in real-time rendering

    Get PDF
    Past research findings addressed mature techniques for non-photorealistic rendering. However, research findings indicate that there is little information dealing with efficient methods to simulate Chinese ink painting features in rendering 3D scenes. Considering that Chinese ink painting has achieved many worldwide awards, the potential to effectively and automatically develop 3D animations and games in this style indicates a need for the development of appropriate technology for the future market. The goal of this research is about rendering 3D meshes in a Chinese ink painting style which is both appealing and realistic. Specifically, how can the output image appear similar to a hand-drawn Chinese ink painting. And how efficient does the rendering pipeline have to be to result in a real-time scene. For this study the researcher designed two rendering pipelines for static objects and moving objects in the final scene. The entire rendering process includes interior shading, silhouette extracting, textures integrating, and background rendering. Methodology involved the use of silhouette detection, multiple rendering passes, Gaussian blur for anti-aliasing, smooth step functions, and noise textures for simulating ink textures. Based on the output of each rendering pipeline, rendering process of the scene with best looking of Chinese ink painting style is illustrated in detail. The speed of the rendering pipeline proposed by this research was tested. The framerate of the final scenes created with this pipeline was higher than 30fps, a level considered to be real-time. One can conclude that the main objective of the research study was met even though other methods for generating Chinese ink painting rendering are available and should be explored

    Multimodality of AI for Education: Towards Artificial General Intelligence

    Full text link
    This paper presents a comprehensive examination of how multimodal artificial intelligence (AI) approaches are paving the way towards the realization of Artificial General Intelligence (AGI) in educational contexts. It scrutinizes the evolution and integration of AI in educational systems, emphasizing the crucial role of multimodality, which encompasses auditory, visual, kinesthetic, and linguistic modes of learning. This research delves deeply into the key facets of AGI, including cognitive frameworks, advanced knowledge representation, adaptive learning mechanisms, strategic planning, sophisticated language processing, and the integration of diverse multimodal data sources. It critically assesses AGI's transformative potential in reshaping educational paradigms, focusing on enhancing teaching and learning effectiveness, filling gaps in existing methodologies, and addressing ethical considerations and responsible usage of AGI in educational settings. The paper also discusses the implications of multimodal AI's role in education, offering insights into future directions and challenges in AGI development. This exploration aims to provide a nuanced understanding of the intersection between AI, multimodality, and education, setting a foundation for future research and development in AGI

    ์ธ๊ณต์ง€๋Šฅ์„ ์ด์šฉํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ๋ฐ˜์˜ ์‹œ์Šคํ…œ๊ณผ ์‚ฌ์šฉ์ž์˜ ์ธํ„ฐ๋ž™์…˜์— ๋Œ€ํ•œ ์ดํ•ด

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์œตํ•ฉ๊ณผํ•™๊ธฐ์ˆ ๋Œ€ํ•™์› ์œตํ•ฉ๊ณผํ•™๋ถ€(๋””์ง€ํ„ธ์ •๋ณด์œตํ•ฉ์ „๊ณต), 2019. 2. ์„œ๋ด‰์›.์ปดํ“จํŒ… ํŒŒ์›Œ์˜ ๊ฐœ์„ , ์ธํ„ฐ๋„ท๊ณผ ์†Œ์…œ๋ฏธ๋””์–ด, ๋ชจ๋ฐ”์ผ ๋””๋ฐ”์ด์Šค ๋“ฑ์˜ ๋ณด๊ธ‰์„ ํ†ตํ•œ ์ˆ˜๋งŽ์€ ๋ฐ์ดํ„ฐ์˜ ์ถ•์ , ๋”ฅ๋Ÿฌ๋‹์„ ๋น„๋กฏํ•œ ๊ธฐ๊ณ„ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๋ฐœ์ „์œผ๋กœ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ ์ด ์–ด๋Š๋•Œ๋ณด๋‹ค ๋”์šฑ ํฐ ์„ฑ๊ณผ๋ฅผ ๋ณด์ด๊ณ  ์žˆ๋‹ค. ์Œ์„ฑ ์ธ์‹, ์ปดํ“จํ„ฐ ๋น„์ „, ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ ๋“ฑ์˜ ๋ถ„์•ผ์—์„œ ์ธ๊ณต์ง€๋Šฅ์€ ์ด๋ฏธ ์ธ๊ฐ„์— ํ•„์ ํ•˜๊ฑฐ๋‚˜ ํ˜น์€ ์ธ๊ฐ„์„ ๋›ฐ์–ด๋„˜๋Š” ์„ฑ๋Šฅ์„ ๋ณด์ด๊ณ  ์žˆ์œผ๋ฉฐ, ์ž์œจ์ฃผํ–‰, ๋กœ๋ด‡, ์˜๋ฃŒ์„œ๋น„์Šค ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ์ ์šฉ๋˜์–ด ์šฐ๋ฆฌ์˜ ์‚ถ์— ๋งŽ์€ ๋ณ€ํ™”๋ฅผ ๊ฐ€์ ธ์˜ฌ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ํ•˜์ง€๋งŒ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ธก๋ฉด์—์„œ์˜ ๊ธฐ์ˆ ์ ์ธ ๋ฐœ์ „์— ๋น„ํ•ด ์ธ๊ณต์ง€๋Šฅ์˜ ์ธ๊ฐ„๊ณตํ•™์  ์š”์†Œ์™€ ์‚ฌ์šฉ์ž ๊ฒฝํ—˜์— ๋Œ€ํ•œ ๊ด€์‹ฌ๊ณผ ๋…ผ์˜๊ฐ€ ์ƒ๋Œ€์ ์œผ๋กœ ๋ถ€์กฑํ•œ ํŽธ์ด๋‹ค. ์ด์— ์ด ์—ฐ๊ตฌ๋Š” ์ธ๊ฐ„์ปดํ“จํ„ฐ์ƒํ˜ธ์ž‘์šฉ์˜ ๊ด€์ ์—์„œ ์ธ๊ณต์ง€๋Šฅ๊ณผ ์‚ฌ์šฉ์ž๊ฐ€ ์ƒํ˜ธ์ž‘์šฉ ํ•˜๋Š” ๋ฐฉ์‹์— ๋Œ€ํ•ด ๋‹ค์ธต์ ์ด๊ณ  ํ†ตํ•ฉ์ ์œผ๋กœ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜๊ณ  ์ด๋ฅผ ํ†ตํ•ด ์ธ๊ณต์ง€๋Šฅ ๊ธฐ๋ฐ˜์˜ ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค ๋””์ž์ธ์„ ์œ„ํ•œ ํ•จ์˜์ ์„ ๋„์ถœํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค. ํŠนํžˆ ์ด ๋…ผ๋ฌธ์€ ์ธ๊ณต์ง€๋Šฅ ๊ธฐ์ˆ ์„ ์ด์šฉํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ๋ฐ˜์˜ ์‹œ์Šคํ…œ๊ณผ ์‚ฌ์šฉ์ž์˜ ์ƒํ˜ธ์ž‘์šฉ์— ์ฃผ๋ชฉํ•˜๊ณ , ์ด๋ฅผ ๋Œ€์ƒ์œผ๋กœ ์ธ์ง€, ํ•ด์„ ๋ฐ ํ‰๊ฐ€, ์ง€์†์ ์ธ ์ธํ„ฐ๋ž™์…˜, ์‹ค์šฉ์ ์ธ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์ฃผ์ œ๋กœ ํ•œ ๋„ค ๋‹จ๊ณ„์˜ ์—ฐ๊ตฌ๋ฅผ ๊ธฐํšํ•˜๊ณ  ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์ฒซ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•œ ์‚ฌ๋žŒ๋“ค์˜ ์„ ํ—˜์  ์ธ์‹์„ ์กฐ์‚ฌํ•˜์˜€๋‹ค. ์—ฐ๋ น๊ณผ ์„ฑ๋ณ„, ์ง์—…์˜ ๋‹ค์–‘์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ์ธ๊ตฌํ†ต๊ณ„ํ•™์  ๋Œ€ํ‘œ์„ฑ์„ ๊ฐ–๋Š” ์ฐธ๊ฐ€์ž๋ฅผ ๋ชจ์ง‘ํ•˜์˜€์œผ๋ฉฐ, ์ด๋“ค์„ ๋Œ€์ƒ์œผ๋กœ ์ธ๊ณต์ง€๋Šฅ ์ธ์‹์— ๋Œ€ํ•œ ์ •์„ฑ์  ๋ฐฉ์‹์˜ ์กฐ์‚ฌ๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์กฐ์‚ฌ ๊ฒฐ๊ณผ ์‚ฌ๋žŒ๋“ค์ด ์ธ๊ณต์ง€๋Šฅ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•ด ๊ฐ–๋Š” ์„ ์ž…๊ฒฌ๊ณผ ๊ณ ์ •๊ด€๋…์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, ์‚ฌ๋žŒ๋“ค์ด ์ธ๊ณต์ง€๋Šฅ์„ ์˜์ธํ™” ํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ํƒ€์žํ™” ํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ์ธ๊ณต์ง€๋Šฅ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ์‚ฌ์šฉ์ž์˜ ๊ด€๊ณ„์—์„œ ์ง€์†์ ์ด๊ณ  ์ „์ฒด์ ์ธ ๊ฒฝํ—˜์ด ์ค‘์š”ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋‘๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ๋Œ€ํ•œ ์‚ฌ์šฉ์ž์˜ ํ•ด์„๊ณผ ํ‰๊ฐ€์— ๊ด€ํ•œ ๊ฒƒ์ด๋‹ค. ์ด๋ฅผ ์œ„ํ•ด ์ด๋ฏธ์ง€์˜ ๋ฏธ์  ์ ์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•ด์ฃผ๋Š” ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฐ˜์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๊ตฌํ˜„๋œ AI Mirror๋ผ๋Š” ์—ฐ๊ตฌ ํ”„๋กœํ† ํƒ€์ž…์„ ์ œ์ž‘ํ•˜์˜€์œผ๋ฉฐ, ์ธ๊ณต์ง€๋Šฅ/๊ธฐ๊ณ„ํ•™์Šต ๋ถ„์•ผ์˜ ์ „๋ฌธ๊ฐ€, ์‚ฌ์ง„์ „๋ฌธ๊ฐ€, ์ผ๋ฐ˜์ธ์œผ๋กœ ๊ตฌ๋ถ„๋œ ์„ธ ์ง‘๋‹จ์˜ ์‚ฌ์šฉ์ž๋ฅผ ๋ชจ์ง‘ํ•˜์—ฌ ์‹คํ—˜์„ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์‚ฌ์šฉ์ž๋Š” ์ €๋งˆ๋‹ค ๋‹ค๋ฅธ ๋ฐฐ๊ฒฝ ์ง€์‹์„ ๋ฐ˜์˜ํ•ด ์ธ๊ณต์ง€๋Šฅ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ•ด์„ํ•˜๊ณ  ํ‰๊ฐ€ํ•˜๋Š” ๊ฒฝํ–ฅ์„ ๋ณด์˜€๋‹ค. ์‚ฌ์ง„์ „๋ฌธ๊ฐ€ ์ง‘๋‹จ์ด ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐ€์žฅ ๋†’์€ ์ •๋„๋กœ ํ•ด์„ํ•˜์˜€์œผ๋ฉฐ ํ•ฉ๋ฆฌ์ ์ด๋ผ๊ณ  ์—ฌ๊ธด ๋ฐ˜๋ฉด, ์ธ๊ณต์ง€๋Šฅ/๊ธฐ๊ณ„ํ•™์Šต ์ „๋ฌธ๊ฐ€ ์ง‘๋‹จ์€ ๊ฐ€์žฅ ๋‚ฎ์€ ์ •๋„๋กœ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ•ด์„ํ•˜๊ณ  ํ‰๊ฐ€ํ–ˆ๋‹ค. ์‚ฌ์šฉ์ž๋Š” ๋‹ค์–‘ํ•œ ์ „๋žต์„ ํ†ตํ•ด ์ธ๊ณต์ง€๋Šฅ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์›๋ฆฌ๋ฅผ ์ถ”๋ก ํ•˜๊ณ ์ž ํ•˜์˜€์œผ๋ฉฐ ์ด๋ฅผ ํ†ตํ•ด ์ธ๊ณต์ง€๋Šฅ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ์˜ ์ฐจ์ด๋ฅผ ์ขํ˜€๊ฐˆ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ์‚ฌ์šฉ์ž๋Š” ์ธ๊ณต์ง€๋Šฅ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ์Œ๋ฐฉ ์†Œํ†ต์„ ํ†ตํ•ด ์˜๊ฒฌ์„ ๊ตํ™˜ํ•˜๊ณ ์ž ํ•˜๋Š” ๋‹ˆ์ฆˆ๋ฅผ ํ‘œ์ถœํ•˜์˜€๋‹ค. ์„ธ๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ์ธ๊ณต์ง€๋Šฅ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ์‚ฌ์šฉ์ž๊ฐ€ ๊ณต๋™์˜ ๋ชฉํ‘œ๋ฅผ ๋‘๊ณ  ์ง€์†์ ์ธ ์ธํ„ฐ๋ž™์…˜์„ ์ด์–ด๊ฐ€๋Š” ๊ณผ์ •์— ๋Œ€ํ•œ ์ดํ•ด๋ฅผ ๋ชฉํ‘œ๋กœ ํ•˜์˜€๋‹ค. ์‚ฌ์šฉ์ž๊ฐ€ ์ผ๋ถ€ ๊ทธ๋ฆฐ ๋ฌผ์ฒด๋ฅผ ์™„์„ฑํ•˜๊ณ  ์Šค์ผ€์น˜์— ์ƒ‰์น ์„ ์ž๋™์œผ๋กœ ์™„์„ฑํ•ด์ฃผ๋Š” ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฐ˜์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜ API๋ฅผ ์ด์šฉํ•˜์—ฌ DuetDraw๋ผ๋Š” ๋ฆฌ์„œ์น˜ ํ”„๋กœํ† ํƒ€์ž…์„ ์ œ์ž‘ํ•˜์˜€๊ณ , ์ •๋Ÿ‰ ๋ฐ ์ •์„ฑ์  ๋ฐฉ๋ฒ•์œผ๋กœ ์ด์— ๋Œ€ํ•œ ์‚ฌ์šฉ์ž ํ‰๊ฐ€๋ฅผ ์ง„ํ–‰ํ•˜์˜€๋‹ค. ์‚ฌ์šฉ์ž ํ‰๊ฐ€ ๊ฒฐ๊ณผ ์‚ฌ์šฉ์ž๋Š” ์ธ๊ณต์ง€๋Šฅ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ์˜ ํ˜‘์—… ๊ณผ์ •์—์„œ ์ธ๊ณต์ง€๋Šฅ์œผ๋กœ๋ถ€ํ„ฐ ๋‹จ์ˆœํ•œ ํ”ผ๋“œ๋ฐฑ ๋ณด๋‹ค๋Š” ์ž์„ธํ•œ ์„ค๋ช…์„ ์ œ๊ณต๋ฐ›๊ธฐ๋ฅผ ์›ํ–ˆ์œผ๋ฉฐ, ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ์˜ ๊ด€๊ณ„์—์„œ ํ•ญ์ƒ ์ฃผ๋„์ ์ธ ์œ„์น˜์— ์žˆ๊ณ ์ž ํ•˜์˜€๋‹ค. ์ธ๊ณต์ง€๋Šฅ๊ณผ์˜ ์ธํ„ฐ๋ž™์…˜์€ ๊ณผ์—… ์ˆ˜ํ–‰์— ๋Œ€ํ•œ ์‚ฌ์šฉ์ž์˜ ์˜ˆ์ธก๊ฐ€๋Šฅ์„ฑ, ์ดํ•ด๋„, ํ†ต์ œ๋ ฅ์„ ๋‚ฎ์ถ”๋Š” ๊ฒฝํ•ญ์ด ์žˆ์—ˆ์ง€๋งŒ, ์‚ฌ์šฉ์ž์—๊ฒŒ ์ƒ๋Œ€์ ์œผ๋กœ ๋†’์€ ์‚ฌ์šฉ์„ฑ์„ ์ œ๊ณตํ•˜์˜€์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์‚ฌ์šฉ์ž๊ฐ€ ์ „๋ฐ˜์ ์œผ๋กœ ๋งŒ์กฑ์Šค๋Ÿฌ์šด ๊ฒฝํ—˜์„ ํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๋์œผ๋กœ, ๋„ค๋ฒˆ์งธ ์—ฐ๊ตฌ๋Š” ๋ณด๋‹ค ์‹ค์šฉ์ ์ธ ์–ดํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ์ œ์ž‘ํ•˜์—ฌ ์ด์— ๋Œ€ํ•œ ์‚ฌ์šฉ์ž ์ธํ„ฐ๋ž™์…˜์„ ์ดํ•ดํ•˜๊ณ ์ž ํ•˜์˜€์œผ๋ฉฐ, ์ด์— ์ตœ๊ทผ ํฐ ๊ฐ๊ด‘์„ ๋ฐ›๊ณ  ์žˆ๋Š” ๋กœ๋ด‡์ €๋„๋ฆฌ์ฆ˜ ๊ธฐ์ˆ ์„ ๊ตฌํ˜„ํ•œ NewsRobot์„ ์ œ์ž‘ํ•˜์˜€๋‹ค. NewsRobot์€ 2018 ํ‰์ฐฝ๋™๊ณ„์˜ฌ๋ฆผํ”ฝ์˜ ์ฃผ์š” ๊ฒฝ๊ธฐ ๊ฒฐ๊ณผ๋ฅผ ์ž๋™์œผ๋กœ ์ˆ˜์ง‘ํ•˜๊ณ  ์š”์•ฝํ•˜๋ฉฐ, ๋‚ด์šฉ๊ณผ ํ˜•์‹์„ ๊ฐ๊ฐ ์ข…ํ•ฉ๋‰ด์Šค-์„ ํƒ๋‰ด์Šค, ํ…์ŠคํŠธ-์นด๋“œ-๋™์˜์ƒ์œผ๋กœ ๋‹ฌ๋ฆฌํ•˜์—ฌ ๋‰ด์Šค๋ฅผ ์ƒ์„ฑํ•œ๋‹ค. ์ •๋Ÿ‰ ๋ฐ ์ •์„ฑ์  ๋ฐฉ๋ฒ•์˜ ์‚ฌ์šฉ์ž ํ‰๊ฐ€ ๊ฒฐ๊ณผ, ์„ ํƒ๋‰ด์Šค๊ฐ€ ์ข…ํ•ฉ๋‰ด์Šค์— ๋น„ํ•ด ๋‚ฎ์€ ์‹ ๋ขฐ๋„๋ฅผ ๋ณด์˜€์Œ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ์„ ํƒ๋‰ด์Šค์— ๋Œ€ํ•œ ์‚ฌ์šฉ์ž์˜ ๋†’์€ ์„ ํ˜ธ๋„๋ฅผ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ ๋ฉ€ํ‹ฐ๋ฏธ๋””์–ด ๋ชจ๋‹ฌ๋ฆฌํ‹ฐ๊ฐ€ ๋†’์•„์งˆ์ˆ˜๋ก ์‚ฌ์šฉ์ž์˜ ๋‰ด์Šค์— ๋Œ€ํ•œ ๋งŒ์กฑ๋„๊ฐ€ ๋†’์•„์ง€์ง€๋งŒ ์‚ฌ์šฉ์ž์˜ ๊ธฐ๋Œ€์ˆ˜์ค€์— ์–ด๊ธ‹๋‚œ ๊ฒฝ์šฐ ์˜คํžˆ๋ ค ๋‚ฎ์€ ํ‰๊ฐ€๋ฅผ ๋ฐ›๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์‚ฌ์šฉ์ž๋Š” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์ž๋™์œผ๋กœ ์ƒ์„ฑํ•œ ๋‰ด์Šค์— ๋Œ€ํ•ด ์ •ํ™•ํ•˜๊ณ  ๊ฐ๊ด€์ ์ด๋ผ๊ณ  ํ‰๊ฐ€ํ•˜์˜€์œผ๋ฉฐ, ๋น ๋ฅธ ๋‰ด์Šค ์ƒ์„ฑ ์†๋„์™€ ๋‹ค์–‘ํ•œ ์ •๋ณด ์‹œ๊ฐํ™” ์š”์†Œ์— ๋Œ€ํ•ด์„œ๋„ ๋งŒ์กฑ๊ฐ์„ ๋“œ๋Ÿฌ๋ƒˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด ๋„ค ๊ฐ€์ง€ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋“ค์„ ๋ฐ”ํƒ•์œผ๋กœ ์ธ๊ฐ„-์ธ๊ณต์ง€๋Šฅ ์ƒํ˜ธ์ž‘์šฉ์— ๋Œ€ํ•œ ๋‹ค์–‘ํ•œ ์‹œ์‚ฌ์ ๋“ค์„ ๋„์ถœํ•˜์˜€์œผ๋ฉฐ, ์ธ๊ณต์ง€๋Šฅ์„ ์ด์šฉํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ธฐ๋ฐ˜์˜ ์‹œ์Šคํ…œ์˜ ์‚ฌ์šฉ์ž ์ธํ„ฐํŽ˜์ด์Šค ๋””์ž์ธ์„ ์œ„ํ•œ ํ•จ์˜์ ๋“ค์„ ์ œ์•ˆํ•œ๋‹ค.The recent development of artificial intelligence (AI) algorithms is affecting our daily lives in numerous areas. Moreover, AI is expected to evolve rapidly, bringing tremendous economic value. However, compared to the attention these technological improvements receive, there is relatively little discussion on human factors and user experience related to AI algorithms. Thus, this thesis aims to better understand how users interact with AI algorithms. Specifically, this work examined algorithm-based humanโ€“AI interaction in four stages, through various modes of human-computer interaction: The first study investigated how people perceive algorithm-based systems using AI, finding that people tend to anthropomorphize as well as alienate them, which is distinct from their perceptions of computers. The second study investigated how people interpret and evaluate the output from AI algorithms through a prototype, AI Mirror, which assigned aesthetic scores to images based on a neural network algorithm. The results revealed that people interpret AI algorithms differently based on their backgrounds, and that they want to understand and communicate with AI systems. The third study investigated how people build a sequence of actions with AI algorithms through a mixed method study using a research prototype called DuetDraw, a drawing tool in which users and AI can draw pictures together. The results showed that people want to lead collaborations while hoping to get appropriate instructions from the AI algorithm. Lastly, a case study on a practical application of AI was conducted with a research prototype called NewsRobot, which automatically generated news articles with different content and styles. Findings showed that users prefer selective news and multimedia news that have more functionality and modality, but at the same time they do not want AI to boast about its ability. With these distinct but intertwined studies, this thesis argues the importance of understanding human factors in the user interfaces of AI-based systems and suggests design principles to this end.1 INTRODUCTION 1 1.1 Background 1 1.2 Research Goal 10 1.3 Research Questions 11 1.4 How People Perceive Algorithm-based Systems Using Artificial Intelligence 12 1.5 How People Interpret and Evaluate Algorithm-based Systems Using Artificial Intelligence 13 1.6 How People Build Sequential Actions with Algorithm-Based Systems Using Artificial Intelligence 15 1.7 How People Use a Practical Application of an Algorithm-based Systems Using Artificial Intelligence 17 1.8 Thesis Statement 18 1.9 Contributions 18 1.10 Thesis Overview 20 2 RELATED WORK 22 2.1 Human Perception of AI Algorithms 22 2.1.1 Technophobia 22 2.1.2 Anthropomorphism 23 2.2 Users Interpretation and Evaluation of AI Algorithms 24 2.2.1 Interpretability of Algorithms and Users Concerns 24 2.2.2 Sense-making and Gap between Users and AI algorithms 25 2.2.3 User Control in Intelligent Systems 26 2.3 How People Build Sequential Actions with AI Algorithms 26 2.3.1 AI, Deep Learning, and New UX in Creative Works 27 2.3.2 Communication and Leadership among Users and AI 28 2.4 Practical Design of Algorithm-based Systems Using AI 29 2.4.1 Automated Journalism 30 2.4.2 Personalization of News Content 31 2.4.3 Effect of Multimedia Modality on User Experience 32 3 HOW PEOPLE PERCEIVE ALGORITHM-BASED SYSTEMS USING ARTIFICIAL INTELLIGENCE 33 3.1 Motivation 34 3.2 Google DeepMind Challenge Match 36 3.3 Methodology 38 3.3.1 Participant Recruitment 38 3.3.2 Interview Process 39 3.3.3 Interview Analysis 40 3.4 Findings 41 3.4.1 Preconceptions about Artificial Intelligence 41 3.4.2 Confrontation: Us vs. Artificial Intelligence 43 3.4.3 Anthropomorphizing AlphaGo 47 3.4.4 Alienating AlphaGo 49 3.4.5 Concerns about the Future of AI 52 3.5 Limitations 55 3.6 Summary 56 4 HOW PEOPLE INTERPRET AND EVALUATE ALGORITHM-BASED SYSTEMS USING ARTIFICIAL INTELLIGENCE 57 4.1 Motivation 58 4.2 AI Mirror 60 4.2.1 Design Goal 60 4.2.2 Image Assessment Algorithm 61 4.2.3 Design of User Interface 61 4.3 Study Design 62 4.3.1 Participant Recruitment 63 4.3.2 Experimental Settings 64 4.3.3 Procedure 65 4.3.4 Analysis Methods 66 4.4 Result 1: Quantitative Analysis 67 4.4.1 Difference 68 4.4.2 Interpretability 69 4.4.3 Reasonability 70 4.5 Result 2: Qualitative Analysis 71 4.5.1 People Understand AI Based on What They Know 71 4.5.2 People Reduce Difference Using Various Strategies 73 4.5.3 People Want to Actively Communicate with AI 76 4.6 Limitations 78 4.7 Conclusion 78 5 HOW PEOPLE BUILD SEQUENTIAL ACTIONS WITH ALGORITHM-BASED SYSTEMS USING ARTIFICIAL INTELLIGENCE 80 5.1 Motivation 81 5.2 Duet Draw 84 5.2.1 Five AI Functions of DuetDraw 84 5.2.2 Initiative and Communication Styles of DuetDraw 85 5.3 Study Design 86 5.3.1 Participants 87 5.3.2 Tasks and Procedures 87 5.3.3 Drawing Scenarios 88 5.3.4 Survey 89 5.3.5 Think-aloud and Interview 89 5.3.6 Analysis Methods 90 5.4 Result 1: Quantitative Analysis 92 5.4.1 Detailed Instruction is Preferred over Basic Instruction 93 5.4.2 UX Could Be Worse with Lead-Basic than Assist-Detailed 94 5.4.3 AI is Fun, Useful, Effective, and Efficient 94 5.4.4 No-AI is more Predictable, Comprehensible, and Controllable 95 5.4.5 Even if Predictability is Low, Fun and Interest Can Increase 96 5.5 Result 2: Qualitative Analysis 96 5.5.1 Just Enough Instruction 97 5.5.2 Users Always Want to Lead 99 5.5.3 AI is Similar to Humans But Unpredictable 101 5.5.4 Co-Creation with AI 102 5.6 Limitations 105 5.7 Conclusion 105 6 HOW PEOPLE USE A PRACTICAL APPLICATION OF AN ALGORITHM-BASED SYSTEM USIGN ARTIFICIAL INTELLIGENCE 107 6.1 Motivation 108 6.2 News Robot 110 6.2.1 Selecting Main Event and Data Source 111 6.2.2 Designing News Article Structure 113 6.2.3 Content and Style 113 6.2.4 Generating News Articles 115 6.2.5 Designing NewsRobot User Interface 116 6.3 Study Design 117 6.3.1 Participants 117 6.3.2 Procedures 118 6.3.3 Analysis Methods 119 6.4 Results 1: Quantitative Analysis 120 6.4.1 Selective News Is Less Credible 120 6.4.2 Users Like Both Multimedia and Personalization 121 6.4.3 Quality of Video Is Not Rated Highest 122 6.4.4 NewsRobot Is Accurate but Not Sensational 123 6.5 Results 2: Qualitative Analysis 124 6.5.1 Users Evaluate NewsRobot Features Highly 124 6.5.2 NewsRobot Is Unbiased but Predictable 127 6.5.3 Benefits and Drawbacks of Using Multimedia 128 6.6 Limitations 130 6.7 Conclusion 130 7 DISCUSSION 131 7.1 Human Perception of AI Algorithms 131 7.1.1 Cognitive Dissonance 131 7.1.2 Beyond Technophobia 132 7.1.3 Toward a New Chapter in Human-Computer Interaction 134 7.1.4 Coping with the Potential Danger 135 7.2 Users Interpretation and Evaluation of AI Algorithms 135 7.2.1 Integrate Diverse Expertise and User Perspectives 136 7.2.2 Take Advantage of Peoples Curiosity about AI Principles 137 7.2.3 Provide AI and Users with Mutual Communication 138 7.3 How People Build Sequential Actions with AI Algorithms 139 7.3.1 Let the User Take the Initiative 140 7.3.2 Provide Just Enough Instruction 140 7.3.3 Embed Interesting Elements in the Interaction 141 7.3.4 Ensure Balance 142 7.4 Practical Design of Algorithm-based Systems Using AI 142 7.4.1 Provide Selective news with Adaptable Interface 142 7.4.2 Present Various Multimedia Elements but Not Too Many 144 7.4.3 Importance of Quality Data and Algorithm Refinement 145 7.5 Principles 146 8 CONCLUSION 148 8.1 Summary of Contributions 149 8.2 Future Directions 150 Bibliography 153 ๋…ผ๋ฌธ์ดˆ๋ก 173 ๊ฐ์‚ฌ์˜ ๊ธ€ 176Docto

    Impact of artificial intelligence on education for employment: (learning and employability Framework)

    Get PDF
    Sustainable development has been a global goal and one of the key enablers to achieve the sustainable development goals is by securing decent jobs. However, decent jobs rely on the quality of education an individual has got, which value the importance of studying new education for employment frameworks that work. With the evolution of artificial intelligence that is influencing every industry and field in the world, there is a need to understand the impact of such technology on the education for employment process. The purpose of this study is to evaluate and assess how AI can foster the education for employment process? And what is the harm that such technology can brings on the social, economical and environmental levels? The study follows a mapping methodology using secondary data to identify and analyze AI powered startups and companies that addressed the learning and employability gaps. The study revealed twelve different AI applications that contribute to 3 main pillars of education for employment; career exploration and choice, skills building, and job hunting. 94% of those applications were innovated by startups. The review of literature and study results showed that AI can bring new level of guidance for individuals to choose their university or career, personalized learning capabilities that adapt to the learner\u27s circumstance, and new whole level of job search and matchmaking
    • โ€ฆ
    corecore