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Abstract 
 

 

The recent development of artificial intelligence (AI) algorithms is affecting our 

daily lives in numerous areas. Moreover, AI is expected to evolve rapidly, bringing 

tremendous economic value. However, compared to the attention these technolog-

ical improvements receive, there is relatively little discussion on human factors 

and user experience related to AI algorithms. Thus, this thesis aims to better un-

derstand how users interact with AI algorithms. Specifically, this work examined 

algorithm-based human–AI interaction in four stages, through various modes of 

human-computer interaction: The first study investigated how people perceive al-

gorithm-based systems using AI, finding that people tend to anthropomorphize as 

well as alienate them, which is distinct from their perceptions of computers. The 

second study investigated how people interpret and evaluate the output from AI 

algorithms through a prototype, AI Mirror, which assigned aesthetic scores to im-

ages based on a neural network algorithm. The results revealed that people inter-

pret AI algorithms differently based on their backgrounds, and that they want to 

understand and communicate with AI systems. The third study investigated how 

people build a sequence of actions with AI algorithms through a mixed method 

study using a research prototype called DuetDraw, a drawing tool in which users 

and AI can draw pictures together. The results showed that people want to lead 

collaborations while hoping to get appropriate instructions from the AI algorithm. 

Lastly, a case study on a practical application of AI was conducted with a research 

prototype called NewsRobot, which automatically generated news articles with 

different content and styles. Findings showed that users prefer selective news and 
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multimedia news that have more functionality and modality, but at the same time 

they do not want AI to boast about its ability. With these distinct but intertwined 

studies, this thesis argues the importance of understanding human factors in the 

user interfaces of AI-based systems and suggests design principles to this end. 
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1 INTRODUCTION 

 

1.1 Background 

In March 2016, a Go game held at a conference room in a hotel in Seoul was 

broadcasted live across the Korean peninsula. It was a Go match between the hu-

man Go champion Lee Sedol and AlphaGo, an artificial intelligence (AI) Go pro-

gram developed by Google DeepMind. Since Go has long been regarded as the 

most challenging classic game for AI, the match garnered significant attention 

from AI and Go communities worldwide. By winning four of the five games, Al-

phaGo became the final winner of the match. The result of the event was a com-

plete surprise to many people, as it showed that AI had evolved to a remarkable 

level, even surpassing humanity in an area requiring advanced intelligence. It was 

impossible to deny the scene in which the software, which had no form, merci-

lessly conquered the champion by moving the Go-stone through the human agent 

Aja Huang. After the first game, DeepMind founder Demis Hassabis tweeted, 

“#AlphaGo WINS!!!! We landed it on the moon [1].” 

AI is no longer a distant future in Hollywood movies. At this point, less than 

three years after that event shocked us, media programs frequently discuss the 

rosy future of AI technology. Tech giants show off their technological prowess 
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and market dominance by announcing new devices and services based on AI. Mil-

lions of users interact with intelligent devices or services that use AI technology, 

such as Apple’s Siri and Amazon’s Echo. It is expected that AI technology will 

become increasingly prevalent in various areas, including autonomous vehicles 

([2], [3]), medical treatment ([4], [5]), game playing ([6], [7]) and customized ad-

vertisements [8].  

However, despite the clear evidence that AI technology will have a profound 

impact on our society, relatively little work has been done to holistically under-

stand how users interact with AI. Research on human factors and user experience 

considerations of AI technology is particularly insufficient. Most AI-related stud-

ies are focused on developing or improving AI algorithms themselves. Although 

machine learning and AI communities have recently started discussing Explaina-

ble AI to expand their research fields to converge with neighboring areas [9], there 

has still been relatively little consideration of users. Likewise, in the field of hu-

man-computer interaction (HCI), although research on some topics related to AI 

has appeared, the level of discussion is still low.  

Against this background, this thesis uses various HCI methodologies to ex-

amine how users interact with AI algorithms. Through the results of four separate 

but intertwined studies, this thesis argues that users want to have a more human-

like interaction with AI than the superficial relationship they have with existing 

computers; they want to understand and communicate with AI. Furthermore, this 

paper derives a set of guidelines for the design of interfaces based on AI algo-

rithms. 

 

Brief History of Artificial Intelligence 

Artificial Intelligence refers to intelligence demonstrated by machines, in contrast 
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to the natural intelligence displayed by human beings.1 In computer science, the 

term applies to any device that perceives its environment and takes actions that 

maximize its chance of successfully achieving its goals [10]. More recently, in the 

business context, the term is defined as “a system’s ability to correctly interpret 

external data, to learn from such data, and to use those learnings to achieve spe-

cific goals and tasks through flexible adaptation [11].” AI often refers to machines 

that mimic cognitive functions that humans associate with other human minds, 

such as learning and problem-solving [12].  

The field of AI research was founded at a workshop at Dartmouth College in 

1956 attended by Herbert Simon and Allen Newell of Carnegie Mellon University, 

John McCarthy and Marvin Minsky of MIT, and Arthur Samuel of IBM Research 

[13]. The conference established not just the term AI, but also the goals and scope. 

Since that event, AI has received a great deal of attention. By the mid-1960s, the 

United States Department of Defense heavily funded AI-related research, and la-

boratories researching AI were established around the world [13]. This is called 

the “inference period” of AI history, and many studies focused on making com-

puter systems capable of logical reasoning [14]. AI researchers were optimistic 

about the future of AI. Herbert Simon predicted that machines would be capable 

of doing any work a human could do within twenty years [15]. Marvin Minsky 

also predicted that within a generation, the problem of creating AI would substan-

tially be solved [15]. In this period, early natural language processing programs 

that demonstrated the superficiality of communication between humans and ma-

chines, such as Eliza, were created [16]. 

However, despite their optimistic expectations, the first winter came to AI 

research ([12], [15]). Computing power was not fully developed, so complex 

                                         
1 From Wikipedia (https://en.wikipedia.org/wiki/Artificial_intelligence) 
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problems could not be addressed. Some argued that since AI could not solve real-

world problems, researching AI was essentially making toys. The US government 

started to cut off exploratory research in AI, and most AI research laboratories had 

difficulty obtaining funding [17]. Surprisingly, HCI began to take its place as an 

academic discipline at this time. 

In the early 1980s, after the first harsh winter of AI, spring began to arrive. 

Knowledge engineering became the new keyword in the field, beginning the 

“knowledge period [14].” Due to the commercial success of expert systems ([12], 

[13], [15], [18]), a form of AI program simulating the knowledge and analytical 

skills of human experts, AI was recognized as having practical value in specific 

areas. For example, John McDermott of CMU developed the R1 (also called 

XCON), a production-rule-based system, to assist in the ordering of VAX com-

puter systems by automatically selecting components based on the customers’ re-

quirements [19]. Moreover, the introduction of multilayer perceptron and back-

propagation solved some persistent problems in AI [20] and rejuvenated the field.  

The field of AI research, however, reached winter again, later called the sec-

ond winter of AI ([13], [15], [17]). At this time the cost of maintaining computing 

power was still high. AI research faced criticism that “expert systems” were too 

focused on particular topics and had no general value. At the same time, many 

universities in the US adopted HCI as a division of their computer science depart-

ment [21]. Studies in computer engineering became interested in the practical use 

of computing systems and focused on user-related discussions, including the ques-

tion of usability. 

In the early 1990s, AI was revived with the introduction of computers with 

outstanding performance, called the “learning period [14],” the third period of AI 

research. There was a remarkable advance in computer power as described by 
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Moore’s Law. Research topics in AI became more cautious, focusing on practical 

use. Additionally, mathematical and scientific advances were made ([12], [13]), 

including the introduction of machine learning algorithms with superior perfor-

mance such as support vector machines (SVM) [22]. The spread of the Internet 

produced enormous amounts of data that became an essential basis for AI research. 

Since the late 2000s, AI has reached its peak and expects a rosy future. This 

is largely due to the development of deep learning, a class of machine learning 

algorithms that use a cascade of multiple layers of nonlinear processing units for 

feature extraction and transformation [23]. Deep learning algorithms can learn in 

a supervised or unsupervised way and can learn multiple levels of abstractions, 

forming a hierarchy of concepts. Deep learning architectures such as deep neural 

networks, deep belief networks [24], and recurrent neural networks (RNN) have 

been applied to various fields including speech recognition ([25], [26]), computer 

vision [27], natural language processing ([28], [29]), social network filtering [30], 

audio recognition [31], machine translation ([32], [33]), bioinformatics [34], med-

ical image analysis ([35], [36]), and board game programs ([37], [38]). In these 

fields, they have produced results comparable to and superior to human experts. 

In recent years, generation-related algorithms such as variational autoencoders 

(VAEs) [39] and generative adversarial networks (GANs) [40] have gained atten-

tion and are being continually developed. 

The recent advances in AI have also achieved remarkable results when uti-

lized in applications. IBM’s DeepQA developed Watson, a computer system ca-

pable of answering questions in natural language [41]. Watson competed on Jeop-

ardy against legendary champions Ken Jennings and Brad Rutter. IBM then an-

nounced that Watson would be used for utilization management decisions in lung 

cancer treatment. Voice assistant services such as Apple’s Siri and Samsung’s 

Bixby have also been launched and are becoming commonplace. Smart speakers 
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like Amazon Echo and Google Home also provide services based on AI technol-

ogy. It is expected that AI technology will become increasingly prevalent in vari-

ous areas ([2]–[8]). Accordingly, AI will affect the lives of more and more people.  

 

Why is Human-AI Interaction important? 

As artificial intelligence technology develops expertise to a level comparable to 

or beyond that of humans ([27], [42]), and various AI applications and services 

are emerging, its users are gradually becoming an essential factor in its success. 

As a result, discussions about human factors and user experiences of AI technol-

ogies and services are getting more attention. Despite the interest, however, com-

paratively little research has been done on this topic. Most studies on AI focus on 

technology-driven development, devoted to improving the performance of exist-

ing algorithms or developing new algorithms rather than exploring real-world 

problems that AI can solve. AI guru Ali Rahimi criticized AI technology as over-

fitting in technology at a conference keynote in 2017. The HCI field, which seeks 

to understand the various interactions between users and computing devices, is 

now resolutely focusing on the AI topic. However, many studies are still trying to 

fit AI into existing research topics, without a deep understanding of the developing 

AI technology.  

Under these circumstances, exploring human-AI interaction as a separate 

topic can be beneficial. HCI provides a range of methods for studying the interac-

tions between users and technology. Researchers in HCI design novel computer 

interfaces, optimize for desired properties, and evaluate factors such as usability. 

Moreover, they study the broader socio-cultural implications of technology use, 

and reflect upon the values that underlie computational design critically [43]. 

These viewpoints can complement the hitherto limited consideration of human 
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factors in the AI community and help prevent technology-based overfitting. 

Understanding human factors in AI can also improve the algorithms them-

selves. Humans influence various parts of the AI algorithm design process [44]: 

The raw data for learning that is the basis of an AI algorithm is, of course, infor-

mation about humans, often collected by humans. The data is designed by humans, 

to solve problems framed by humans. Humans are deeply involved in the refine-

ment of data, and humans choose its attributes. The math formulas are determined 

by humans. The model is evaluated and revised by humans. The predictive values 

of the model are given to humans, and humans decide how to interpret it appro-

priately, and where and how to use it. Predictions are often presented to humans 

through user interfaces designed by humans. In this way, it can be seen that many 

humans are involved in the algorithm design process, including both researchers 

and the general public. A deeper understanding of human factors would help re-

searchers account for this human influence, while also enabling them to design 

algorithms that are more intuitive and useful to humans. 

Lastly, by doing human-AI interaction research, HCI and AI could be syner-

gistic [45]. There has been an unjustified perception in HCI that AI is unreliable, 

and in AI that interfaces are merely cosmetic, which is a counterproductive disa-

greement. However, AI’s goal of intelligent interfaces would benefit enormously 

from the user-centered design principles of HCI, which would enable the design 

of more natural interactions with AI [45]. Likewise, applying AI technology to 

user interface design would provide users with more intelligent software [45].   

 

Algorithm-based systems using AI 

As discussed above, it is no exaggeration to say that AI has evolved in two direc-

tions: one is technology-focused (algorithm design and its performance 
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evaluation), and the other is market-focused (services and products using AI tech-

nology). On the technology side, AI research has only considered creating the best 

performing model for a given set of data. Researchers in technology development 

areas such as machine learning, computer vision, and speech synthesis have rela-

tively little concern of when and how their results will be used. On the market side, 

services and products related to AI give the impression that they are made to 

preempt the technology, rather than providing the user with a complete and opti-

mized experience. Although both areas of development are important in human-

AI interaction, the former has the shortcoming of ignoring users and practical 

value, while the latter is individual product-focused, lacking holistic understand-

ing.  

For this reason, this study narrows the scope of its exploration of Human-AI 

Interaction to algorithm-based systems using artificial intelligence (Figure 1-1). It 

includes algorithms that have advanced the development of AI in recent years and 

provides an opportunity to look more closely at how users interact with those al-

gorithms. Through algorithm-based systems using AI can, the study is able to fo-

cus on users’ interactions with actual algorithms, rather than merely evaluating the 

user experience of off-the-shelf products or services. In this way, this study strives 

to inform AI research of the importance of human factors and user experience, 

and at the same time find a contact point between the AI and HCI fields. 

 
Figure 1-1. Algorithm-based system using AI 
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What is interaction? 

Before examining human-AI interactions for algorithm-based systems using AI, 

this dissertation examines the concept of interaction and chooses an appropriate 

interaction model as a framework. To this end, this study refers to Kasper Horn-

baek’s work on the definition of interaction [46]. In a recent essay arguing that 

few attempts to directly define interaction have been made, he conducted a thor-

ough literature review of the term and categorized the definitions into seven con-

cepts: interaction as (1) dialogue, (2) transmission, (3) tool use, (4) optimal be-

havior, (5) embodiment, (6) experience, and (7) control [46].  

Among these categories, this thesis focuses on the dialogue concept. This 

concept sees interaction as a cycle of communication acts between machine and 

human [47]. The communication cycle is a deep and ongoing, consisting of sev-

eral stages. Thinking of interaction as a dialogue allows understanding from a 

longer-term perspective. Since this thesis seeks a deeper and more complete un-

derstanding of the interaction between humans and AI algorithms, the dialogue 

concept is an appropriate framework to apply. 

One of the representative models of interaction as dialogue is Donald Nor-

man’s gulf of execution model ([48]–[50]). This model divides the steps in which 

the user interacts with the physical system into three areas: perception, interpreta-

tion and evaluation, and sequence of actions. Perception refers to users observing 

the state of the system, whereas the interpretation and evaluation phase covers 

users making sense of that state and assessing the outcome. Sequence of actions 

refers to the user forming an intention, specifying a sequence of actions, and exe-

cuting the action sequence.  

These stages are all significant topics in relation to AI algorithms. With regard 

to perception, there is the question of what a priori knowledge and ethics people 
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have about AI and technology. With regard to interpretation and evaluation, de-

bates are frequently raised about bias in AI algorithms, Explainable AI (XAI), and 

other topics related to user trust in AI. With regard to sequence of actions, there 

are discussions about how the user manipulates the interface and what factors 

should be considered in the user and AI partnership.  

Applying the dialogue view of human-AI interaction to examine various as-

pects of AI algorithms, this dissertation aims to understand how to design an al-

gorithm-based AI interface that better meets users’ needs (Figure 1-2). 

 
Figure 1-2. Norman’s interaction model. Norman’s gulf of execution model di-
vides the steps in which the user interacts with the physical system into three areas: 
perception, interpretation and evaluation, and sequence of actions. 

 

1.2 Research Goal 

This thesis aims to examine the different stages of interaction between humans 

and algorithm-based AI through various HCI methods and derive design implica-

tions for AI-embedded user interfaces.  
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1.3 Research Questions 

The main research question of this thesis is “How do people interact with algo-

rithm-based systems using AI?” Under this question, it asks the following.  

 

RQ1: How do people perceive algorithm-based systems using AI? 

• What are the characteristics of human perception of AI algorithms? 

• What factors affect people’s perception of AI algorithms?   

 

RQ2: How do people interpret and evaluate algorithm-based systems using 

AI? 

• Can people interpret the principles of AI algorithms? If so, how do they try to 

interpret them? How does their interpretation affect user experience? 

• How do people evaluate the output of AI algorithms? Do they think the results 

are reasonable? What factors affect these assessments? 

 

RQ3: How do people build sequential actions with AI? 

• Who do users prefer to take the initiative and which communication means 

should be provided to users in this process? 

• What factors affect the user experience of the sequence of actions stage of 

interaction? 

 

RQ4: How do people use a practical application of an algorithm-based sys-

tem using AI? 
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• How does the user evaluate the addition of functionality and modality to al-

gorithm-based systems using AI? 

• What should be introduced into the AI interface design to provide functional-

ity and modality that meets user expectations? 

 

 
Figure 1-3. Thesis overview 

 

The thesis consists of four sub-studies (Figure 1-3): (1) The first study investigates 

how people perceive AI algorithms; (2) the second study focuses on how people 

interpret AI algorithms; (3) the third study considers how people cooperate with 

AI algorithms; (4) the fourth study investigates the user experience of a news ser-

vice generated by an AI algorithm as an application case study of how people 

interact with AI algorithms. Through these separate but intertwined studies, this 

thesis concludes that users want to have a more human-like interaction with AI 

than the superficial relationship they have with existing computers; they want to 

understand and communicate with AI. In addition, this thesis derives guidelines 

for interface design based on AI algorithms. 

 

1.4 How People Perceive Algorithm-based Systems Using 
Artificial Intelligence 

The first stage of investigation into human interaction with algorithm-based 
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systems using AI sought to understand how people perceive these systems. This 

study uses the Google DeepMind Challenge Match as a case study. The result of 

the match shocked and amazed many people in Korea; it provoked public discus-

sion and therefore provided a good opportunity to investigate the general public’s 

opinions, responses, and concerns about AI. After recruiting 22 participants, semi-

structured interviews about the match were carried out. 

This study identified a dichotomous (“us vs. them”) view of AI. Specifically: 

(1) People had preexisting stereotypes and prejudices about AI, mostly acquired 

from media sources such as Hollywood movies. Participants simultaneously be-

lieved that AI could cause harm to humans and that AI should assist and help 

humans. (2) People had ambivalent feelings about AI. They anthropomorphized 

but also alienated AlphaGo, evaluating it based on its perceived human character-

istics while also focusing on features that differed from typical human traits. (3) 

People expressed concerns over a future society in which AI is widely used. They 

worried that AI would replace their jobs and they would not be able to control AI 

technology.  

This work illustrates a confrontational relationship between users and AI and 

suggests the need to create a new kind of user experience in this nascent socio-

technological space. It calls for a collaborative research effort from the HCI com-

munity to study and accommodate users in a future in which they interact with 

algorithms, not just interfaces.  

 

1.5 How People Interpret and Evaluate Algorithm-based 
Systems Using Artificial Intelligence 

For the second phase of understanding how people interact with algorithm-based 

systems using AI, this study investigated users’ reasoning about and evaluation of 
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an AI algorithm. A research probe called AI Mirror was designed, an application 

that algorithmically scored the aesthetic value of photographs users had taken or 

selected, based on a deep neural network model (Figure 1-4). A user study em-

ploying both quantitative and qualitative methods was conducted. A total of 18 

participants were recruited, consisting of a balanced mix of AI/ML experts, pho-

tographers, and members of the general public. They performed a series of tasks 

in which they took photos using AI Mirror, reasoned about AI Mirror’s algorithm 

through the think-aloud method, and answered a questionnaire to report their ex-

pected scores for the photos as well as rating the interpretability and reasonability 

of the AI’s scores. Semi-structured interviews about how users experienced the 

system were also conducted. The results of the study can be summarized as fol-

lows. 

(1) Users showed different characteristics in reasoning about the AI algorithm 

depending on their group (i.e. experts, photographers, or general public); they un-

derstood the AI using group-specific expertise. The photographers were able to 

best interpret the AI’s aesthetic scores and considered them reasonable. On the 

other hand, the AI/ML experts had difficulty interpreting these scores and consid-

ered them relatively unreasonable. (2) Users adopted personal strategies to infer 

the AI’s principles of evaluation over time. They used approaches that involved 

making subtle changes to various photo elements and testing their ideas through 

examples. If there was a difference between the users’ thoughts and the AI’s pre-

dictions, they then had difficulty interpreting the AI’s predictions and considering 

them reasonable. 
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Figure 1-4. AI Mirror 

 

Based on these findings, design recommendations for AI-powered user inter-

faces that convey subjective results to users were derived: (1) Integrate diverse 

expertise and user perspectives to ensure algorithm transparency and fairness. (2) 

Take advantage of people’s curiosity about AI principles. (3) Help AI and users 

understand each other through mutual communication.  

 

1.6 How People Build Sequential Actions with Algorithm-
Based Systems Using Artificial Intelligence 

The third phase of the research on algorithm-based human-AI interaction sought 

to understand how people cooperate with AI algorithms.  

First, a prototype AI named DuetDraw was designed. The prototype allowed 

users to collaboratively draw pictures with an AI (Figure 1-5). Using state-of-the-

art AI techniques, DuetDraw performed a variety of AI-based functions to help 

users draw. These drawing tasks include completing the rest of an object that a 

user started drawing, drawing the same object in a different style, suggesting an 

object that matched the picture the user had created, finding an empty space on 

the canvas, and automatically colorizing sketches.  

To better understand users’ experiences of user–AI collaboration, a user study 
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of DuetDraw using a mixed method approach was designed and conducted. As 

the major factors, the effects of the type of communication (detailed/basic) and 

initiative (lead/assist) on the user experience were considered. By combining these 

two factors, four experimental conditions and one control condition (no AI) were 

designed. Thirty participants were recruited and asked to conduct a series of draw-

ing tasks. Users’ input was gathered with the think-aloud method during the tasks 

and a survey and semi-structured interview that followed. The results of the study 

indicated the following: (1) Users prefer detailed instructions over basic instruc-

tions when communicating with AI. Users always want to take the initiative and 

only want the AI to provide detailed explanations about its process when asked. 

(2) Although the AI can provide users with useful, effective, efficient, and fun 

experiences, it can lower the perceived predictability, comprehensibility, and con-

trollability of drawing tasks. 

 

Figure 1-5. Drawing steps using DuetDraw 

 

Based on these findings, design implications for user interfaces in which us-

ers and AI collaborate on creative work were derived: (1) Let users take the 
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initiative. (2) Provide just enough instruction. (3) Embed interesting elements in 

the interaction. (4) Ensure a balance between AI elements.  

 

1.7 How People Use a Practical Application of an Algo-
rithm-based Systems Using Artificial Intelligence 

As an applied case study of human-AI interaction, an automated journalism re-

search project called NewsRobot was designed (Figure 1-6). NewsRobot automat-

ically generated a series of summary news articles about the PyeongChang 2018 

Winter Olympic Games in real time. It collected data on the results of major events 

and athlete details from official websites, processed the data, and input it into a 

predesigned article structure. The system was designed to generate news with two 

different types of content (general/selective) in three different styles 

(text/slide/video). By combining the two factors, it could produce six different 

types of news articles for every event.  

 
Figure 1-6. NewsRobot 

 

A user study of NewsRobot with both quantitative and qualitative approaches 

was conducted. Thirty participants were recruited to watch Olympic Games events 

on TV and then shown six types of news article per event. They then answered 

questionnaires on each article and took part in semi-structured interviews. The 

result of the study can be summarized in the following three points: (1) Content: 

While users preferred selective news to general news, they considered selective 



 
 

 

- 18 - 

news less credible than general news. (2) Style: As more news presentation ele-

ments were added, users’ preference increased. People liked video news most, 

followed by slide news and then text news. In terms of quality, users rated slide 

news as clearer and more concise than video and text news. (3) Overall assessment: 

While people were satisfied with NewsRobot’s accuracy, objectivity, personaliza-

tion function, and various presentation elements, they found the articles were 

sometimes dull, repetitive, and out of context.  

Based on these findings, the following design implications for user interfaces 

for algorithm-based automated news generation systems were derived: (1) Provide 

selective news with adaptable interfaces. (2) Present various multimedia elements 

without overwhelming the user. (3) Collect quality data to refine news generation 

algorithms.  

 

1.8 Thesis Statement 

Artificial intelligence algorithms and users have a subtle relationship. People tend 

to anthropomorphize as well as alienate AI. In particular, when given subjective 

information that was automatically computed by an algorithm, the user wants to 

know the rationale and communicate with the AI about it. The user does not want 

to lose control when continuing to interact with AI and wants a detailed descrip-

tion of the information they need. Users want to be provided with functionality 

that meets their expectations rather than AI showing off its capabilities. 

 

1.9 Contributions 

The core contribution of this thesis is to understanding AI algorithms in terms of 

human factors and user experience, investigating it with various topics and modes 
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of HCI. Based on this, it can be divided into the following detailed contributions.   

• Empirical results on human–AI algorithm interaction: Through both 

quantitative and qualitative approaches, this study closely observed the inter-

action between AI algorithms and users and discovered new aspects of this 

interaction. It investigated people’s fear of AI from various perspectives and 

identified the confrontational “us vs. them” view between humans and AI, 

which is distinct from existing views on computers. This work also yielded 

experimental results showing how users’ unique characteristics affected the 

process of interpreting the outcomes of AI algorithms in terms of strategy, and 

communication. Furthermore, the study provided insights on the user experi-

ence of an automated news generation system. 

• Research probes: AI-powered user interfaces were designed for three of the 

studies, playing a crucial role in understanding the user’s interactions: AI Mir-

ror, a user interface that gives aesthetic scores to photographs based on a deep 

neural network model, DuetDraw, a collaborative drawing application based 

on neural network technology, and NewsRobot, an automated news generation 

system that produces multiple news articles considering content and style.  

• Design implications: This thesis discussed design implications for intelligent 

user interfaces that are based on AI algorithms. These include implications for 

interfaces that deliver a variety of interpretable results, which could be utilized 

by both the AI/ML and HCI communities, interfaces with which users and AI 

can communicate and cooperate for creative work, and practical interfaces that 

provide users with information in various forms.  

• Theoretical contribution: This thesis stresses the importance of AI algo-

rithms and their human factors and user experience in the HCI field and sug-

gests the concept of an expanded user interface and algorithmic experience.   
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1.10 Thesis Overview 

Chapter 2 lays the groundwork for understanding how human interact with arti-

ficial intelligence algorithm by covering major research challenges in the context 

of related work. 

The main part of the thesis introduces four studies of algorithm-based human-AI 

interactions. The first three of the four studies investigate the interaction between 

the algorithm and people with different stages. The final study is an application 

case study for practical applications. These chapters span motivations, methodol-

ogy, findings and results of each user study. 

• Chapter 3 investigates how people perceive algorithm-based systems using 

AI with a case study of the Google DeepMind Challenge Match, a Go match 

between Lee Sedol and AlphaGo, in March 2016. This study explores the un-

derlying and changing perspectives toward AI as users experienced this his-

toric event. 

• Chapter 4 presents understanding of how people interpret and evaluate algo-

rithm-based systems using AI. In this chapter, AI Mirror, an interface that tells 

users the algorithmically predicted aesthetic scores of photographs is intro-

duced.  

• Chapter 5 presents understanding of how people build sequential actions with 

algorithm-based systems using AI. In this chapter, DuetDraw, an AI interface 

that allows users and the AI agent to draw pictures collaboratively is intro-

duced.  

• Chapter 6 presents understanding how people use practical application of al-

gorithm-based systems using AI. In this chapter, NewsRobot, a research pro-

totype that automatically generates news on major events of the PyeongChang 
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2018 Winter Olympic Games is introduced.  

Chapter 7 summarizes design lessons from the four studies and discuss major 

design dimensions and limitations to assist future researchers and practitioners in 

their human-AI design. 

Finally, Chapter 8 reviews the contributions of the thessis and proposes future 

research directions for human-AI interaction. 
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2 RELATED WORK 

 
As preparation for this research, studies related to the following four themes were 

reviewed: human perception of AI algorithms, users’ interpretation and evaluation 

of AI algorithms, how people build sequential actions with AI algorithms, and 

practical design of algorithm-based systems using AI. 

 

2.1 Human Perception of AI Algorithms 

This section addresses key topic areas related to human perception of AI algo-

rithms: technophobia, and anthropomorphism. 

 

2.1.1 Technophobia 

For the most part, studies on technophobia have focused on investigating the re-

lationship between computer anxiety and demographic variables, such as age [51], 

gender ([52]–[54]), personality [55], occupation [56], nationality [57], and cul-

tural differences [58]. These studies have revealed the various factors affecting 

computer-using behaviors, such as the differences among users that can influence 

computer anxiety ([51], [56], [58]) or attitudes toward computers ([53], [54], [57]), 
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and the factors that make customers hesitant to purchase computer devices [52].  

This thesis differs from these previous studies regarding technophobia, in that 

it focuses on AI rather than simple computers. Although previous studies have 

shown the importance of understanding fear of technology, most have addressed 

the issue in terms of computer usage and made little attempt to account for AI 

technology. As AI includes cognitive functions that humans associate with other 

human minds, such as learning and problem solving [12], it can be distinguished 

from simple computers, which are regarded as tools to complete certain tasks. To 

elucidate and account for people’s fear of AI technology, it is necessary to carry 

out a study approaching users’ views on AI with novel perspectives, as well as 

embracing the previous studies.  

 

2.1.2 Anthropomorphism 

In order to further understand the human perspective on AI technology, this study 

reviewed the concept of anthropomorphism, the tendency to attribute human char-

acteristics to inanimate objects. It involves attributing cognitive or emotional 

states to something based on observation in order to rationalize an entity’s behav-

iors in a given social environment [59]. According to Dennett, people tend to in-

terpret the behavior of an entity by treating it as if it were a rational agent govern-

ing its choice of action by considering its beliefs and desires [60]. Anthropomor-

phism is also linked to its inverse, dehumanization, the tendency to deny human-

essential capacities to some agents and treat them like nonhuman objects [61].  

Anthropomorphism has received attention in various disciplines beyond the 

field of psychology. It is well known that the concept has provided a useful mech-

anism for robot interaction design, especially in social robot research ([62], [63]). 

It has also long been discussed in the HCI domain. For example, Nass conducted 
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various studies that investigated users’ tendency to anthropomorphize computers 

when interacting with them ([64], [65]), and emphasized that people treat artificial 

objects like real humans [66] (CASA mode; computers as social actors).  

 

2.2 User’s Interpretation and Evaluation of AI Algorithms 

This section addresses the related work of users’ interpretation and evaluation of 

AI algorithms with three key topics: interpretability of algorithms and users’ con-

cerns; sense-making and gap between users and AI algorithms; and user control 

in intelligent systems. 

 

2.2.1 Interpretability of Algorithms and User’s Concerns 

Despite the remarkable advances of artificial intelligence algorithms with the de-

velopment of deep learning (DL), it has been pointed out that it is relatively diffi-

cult to understand how the internal principles and mechanisms of the algorithms 

work ([67]–[69]). To elucidate the principles of the algorithms, researchers of the 

AI/machine learning (ML) community have conducted various studies ([70]–[73]). 

Some research has been conducted on the topic of explanatory AI (XAI) ([9], [74], 

[75]). However, as algorithms extend to the domain of human creativity, where 

people can have various subjective interpretations, the issue of the interpretability 

of the results of algorithms and their principles will continue to be raised. 

The HCI community has also regarded algorithms as an important research 

topic ([76]–[78]). In particular, many studies have focused on the fairness and 

transparency of algorithms ([79]–[81]). Some studies related to algorithmic fair-

ness suggest that algorithms could be less objective than required, manifesting 

increased bias ([82], [83]). Furthermore, since algorithms affect diverse user 
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communities, this can be extended not only to individual problems but also to 

social problems, such as racial injustice and economic in equality [84]. Users’ 

concerns over the potential harm of algorithms could substantially affect their trust 

in user interfaces [84].  

Ensuring the transparency of algorithms could be a useful way to overcome 

these problems. It can affect people’s trust in a system and their interactions with 

the system ([79], [85]), and it can allow people to question and critique a system 

in order to develop appropriate reliance on it [86]. Therefore, it would be im-

portant in AI interface design to investigate whether users can understand the al-

gorithm and consider it transparent and reasonable.  

 

2.2.2 Sense-making and Gap between Users and AI algorithms 

Sense-making is a set of processes initiated when people recognize the inadequacy 

(gap) of their current understanding of events ([87], [88]). In this situation, indi-

viduals build, verify, and modify their mental models to account for the unrecog-

nized features. It is reported that knowledge and expertise in related fields could 

affect people’s sense-making processes [89]. Since the concept has been consid-

ered as a framework to understand the interaction between people and information 

technology [90], numerous studies have used it as a research method ([91], [92]) 

or introduced interactive systems for supporting it ([93], [94]). 

The concept and framework could also be applied to the 196 understanding 

of how people reason about the results of AI algorithms. As AI algorithms are 

producing and communicating results that go beyond what people can understand, 

there could be a difference between the results of AI and human perceptions. In 

addition, because people’s expertise in AI/ML varies so widely, this can have a 

different impact on people making sense of AI algorithms. Under these 
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circumstances, looking at the processes people use to reduce the difference be-

tween their thinking and the results of AI algorithms can provide important dis-

coveries about how people interact with AI algorithms. It is also important to look 

at how this process will differ, especially when each person has different expertise, 

because AI algorithms are spreading to various fields of expertise and interacting 

with various users other than AI/ML experts.  

 

2.2.3 User Control in Intelligent Systems 

In the HCI community, there has been discussion of how users and automated 

systems communicate [95]. Some have conducted research based on the idea of 

developing an adaptive and intelligent agent that automatically responds to user 

behavior ([96], [97]). In contrast, other groups of scholars have argued that a sys-

tem encouraging users’ ability to manipulate interfaces directly should be consid-

ered [98]. In addition, a mixed-initiative viewpoint has been raised that combines 

the two to take advantage of each ([99]–[101]). Recent advances in AI algorithms 

have rekindled interest in these discussions, since AI algorithms can now respond 

to user behavior more intelligently than ever before and users are communicating 

in new ways rather than simply manipulating the interface. Accordingly, in this 

study, the interaction between the user and AI algorithms will be closely observed 

and analyzed to see what control and communication could provide value to users 

and extend this discussion. 

 

2.3 How People Build Sequential Actions with AI Algo-
rithms 

This section addresses key topic areas related to how people build sequential 
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actions with AI algorithms: AI, deep learning, and new user experience in creative 

works and communication and leadership between humans and computers.  

 

2.3.1 AI, Deep Learning, and New UX in Creative Works 

The rise of AI in recent years is largely due to the development of deep learning. 

It has introduced not only technological innovation ([23], [102], [103]), but also 

new interfaces ([104], [105]), providing users with experiences that they have 

never experienced before. It is also being applied in creative areas considered 

unique to humans, such as writing ([106], [107]), musical composition ([108], 

[109]), and drawing [110]. 

AI algorithms are also being applied in creative areas considered unique to 

humans, such as writing ([106], [107]), musical composition ([108], [109]), and 

drawing [110]. In drawing, several new interfaces using deep learning have been 

introduced. Quick, Draw! [111] is an online game that challenges players to draw 

a picture of an object, and then AI guesses what the drawings represent using a 

neural network. AutoDraw [112] recognizes a hand-drawn doodle and suggests its 

clean clip art replacement. Davis et al. developed Drawing Apprentice, which can 

collaborate with users by analyzing their drawn input and responding in real time 

in improvisational interactions ([113], [114]).  

Various deep learning algorithms that can support these drawing interfaces 

have been developed. Sketch-RNN [115] is a recurrent neural network for con-

structing stroke-based drawings of common objects; it can mimic human figures 

and draw pictures. When a user starts drawing a shape, it automatically completes 

the drawing. It can also generate similar but unique objects. PaintsChainer, a 

CNN-based line drawing colorizer, can automatically paint any sketch [116]. 

Gatys et al. also developed a neural network for blending the content of one image 
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and the style of another image [117]. It can transform any image into a classical 

painter’s style.  

Although these new interfaces and algorithms are still in the experimental 

stages, they have opened up the possibility for humans and AI to work together to 

produce creative outcomes. This thus calls for a new research agenda: understand-

ing users’ perceptions of these new technologies and developing design guidelines 

to improve UX ([11], [118]). In this respect, by combining AI algorithms and per-

spectives of prior studies, this study designed a prototype with which humans and 

AI can produce complex and creative output such as drawn pictures.  

 

2.3.2 Communication and Leadership among Users and AI 

How humans and computers should communicate and who should take the initia-

tive in their interaction has been studied as a primary subject in HCI. In the case 

of communication, there has been discussion about whether providing users with 

detailed instruction is beneficial [43]. Detailed instructions, such as dialogue, 

modal windows, and alerts, can help users to complete tasks and reach their goals 

more quickly and easily and direct users’ attention to the tasks. However, they can 

frustrate users when they are wrong or when they interrupt users’ performance 

([43], [119]). Given these advantages and disadvantages, it is important to design 

an appropriate communication style in accordance with the characteristics of each 

interface.  

In the context of user–AI interfaces, especially those in which users and AI 

closely collaborate, the communication issue is also significant. AI algorithms are 

often considered black boxes [120]; that is, it is difficult to convey their opera-

tional processes and principles to users. Thus, it is important to identify the appro-

priate communication method to enhance the user experience of novice interface 
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users.  

Meanwhile, there has been discussion about whether users or computers 

should take the initiative in the interaction. The most notable debate concerns 

whether direct manipulation or interface agents should be employed ([95], [121]). 

Researchers supporting the former mainly claim that direct manipulation affords 

the user control and predictability in their interfaces. In contrast, researchers sup-

porting the latter argue that users have to delegate certain tasks or certain parts of 

tasks to agents. Further studies have been conducted on how to take the initiative 

with an agent when arranging collaboration between users and computers ([100], 

[122]).  

In designing interfaces in which users and AI collaborate in creative work, 

the initiative issue could also be a critical factor. Since creative work has been 

considered human-specific, it is important to understand humans’ perceptions of 

initiative in collaborating with AI and consider them in design.  

Based on this background, this study focuses on the communication and ini-

tiative issues and explores how these can affect the user experience of interfaces 

in which users and AI work together.  

 

2.4 Practical Design of Algorithm-based Systems Using AI 

This section addresses the related work of practical design of algorithm-based sys-

tems using AI with three key topics: automated journalism; personalization of 

news content; and the effect of multimedia modality level on the user experience. 
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2.4.1 Automated Journalism 

In line with the attempt to apply technology to journalism ([123]–[125]), auto-

mated journalism (also known as robot journalism), the generation of news arti-

cles using computer software instead of human reporters, has been introduced 

([126]–[128]). Since the technology can create a large number of news articles 

quickly and accurately, it has attracted the attention of both the media industry 

([129]–[131]) and scholars ([132]–[134]). Many researchers have searched for 

technical ways of generating news articles that are indistinguishable from those 

of human reporters ([135], [136]). In addition, these technical explorations have 

brought about extended discussion of the sociocultural impacts [137], such as au-

thorship [128], labor substitution ([138]–[141]), and algorithm power ([142]–

[144]).  

In the field of HCI, several studies have suggested different kinds of author-

ing tools to support news content generation ([145]–[147]). Recently, Kim and 

Lee proposed a five-step robot journalism framework for automated news content 

generation [148], which consisted of (1) data crawling, (2) event extraction, (3) 

key event detection, (4) mood detection, and (5) news article generation. Based 

on this framework, they also created an algorithm-driven interactive news gener-

ation system, revealing its capability of generating news stories that are signifi-

cantly more interesting and enjoyable than traditional news articles [149]. 

Meanwhile, recent discussions related to automated news emphasize dealing 

with the user experience of the news media more closely ([150], [151]). As news 

is being consumed through various online media, and various news curation algo-

rithms are being created, many problems, such as filter bubbles and misinfor-

mation, are getting worse ([83], [152]). Furthermore, if the algorithms are actively 

involved in news generation as well as news curation, there is a possibility that 
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these problems will worsen even more.  

In this circumstance, this study aims to design and create an automated news 

system with various factors, identify the potential of automated journalism, and 

evaluate them from various perspectives, and create a basis for a discussion of a 

system design that promotes a desirable user experience. 

 

2.4.2 Personalization of News Content 

Personalization involves activities that tailor information or services to users em-

ploying knowledge about them to achieve targeted goals [153]. As an important 

social phenomenon generating significant economic value, it has drawn a lot of 

attention from various areas, such as economics [154], management ([155], [156]), 

marketing ([157], [158]), information systems ([159]–[161]), and computer sci-

ence ([162], [163]).   

Of course, personalization is one of the most critical issues in automated jour-

nalism ([164], [165]). In automated journalism, software algorithms can use the 

same data to tell stories from different angles, customizing languages, topics, 

tones, and styles according to an individual reader’s preferences. Research has 

demonstrated that personalized messages can engage and persuade an audience 

more effectively than generic mass messages ([166], [167]).  

On the other hand, another study revealed that the use of a selective news 

system can have a direct negative effect on knowledge [161]. Excessive personal-

ization through automation also has the potential to allow users to collect and con-

sume only biased information. The problem of transparency and fairness of algo-

rithms in the personalization process is also constantly being raised. 

As the personalization of news can lead to various positive and negative 
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effects on the user experience, this work pursues further research on these issues 

and practical discussions to enhance users’ experience of the system while pre-

venting negative aspects.  

 

2.4.3 Effect of Multimedia Modality on User Experience 

As people now consume news media through smartphone web browsers, the re-

sources used to produce news articles are no longer limited to text but also include 

images, audio/video clips, and graphic animations ([168], [169]). Adding multi-

media resources to news articles can increase audiences’ engagement in news ar-

ticles [170]. However, most automated journalism research has focused on text 

news generation ([28], [135]). It is necessary to recognize the possibility of using 

such multimedia and to introduce these factors into news generation. 

Generally, in interface design, the use of multimedia can increase the expres-

siveness, usability, and enjoyment of computer interfaces as well as content itself 

[171]. On the other hand, simply increasing the multimedia modality level of an 

information system can increase its complexity and adversely affect its ability to 

convey information [172]. Introducing multimedia modalities requires more at-

tention to user needs and comprehensive field studies to investigate the most ap-

propriate solutions for each kind of application and user category [172].  

Based on these perspectives, this study aims to investigate how the user ex-

perience of watching news generated by an automated journalism system is af-

fected as multimedia modality elements (from text to images and audio/video clips) 

increase and discuss the appropriate level of multimedia modality in automated 

news generation systems. 
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3 HOW PEOPLE PERCEIVE 
ALGORITHM-BASED SYSTEMS 
USING ARTIFICIAL 
INTELLIGENCE 

 
Various forms of artificial intelligence, such as Apple’s Siri and Google Now, have 

permeated our everyday lives. However, the advent of such “human-like” tech-

nology has stirred both awe and a great deal of fear. Many consider it a woe to 

have an unimaginable future where human intelligence is exceeded by AI. This 

chapter investigates how people perceive and understand AI with a case study of 

the Google DeepMind Challenge Match, a Go match between Lee Sedol and Al-

phaGo, in March 2016. This chapter explores the underlying and changing per-

spectives toward AI as users experienced this historic event. Interviews with 22 

participants show that users tacitly refer to AlphaGo as an “other” as if it were 

comparable to a human, while dreading that it would come back to them as a po-

tential existential threat. Our work illustrates a confrontational relationship be-

tween users and AI, and suggests the need to prepare for a new kind of user 
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experience in this nascent socio-technological change.2 It calls for a collaborative 

research effort from the HCI community to study and accommodate users for a 

future where they interact with algorithms, not just interfaces. 

 

3.1 Motivation 

The advancement of machine learning, the explosive increase of accumulated data, 

and the growth of computing power have yielded artificial intelligence technology 

comparable to human capabilities in various fields ([173]–[175]). It allows com-

mon users to interact with intelligent devices or services using AI technology, such 

as Apple’s Siri and Amazon’s Echo. It is expected that AI technology will become 

increasingly prevalent in various areas, such as autonomous vehicles ([2], [3]), 

medical treatment ([4], [5]), game playing ([6], [7]), and customized advertise-

ments [8].  

However, some people fear AI. Many scientists, including Stephen Hawking 

and Ray Kurzweil, have expressed concerns about the problems that could arise 

in the age of AI ([176], [177]). According to an online survey conducted by the 

British Science Association (BSA) [178], about 60% of respondents believe that 

the use of AI will lead to fewer job prospects within 10 years, and 36% believe 

that the development of AI poses a threat to the long-term survival of humanity. 

Such fears could lead to a downright rejection of technology [179], which could 

have negative effects on individuals and society [180]. Therefore, making a sin-

cere attempt at understanding users’ views on AI is important in the area of hu-

man-computer interaction.  

                                         
2 This chapter has adapted, updated, and rewritten content from a paper at CHI 2017 [77]. All uses 
of “we,” “our,” and “us” in this chapter refer to coauthors of the paper. 
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This chapter aims to investigate the various aspects of people’s fear of AI and 

the potential implications for future interfaces. To this end, we took the Google 

DeepMind Challenge Match [181] as a case study. The match comprised a five-

game Go match between Lee Sedol, a former world Go champion, and AlphaGo, 

a computer Go program developed by Google DeepMind. The match was held in 

Seoul, Korea, in March 2016. Before the match, Lee was expected to defeat Al-

phaGo easily. However, he lost the first three games in a row. Although Lee won 

the fourth game, AlphaGo won the overall match. The result shocked and amazed 

many people, provoking public discussion. The match provided a good oppor-

tunity to investigate the general public’s opinions, responses, and concerns about 

AI.  

To investigate and understand users’ fear of AI, or more specifically of AlphaGo, 

we recruited 22 participants and carried out semi-structured interviews about the 

match. While conducting the study, we intentionally left the term AI undefined so 

that we could collect various conceptions on AI without prompting participants. 

We identified that people had a dichotomous (“us vs. them”) view of AI. The find-

ings from the study can be summarized as follows:  

• People had preexisting stereotypes and prejudices about AI, mostly acquired 

from media such as Hollywood movies. They believed that AI could cause 

harm to humans, and that AI should assist and help humans.  

• People’s thoughts changed according to the result of each game of the match. 

At first, people were immensely shocked and apprehensive. As the match pro-

gressed, they began to cheer for Lee Sedol as if he were a representative of all 

of humanity.  

• People not only anthropomorphized but also alienated AlphaGo. People eval-

uated AlphaGo based on its perceived human characteristics.  
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• People expressed concerns about a future society where AI is widely used. 

They worried that their jobs would be replaced by AI and humans would not 

be able to control the AI technology.  

Based on these findings, we discuss the current awareness of AI from the public 

and its implications for HCI as well as suggestions for the future work. The rest 

of this chapter describes related works and the basic information on the match, 

then details the study design and findings, followed by a discussion.  

 

3.2 Google DeepMind Challenge Match 

The Google DeepMind Challenge Match [181] was a Go match between Lee 

Sedol, a former world Go champion, and AlphaGo, an AI Go program. It took 

place in Seoul, South Korea, between March 9 and 15, 2016. Since Go has long 

been regarded as the most challenging classic game for AI, the match brought a 

lot of attention from AI and Go communities worldwide. The match consisted of 

five games, and by winning four of the five games, AlphaGo became the final 

winner of the match. A detailed explanation of the players is as follows:  

• AlphaGo is a computer Go program developed by Google DeepMind. Its al-

gorithm uses a combination of a tree search and machine learning with exten-

sive training from human expert games and computer self-play games [37]. 

Specifically, it uses a state-of-the-art Monte Carlo tree search (MCTS) guided 

by two deep neural networks: the “value network” to evaluate board positions 

and the “policy network” to select moves [37]. It is known as the most pow-

erful Go-playing program ever, and the Korea Baduk Association awarded it 

an honorary 9-dan ranking (its highest).  

• Lee Sedol is a South Korean professional Go player of 9dan rank. He was an 
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18-time world Go champion, and he won 32 games in a row in the 2000s. 

Although he is no longer the champion, he is still widely acknowledged as the 

best Go player in the world. Unlike the traditional Go playing style of slow, 

careful deliberation, he reads a vast number of moves and complicates the 

overall situation, finally confusing and annihilating his opponent. This style 

created a sensation in the Go community. Many Koreans consider him a ge-

nius Go player.  

The result of the match was a big surprise to many people, as it showed that AI 

had evolved to a remarkable level, even outdoing humanity in an area requiring 

advanced intelligence. After the first game, Demis Hassabis, the DeepMind 

founder, posted the following tweet: #AlphaGo WINS!!!! We landed it on the moon 

[1]. This implied that it was a very important moment in the history of AI research 

and development.  

However, in Korea where the game was held, the defeat of Lee caused a tremen-

dous shock. This was partly due to the cultural implications of Go in Korea and 

its popularity. Go is considered one of the most intellectual games in East Asian 

culture, and it is extremely popular in Korea. Many people were very interested 

in the match before and after the event. In addition, people’s expectation of Lee’s 

victory was huge. Since most people expected that Lee would win the game, they 

could not accept the result that AlphaGo, the AI Go program, had defeated Lee, 

the human representative. Every match day, all national broadcasting stations in 

Korea reported the shocking news as top stories. Throughout the country, both 

online and offline, people talked about the event, expressing fear of AI as well as 

AlphaGo. We believed that the public discussion on this event could provide a 

unique opportunity to assess and understand people’s fear of AI technology. 

Therefore, we tried to investigate the underlying implications of this event, and 

we designed and conducted a user study accordingly.  
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3.3 Methodology 

To obtain insights about people’s fear of AI, we designed and conducted semi-

structured interviews with 22 participants from diverse backgrounds.  

 

P# Age Sex Occupation 

P01 
P02 
P03 
P04 
P05 
P06 
P07 
P08 
P09 
P10 
P11 
P12 
P13 
P14 
P15 
P16 
P17 
P18 
P19 
P20 
P21 
P22 

23 
24 
25 
26 
27 
28 
30 
30 
31 
34 
35 
37 
40 
45 
45 
48 
49 
52 
55 
58 
58 
60 

M 
F 
F 
M 
M 
F 
F 
M 
M 
M 
M 
F 
M 
F 
M 
F 
F 
F 
M 
M 
M 
F 

university student (computer science) 
university student (industrial design) 
blog writer 
university student (business) 
television producer 
vision mixer 
web designer 
lawyer 
environmentalist 
professional photographer 
Go player and teacher (amateur 7 dan) 
researcher (educational statistics) 
bookstore manager 
administrative worker 
consultant 
middle school teacher (English) 
food manager 
tax accountant 
taxi driver 
journalist 
accountant 
social worker 

Table 3-1. Age, gender, and occupation of participants 

 

3.3.1 Participant Recruitment 

The interviews were designed to identify participants’ fear of the match and obtain 

diverse opinions about AI. Inclusion criteria included basic knowledge of the 

match and experience watching the match through media at least once. In addition 

to this requirement, a demographically representative set of participants was 
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sought. The target ages were divided into four categories: 20s and under, 30s, 40s, 

and 50s and over. We also considered the occupations of participants. We recruited 

participants living in the Seoul Metropolitan Area, disseminating the recruitment 

posters at local stores, schools, and community centers. At first, we recruited 15 

participants who saw the posters and contacted us directly. Then we recruited 

seven additional participants through snowball sampling and contacts of the re-

searchers so that we had an evenly spread group of participants in terms of age, 

gender, and occupation. A total of 22 diverse participants were recruited in the 

study, as shown in Table 3-1. The participants were each given a $10 gift card for 

their participation.  

 

3.3.2 Interview Process 

Each participant took part in one semi-structured interview after the entire match 

was over. As we aimed to collect various ideas on AI without prompting partici-

pants, we intentionally left the term AI undefined before and during the interview. 

Considering this, we designed the interview questions, and each interview was 

guided by the following four main issues: the participants’ preexisting thoughts 

and impressions of AI, changes in their thoughts as the match progressed, impres-

sions of AlphaGo, and concerns about a future society in which AI technology is 

widely used. As we sought to identify participants’ thoughts over time, we care-

fully designed the questions separately according to the match schedule and pro-

vided detailed information of the match so that the participants could situate them-

selves in the match context. Then, to further induce the participants’ diverse and 

profound thoughts, we provided them with 40 keyword cards covering various 

issues related to AI, which were extracted from AI and AlphaGo Wikipedia arti-

cles. We showed the cards in a set to the participants and let them pick one to three 
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cards so that they could express their thoughts about certain issues they otherwise 

might have missed. We conducted the interviews at places of each participant’s 

choosing, such as cafes near their offices. Each interview took about an hour. The 

participants responded more actively during the interviews than the authors had 

expected.  

 

3.3.3 Interview Analysis 

Interviews were transcribed and analyzed using grounded theory techniques [182]. 

The analysis consisted of three stages. In the first stage, all the research team 

members reviewed the transcriptions together and shared their ideas, discussing 

main issues observed in the interviews. We repeated this stage three times to de-

velop our views on the data. In the second stage, we conducted keyword tagging 

and theme building using Reframer [183], a qualitative research software provided 

by Optimal Workshop. We segmented the transcripts by sentence and entered the 

data into the software. While reviewing the data, we annotated multiple keywords 

in each sentence so that the keywords could summarize and represent the entire 

content. A total of 1,016 keywords were created, and we reviewed the labels and 

text again. Then, by combining the relevant tags, we conducted a theme-building 

process, yielding 30 themes from the data. In the third stage, we refined, linked, 

and integrated those themes into five main categories, described below.  

The research design protocol was reviewed and approved by the Institutional 

Review Board of Seoul National University (IRB number: 1607/003-011), and we 

strictly followed the protocol. All interviews were recorded and transcribed in Ko-

rean. The quotes were translated into English, and all participants’ names were 

replaced by pseudonyms.  
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3.4 Findings 

The interviews revealed that participants felt fear related to the match and AI and 

had a confrontational relationship as in “us vs. them.” People had preconceived 

stereotypes and ideas about AI from mass media, and their thoughts changed as 

the match progressed. Furthermore, people not only anthropomorphized but also 

alienated AlphaGo, and they expressed concerns about a future society where AI 

will be widely used.  

 

3.4.1 Preconceptions about Artificial Intelligence 

We identified that people had preconceptions and fixed ideas about AI: AI is a 

potential source of danger, and AI should be used to help humans.  

 

Artificial Intelligence as Potential Threat  

Throughout the interviews, we identified that the participants had built an image 

of AI in their own way, although they had rarely experienced AI interaction 

firsthand. When asked about their thoughts and impressions of the term AI, most 

of the participants described experiences of watching science fiction movies. They 

mentioned the specific examples, such as Skynet from Terminator (1984), Ultron 

from The Avengers (2015), Hal from 2001: A Space Odyssey (1968), sentient ma-

chines from The Matrix (1999), and the robotic boy from A.I. Artificial Intelli-

gence (2001). In addition, P15 described a character from Japanimation from his 

youth. The characters were varied, from a man-like robot to a figureless control 

system.  

Notably, the participants formed rather negative images from their media ex-

periences, since most of the AI characters were described as dangerous. Many AI 
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characters in the science fiction movies that the participants mentioned controlled 

and threatened human beings, which seemed to reinforce their stereotypes. Some 

of the participants agreed that this might have affected the formation of their belief 

that AI is a potential source of danger.  

Meanwhile, the movie experiences made people believe that the AI technol-

ogy is not a current issue but one to come in the distant future. Generally, the 

movies mentioned by participants were set in the remote future, and their stories 

were based on futuristic elements, such as robots, cyborgs, interstellar travel, or 

other technologies. Most of the technologies described in the movies are not avail-

able at present. For example, P14 said, “The Artificial intelligence in the movie 

seemed to exist in the distant future, many years from now.”  

 

Artificial Intelligence as a Servant  

It was found that many participants had established their own thoughts about the 

relationship between humans and AI. They believed that AI could not perform all 

the roles of people. However, they thought that AI could perform arduous and 

repetitive tasks and conduct those tasks quickly and easily. For example, P17 said, 

“They can take on tasks that require heavy lifting, and they can tackle complex 

problems.”  

The expected roles of AI the participants mentioned were associated with 

their perceptions of its usefulness. Although some of the participants regarded AI 

as a potential threat, they partially acknowledged its potential convenience and 

abilities. For example, P15 said, “They are convenient; they can help with the 

things humans have to do. They can do dangerous things and easy and repetitive 

tasks, things that humans do not want to do.”  

However, this way of thinking suggests a sense of human superiority in the 
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relationship at the same time. More specifically, P13 commented, “Man should 

govern artificial intelligence. That is exactly my point. I mean, AI cannot surpass 

humans, and it should not.”  

 

3.4.2 Confrontation: Us vs. Artificial Intelligence 

Changes in participants’ thoughts were observed according to the result of each 

game of the match. People indicated fear of AlphaGo at first, but as the match 

progressed, they began to cheer for Lee Sedol as a human representative. In this 

process, people tended to have a confrontational relationship with AlphaGo of an 

“us vs. them” type.  

 

Prior to the Match: Lee Can’t Lose  

Before the match began, all the participants but two expected that Lee Sedol would 

undoubtedly win. For example, P12 said, “I thought that Lee Sedol would win the 

game easily. I believed in the power of the humans.” P04 said, “Actually, I thought 

Lee would beat AlphaGo. I thought even Google wouldn’t be able to defeat him.” 

This showed his tremendous belief in Lee Sedol. The conviction about Lee’s abil-

ity to win was almost like blind faith. During the interviews, we described Al-

phaGo’s ability for the participants in detail, explaining its victory in the match 

with the European Go Champion and its capacity in terms of its overwhelming 

computing power and its learning ability. However, some of them said they al-

ready knew the information but still thought that AI could not win the game. Some 

participants provided us with several reasons for their conviction. P15 suggested 

the complexity of Go as a reason. He explained that the number of possible per-

mutations in a Go game is larger than the number of atoms in the universe.  
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Game 1: In Disbelief (Lee 0:1 AlphaGo)  

Even though many people expected that Lee would win the match, he lost the first 

game by resignation, which shocked many people in Korea. Although Lee ap-

peared to be in control throughout much of the match, AlphaGo gained the ad-

vantage in the final 20 minutes and Lee resigned. He said that the computer’s 

strategy in the early part of the game was “excellent.” Since the participants had 

been convinced of Lee’s victory, their shock was far greater. P05 said, “I thought, 

this can’t happen. But it did. What a shock!” P04 also showed his frustration, 

saying, “AlphaGo won by a wide margin. It was shocking. Lee is the world cham-

pion. I couldn’t understand how this could be.”  

In addition, some participants said that their attitudes toward the match 

changed after the first game. Before the game, they just intended to enjoy watch-

ing an interesting match; however, when they saw the result, they began to look 

at the game seriously. P22 commented, “After the first game, I realized it was not 

a simple match anymore.” Furthermore, some participants began to think that Lee 

might possibly lose the remaining games. On the other hand, some participants 

thought that Lee still had a 50-50 chance of winning. P13 said, “I thought mistakes 

caused Lee’s defeat. People can make mistakes. If he can reduce his mistakes, he 

can win the remaining games.”  

 

Game 2: We Can’t Win (Lee 0:2 AlphaGo)  

Lee suffered another defeat in the second match, and people began to realize Al-

phaGo’s overwhelming power. During the post-game interview, Lee stated, “Al-

phaGo played a nearly perfect game from the very beginning. I did not feel like 

there was a point at which I was leading.” Now, people started to regard AlphaGo 
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as undefeatable. P04 said, “Lee was defeated in consecutive games. It was shock-

ing. I began to acknowledge AlphaGo’s perfection. Actually I didn’t care that 

much when Lee was beaten in the first round. But after the second round, I had 

changed my mind. I realized AlphaGo could not be beaten, and it was terrifying.” 

P01 commented, “Before the match, I firmly believed Lee would win. But the sec-

ond game totally changed my mind. It was really shocking.” P02 also noted, “After 

the second match, I was convinced that humans cannot defeat artificial intelli-

gence.”  

 

Game 3: Not Much Surprise (Lee 0:3 AlphaGo)  

When AlphaGo won the first three consecutive games, it became the final winner 

of the best-of-five series match. Interestingly, the impact of the third game was 

not as strong as that of the second or the first. As people had already witnessed 

AlphaGo’s overwhelming power, most of them anticipated that Lee would lose 

again, and the result was no different from what they had expected. For example, 

P14 said, “He lost again... yeah I was sure he would lose.”  

People became sympathetic and just wanted to see Lee win at least once. P07 

said, “I wanted to see just one win. I was on humanity’s side. ‘Yes, I know you 

(AlphaGo) are the best, but I want to see you lose.’ “ P01 said, “I didn’t expect 

that Lee could win the remaining games. But I wished he would win at least once.”  

 

Game 4: An Unbelievable Victory (Lee 1:3 AlphaGo)  

Surprisingly, in the fourth game, Lee defeated AlphaGo. Although Lee struggled 

early in the game, he took advantage of AlphaGo’s mistakes. It was a surprising 

victory. AlphaGo declared its surrender with a pop-up window on its monitor 
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saying “AlphaGo Resigns.” The participants expressed joy over the victory and 

cheered for Lee. Some of them saw the result as a “triumph for humanity.” P14 

said, “He is a hero. It was terrific. He finally beat artificial intelligence.” P09 said, 

“I was really touched. I thought it was impossible. AlphaGo is perfect, but Lee 

was victorious. It was great. He could have given up, but he didn’t, and he finally 

made it.”  

 

Game 5: Well Done, Lee (Lee 1:4 AlphaGo)  

AlphaGo won the fifth and final game. Before the beginning of the game, the 

participants mainly thought that AlphaGo would win. However, at the same time, 

since they had seen the victory of Lee the day before, they also slightly anticipated 

Lee’s win.  

P10 said, “In a way, I thought Lee still had a chance to win the last game. I 

thought as AlphaGo learned, Lee might learn and build a strategy to fight.” On 

the one hand, some participants were already satisfied by the one win. They were 

relieved that the game was over. P08 said, “Anyhow, I was contented with the re-

sult the day before. The one victory made me relieved. I watched the last game 

free from all anxiety.” P12 also stated, “Lee played very well. I really respect his 

courage.”  

To sum up, throughout the five-game match, people were immensely shocked 

and apprehensive at first, but they gradually began to cheer for Lee Sedol as a 

human representative as the match progressed. The participants thought that Lee 

and AlphaGo had the fight of the century, humanity vs. AI. Through this match, 

people were able to recognize what AI is and how the technology has been devel-

oped. The participants also identified various characteristics of AI generally as 

well as AlphaGo specifically.  
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3.4.3 Anthropomorphizing AlphaGo 

Throughout the interviews, we observed that the participants anthropomorphized 

AlphaGo. They referred to AlphaGo as if it were a human and differentiated AI 

technology from personal computers. They also thought AlphaGo was creative, 

which is usually considered a unique characteristic of human beings. This ten-

dency has similar to Nass’s concept of CASA (computers as social actors) [184].  

 

AlphaGo is an “Other”  

When describing their thoughts and impressions of AlphaGo, people always used 

the name “AlphaGo” as if it were a human being. Moreover, they often used verbs 

and adjectives commonly used for humans when mentioning AlphaGo’s actions 

and behaviors, such as “AlphaGo made a mistake,” “AlphaGo is smart,” “Al-

phaGo learned,” and “AlphaGo practiced,” which indicates a tendency of anthro-

pomorphization. One participant even called AlphaGo “buddy” from the begin-

ning to the end of the interview. When asked if there was a special reason for this, 

she said, “I know it is a computer program. But he has a name, ‘AlphaGo.’ This 

makes AlphaGo like a man, like ‘Mr. AlphaGo.’ I don’t know exactly why, but I 

think because of his intelligence, I unconsciously acknowledged him as a buddy. 

‘You are smart. You deserve to be my buddy.’ “ P06 went so far as to call AlphaGo 

someone we should acknowledge as our superior, saying, “After the third game, I 

realized that we were bust. We had lost. AI is the king. We should bow to him.”  

 

AlphaGo Is Different from a Computer  

Moreover, we identified that the participants anthropomorphized AI, as well as 

AlphaGo specifically, by drawing a sharp distinction between personal computers 
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and AI technology. The participants uniformly described the two as different. 

While they regarded the computer as a sort of tool or implement for doing certain 

tasks, they described AI as not a tool but an agent capable of learning solutions to 

problems and building its own strategies. They thought that we could control a 

computer as a means to an end but that we could not control AI. They said AI 

knows more than we do and thus can undertake human work. P07 said, “I think 

they (computers and AI) are different. I can’t make my computer learn something. 

I just use it to learn something else. However, artificial intelligence can learn on 

its own.” P08 also commented, “When I first learned about computers, I thought 

they were a nice tool for doing things quickly and easily. But artificial intelligence 

exceeds me. AI can do everything I can do, and I cannot control it. The main dif-

ference between computers and AI is our ability to control it.”  

 

AlphaGo is Creative  

Some of the participants said AlphaGo’s Go playing style was somewhat creative, 

since AlphaGo made unorthodox, seemingly questionable, moves during the 

match. The moves initially befuddled spectators. However, surprisingly, the 

moves made sense in hindsight and determined the victory. In other words, to the 

viewers, AlphaGo calculated the moves in a different way from human Go players 

and thus finally won the game. Some participants thought that AlphaGo showed 

an entirely new approach to the Go community. P09 said, “It was embarrassing. 

AlphaGo’s moves were unpredictable. It seemed like he had made a mistake. But, 

by playing in a different way from men, he took the victory. I heard he builds his 

own strategies by calculating every winning rate. People learn their strategies 

from their teachers. But AlphaGo discovered new ways a human teacher cannot 

suggest. I think we should learn from AlphaGo’s moves.” P11, an amateur 7-dan 
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Go player and Go Academy teacher, also demonstrated this view based on his own 

experience. In the past, he had learned Go through the apprentice system. Alt-

hough he learned the basic rules of Go, for him, learning was imitating the style 

of his teacher or the best Go players. His learning was focused not on how to 

optimize the moves with the highest winning rate but on how to find the weak 

spot of the champion of the day. He said, Go styles also have followed the main 

trend when a new champion appears. However, AlphaGo’s moves were entirely 

different from this Go style and trend, which seemed creative and original to P11.  

 

3.4.4 Alienating AlphaGo 

People also alienated AlphaGo by evaluating it with the characteristics of a human. 

They sometimes showed hostility toward AlphaGo and reported feeling negative 

emotions toward it.  

 

AlphaGo is Invincible  

All participants agreed that AlphaGo, “compared to a human being,” has an over-

whelming ability. AlphaGo was trained to mimic human play by attempting to 

match the moves of expert players from recorded historical games, using a data-

base of around 30 million moves. Once it had reached a certain degree of profi-

ciency, it was trained further by playing large numbers of games against other 

instances of itself, using reinforcement learning to improve its play. The partici-

pants concurred with the idea that a human’s restricted calculation ability and lim-

ited intuition cannot match AlphaGo’s powerful ability. P22 said, “Lee cannot 

beat AlphaGo. AlphaGo learns ceaselessly every day. He plays himself many times 

a day, and he saves all his data. How can anyone beat him?” P15 said, “I heard 

that AlphaGo has data on more than a million moves, and he studies the data with 
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various approaches for himself. He always calculates the odds and suggests the 

best move, and he can even look further ahead in the game than humans. He knows  

the end. He knows every possible case.” P15 even argued that the match was unfair. 

He contended that unlike Lee Sedol, who was trying to win alone, AlphaGo was 

linked to more than 1,000 computers, and this made its computation power far 

superior to that of human beings. For these reasons, he insisted that Lee was 

doomed from the beginning of the game and that the result should also be invalid. 

“It was connected with other computers... like a cloud? Is it the right word? It is 

like a fight with 1,000 men. Also, computers are faster than humans. It is unfair. I 

think it was unfair.”  

 

AlphaGo is Ruthless  

Throughout the match, the participants referred to AlphaGo’s ruthlessness and 

heartlessness, which are “uncommon traits in humans.” Usually, when pro Go 

players play the game, a subtle tension arises between the players. Identifying the 

opponent’s feelings and emotions could be significant, and emotional elements 

can affect the result of the match. However, AlphaGo could never express any 

emotion throughout the match. P20, who introduced himself as having a profound 

knowledge of Go, commented that there was not a touch of humanity about Al-

phaGo’s Go style. He said, “AlphaGo has no aesthetic sense, fun, pleasure, joy, 

or excitement. It was nothing like a human Go player. Most pro Go players would 

never make moves in that way. They leave a taste on the board. They play the game 

with their board opened. But AlphaGo tried to cut off the possibility of variation 

again and again.” At that time, the term “AlphaGo-like” became widely used as 

an adjective in Korea, meaning ruthless, inhibited, and emotionally barren. One 

of our participants, P07, used the term: “Since the match, I often call my husband 
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‘Alpha Park’ because there is no sincerity in his words.”  

 

AlphaGo is Amorphous  

“Unlike human Go players,” AlphaGo has no form and only exists as a computer 

program, which left a deep impression on the viewers. Since AlphaGo is only an 

algorithm, it showed its moves through the monitor beside Lee. Then, Aja Huang, 

a DeepMind team member, placed stones on the Go board for AlphaGo, which 

ran through Google’s cloud computing, with its servers located in the United 

States. At first, people wondered who AlphaGo was. Some participants thought 

Aja Huang was AlphaGo, modeled on the human form. P03 said,  

“My mom said she mistook Aja Huang for AlphaGo. I think people tend to 

believe that artificial intelligence has a human form, like a robot. If something has 

intelligence, then it must have a physical form. Also, artificial intelligence is an 

advanced, intelligent thing like a human, which makes people think its shape must 

also be like that of a human.” One participant even believed Aja Huang was Al-

phaGo until the interview. She said, “Wasn’t he AlphaGo? I didn’t know that. It’s 

a little weird, don’t you think?”  

 

AlphaGo Defeats Man  

All participants said that AlphaGo induced negative feelings toward AI. As de-

scribed above, usually, AI was still considered something that would only occur 

in the distant future. However, the AlphaGo event showed that the technology is 

already here. The event made people realize that AI was near. P08 said, “Although 

Lee won once, he finally lost. This is a symbolic event of artificial intelligence 

overpowering humans. I’m sure this event made me feel the power of artificial 
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intelligence in my bones.” P07 also said, “Before I watched the match, I had no 

idea about who was developing artificial intelligence and how much the technol-

ogy had developed. But now I know a few things about artificial intelligence. Al-

phaGo taught me how powerful the technology is.”  

In this regard, we observed that AlphaGo affected the formation of people’s 

negative emotional states. Some of the participants told us that they felt helpless-

ness, disagreeability, depression, and a sense of human frailty and suffered from 

stress while watching the match. Furthermore, they said the result of the match 

knocked their confidence and increased their anxiety. If this was not true of them-

selves, they said they commonly saw the people around them suffering for the 

same reason. P03 noted, “AlphaGo can easily achieve any goal. But I have to 

devote my entire life to reaching a goal. No matter how hard I try, I cannot beat 

AI. I feel bad and stressed. I’ve lost my confidence.” P08 also stated, “The human 

champion was defeated by AlphaGo. He was completely defeated. Humans cannot 

catch up with artificial intelligence. I started to lose my confidence and feel hos-

tility toward artificial intelligence. I became lethargic.” P20 said that, “If I had a 

chance to compete with AlphaGo, I think I would give up because it would be a 

meaningless game.”  

 

3.4.5 Concerns about the Future of AI 

After witnessing the unexpected defeat of Lee Sedol, people also raised concerns 

over a future society where AI technology is prevalent. They especially worried 

that they would be replaced by AI and not be able to follow and control the ad-

vancement of AI.  
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Man is Replaced  

People expressed their worry that AI will one day be able to perform their jobs, 

leaving them without work. They worried that as AI will be widely developed in 

many different fields, the technology will surpass the human endeavors in these 

areas. They thought that, as a result, because of the comparative advantages, AI 

will be preferred, and the demand for human labor will decrease. Moreover, they 

believed the problem of the replacement of humans is not confined to simple, and 

repetitive tasks. They thought it could happen in the specialized occupations, such 

as lawyers and doctors. For example, P08, a lawyer, recently had a talk about this 

issue with his colleagues. He said, “Actually, lawyers have to perform extensive 

research into relevant facts, precedents, and laws in detail while writing legal pa-

pers. We have to memorize these materials as much as we can. But we can’t re-

member everything. Suppose they created an AI lawyer. He could find many ma-

terials easily, quickly, and precisely. Lawyers could be replaced soon.”  

Fear of losing jobs raised the question of the meaning of human existence. 

Some participants said they felt the futility of life. P06 said, “We will lose our jobs. 

We will lose the meaning of existence. The only thing that we can do is have a shit. 

I feel as if everything I have done so far has been in vain.” P13 showed extreme 

hostility toward AI, saying, “If they replace humans, they are the enemy,” which 

is reminiscent of the Luddites, the movement against newly developed labor-econ-

omizing technologies in the early 19th century.  

They worried that AI will also encroach on the so-called creative fields, the 

arts, which are regarded as unique to human beings. Some participants talked 

about a few news stories indicating that AI can perform comparably to human 

beings in painting, music composition, and fiction writing. They thought that there 

is nothing that human beings can do in such situations. P01 described his thoughts 
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about this AI’s encroachment on the art area based on his anecdote of seeing soft-

ware that automatically transforms any image into Van Gogh’s style. He said, 

“Seeing AI invade the human domain broke my stereotype.”  

If human beings were replaced by AI in all areas, what would we do then? 

We also found this question raised with respect to education. P16, a middle school 

teacher, explained her difficulty in career counseling and education programs for 

students. She said, “The world will change. Most jobs today’s children will have 

in the future have not been created yet.” Since she could not anticipate which jobs 

would disappear and which ones would be created in the future, she felt skeptical 

about teaching with the education content and system designed based on contem-

porary standards.  

 

Singularity is Near  

Some participants expressed their concerns about a situation in which humans 

cannot control the advancement of AI technology. This worry is related to the 

concept of the technological singularity [177], in which the invention of artificial 

superintelligence will abruptly trigger runaway technological growth, resulting in 

unfathomable changes to human civilization. According to the singularity hypoth-

esis, an autonomously upgradable intelligent agent would enter a ‘runaway reac-

tion’ of self-improvement cycles, with each new and more intelligent generation 

appearing more and more rapidly, causing an intelligence explosion and resulting 

in a powerful superintelligence that would far surpass all human intelligence. Af-

ter seeing AlphaGo build his own strategies that went beyond human understand-

ing and easily beat the human champion, the participants thought that the singu-

larity could be realized soon in every field and that humans would not be able to 

control the technology. P06 said, “It’s terrible. But the day will come. I can only 
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hope the day is not today.” The participants unanimously insisted that society 

needs a consensus about the technology and that laws and systems should be put 

in place to prevent potential problems.  

 

AI could be Abused  

The participants also expressed their concerns that AI technology might be mis-

used. The AlphaGo match has demonstrated its ability to many people around the 

world. They worried that the overwhelming power of AI could lead some people 

to monopolize and exploit it for their private interests. They said that if an indi-

vidual or an enterprise dominates the technology, the few who have the technology 

might control the many who do not. P04 said, “I think that one wealthy person or 

a few rich people will dominate artificial intelligence.” P01 also noted, “Of course, 

artificial intelligence itself is dangerous. But I am more afraid of humans, as they 

can abuse the technology for selfish purposes.” Some participants argued that if 

the technology were monopolized, the inequality between those who have it and 

those who do not would become more severe. For example, P13 said, “I agree 

with the opinion that we need to control AI. But who will control it? If someone 

gets the power to control the technology, he will rule everything. Then we will 

need to control the man who controls AI.” People’s worry about the misuse of AI 

eventually depends upon the decisions of man. This shows another “us vs. them” 

view: those who have AI vs. those who do not.  

 

3.5 Limitations 

There are several limitations of this chapter. While carrying out this study, we used 

the term AI in a broad sense, although it could be interpreted in many ways 
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depending on its capabilities and functions. In addition, as our participants were 

all metropolitan Koreans who (mainly actively) volunteered to participate, the re-

sult of this study may not be generalizable. We also did not relate this research to 

previous related events, such as DeepBlue’s chess match and IBM Watson’s Jeop-

ardy win.  

 

3.6 Summary 

This chapter has attempted to understand people’s fear of AI with a case study of 

the Google DeepMind Challenge Match. Through a qualitative study, we identi-

fied that people showed apprehension toward AI and cheered for their fellow hu-

man champion during the match. In addition, people anthropomorphized and al-

ienated AI as an “other” who could do harm to human beings, and they often 

formed a confrontational relationship with AI. They also expressed concerns 

about the prevalence of AI in the future.  

This chapter makes three contributions to the HCI community. First, we have 

investigated people’s fear of AI from various perspectives, which can be utilized 

in various areas. Second, we have identified the confrontational “us vs. them” 

view between humans and AI, which is distinct from the existing view on com-

puters. Third, we have stressed the importance of AI in the HCI field and sug-

gested the concept of an expanded user interface and algorithmic experience.  

Based on the results of this study on people perception of AI algorithms, the 

next chapter will focus on how people interpret and evaluate algorithm-based sys-

tems using AI. 
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4 HOW PEOPLE INTERPRET AND 
EVALUATE ALGORITHM-BASED 
SYSTEMS USING ARTIFICIAL 
INTELLIGENCE 

 
While artificial intelligence algorithms are making remarkable progress, it is often 

difficult for users to interpret their results. To understand how various users reason 

about AI algorithm results, we designed AI Mirror, an interface that tells users the 

algorithmically predicted aesthetic scores of photographs.3 We conducted a user 

study of the system with 18 participants, including AI/machine learning (ML) ex-

perts, photographers, and general public members. They performed tasks consist-

ing of taking photos and reasoning about AI Mirror’s prediction algorithm with 

think-aloud sessions, surveys, and interviews. The results showed the following: 

(1) Users understood the AI using their own group-specific expertise; (2) Users 

employed various strategies to close the gap between their judgments and AI pre-

dictions over time; (3) The difference between users’ thoughts and AI predictions 

                                         
3 All uses of “we,” “our,” and “us” in this chapter refer to contributors of the study. 
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was negatively related with users’ perceptions of the AI’s interpretability and rea-

sonability. We also discuss design considerations for both algorithms and user in-

terfaces. 

 

4.1 Motivation 

The recent advances in artificial intelligence, specifically machine learning and 

deep learning (DL) [185], have been attracting more attention than ever from the 

academic and industrial fields. In various fields, such as computer vision ([186], 

[187]), speech recognition ([25], [26]), and natural language processing ([188], 

[189]), AI technology has already yielded results comparable to those of human 

experts ([173], [174], [189]). Beyond simply classifying objects or inferring val-

ues, the algorithms are evolving to generate new artifacts, such as pieces of writing 

[106] and artistic images ([190], [191]). 

However, as AI algorithms have produced results in areas such as aesthetics in 

which people can take a subjective view, people can have difficulty in understand-

ing their results, wondering how the algorithms work. Without expertise in AI/ML, 

it would be difficult for people to interpret and understand the results of AI algo-

rithms. Moreover, AI algorithms sometimes do not fully explain their internal 

principles, which is sometimes referred to as the black box problem ([67]–[69]). 

In situations where people cannot accept the results of AI algorithms, if the trans-

parency of an algorithm is not ensured, its users may lose confidence in the algo-

rithm and not be immersed in it ([79], [85]). With this as a background, we aim to 

investigate how users reason about the results of an AI algorithm and discuss hu-

man-computer interaction/user experience considerations in the design of user in-

terfaces with AI. First, we designed a research probe, AI Mirror, a user interface 

that tells users the algorithmically predicted aesthetic scores of the pictures they 
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have taken or selected based on a deep neural network model (Figure 4-1). Then, 

we conducted a user study using both quantitative and qualitative methods. We 

recruited a total of 18 participants consisting of a well-balanced mix of AI/ML 

experts, photographers, and members of the general public. They performed a se-

ries of tasks consisting of taking photos using AI Mirror and reasoning about its 

algorithm with the think-aloud method and survey. In the questionnaire, we col-

lected users’ expected scores for their pictures and their interpretability and rea-

sonability ratings for the AI’s scores. We also conducted semi-structured inter-

views about how users experienced the system. The results from the study can be 

summarized as follows: 

• According to their group (i.e., experts, photographers, general public), users 

showed different characteristics in reasoning about the AI algorithm. They 

understood the AI using their own group-specific expertise. 

• The group of photographers was able to best interpret the AI’s aesthetic scores 

and considered them reasonable. On the other hand, the AI/ML experts had 

difficulty interpreting them and considered them relatively unreasonable.  

• Users employed various strategies to close the gap between their judgments 

and the AI’s predictions over time. 

• If there was a difference between users’ thoughts and the AI’s predictions, they 

had difficulty interpreting the AI’s predictions and considering them reasona-

ble. 

• While interacting with the AI, users wanted to actively communicate with the 

AI. 

Based on these findings, we discuss design considerations for AI-powered user 

interfaces that convey subjective results, such as aesthetic evaluations, to users. 

The main contributions of this work to the HCI community are as follows: 
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• This work yielded experimental results showing how the unique characteris-

tics of users affect the process of inferring the outcomes of the AI in terms of 

group, strategy, and communication. 

• These results have design implications for intelligent user interfaces that de-

liver a variety of interpretable results, which could be utilized by both the 

AI/ML and HCI communities. 

 

4.2 AI Mirror 

To address the research questions, we designed a research tool, AI Mirror. 

 

4.2.1 Design Goal 

In the design of the research tool, according to the research questions, we aimed 

to create an interface that allows users to interact with AI algorithms on a domain 

whose results can be interpreted in various ways. Therefore, we considered (1) 

using state-of-the-art neural network algorithms and (2) selecting a topic that al-

lows users to produce their own artifacts and interpret the results of AI on them. 

Therefore, among the creative and open-ended domains, we selected aesthetics. 

We reviewed Augury [192], which evaluates a website’s design by calculating the 

complexity and colorfulness of the website with a database of aesthetic prefer-

ences, and used the concept in the design process. Finally, we created an interface 

that can predict the aesthetic quality of photographs provided by users based on a 

state-of-the-art neural network algorithm and named it “AI Mirror” (Figure 4-1).  
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Figure 4-1. The overview of AI Mirror. We designed a research probe, “AI Mir-
ror,” a user interface that tells users the algorithmically predicted aesthetic scores 
of the pictures they have taken or selected based on a deep neural network 
model.  

 

4.2.2 Image Assessment Algorithm 

In the design of AI Mirror, we introduced Google’s Neural Image Assessment 

(NIMA) [193], an AI algorithm to predict the aesthetic quality of images. This 

convolutional neural network (CNN) is trained to predict which images a typical 

user would rate as looking both technically good and aesthetically attractive. In-

stead of classifying images according to low/high scores or regressing to the mean 

score, the NIMA model produces a distribution of ratings for any given image on 

a scale of 1 to 10 [193]. Through the pilot study, we identified that as the mean 

scores of given images approximated the normal distribution, the scores concen-

trated on the average, and extreme values were rarely found. Since it was possible 

that users could not perceive the difference between the good and bad pictures, 

we performed a linear transformation of the normal distribution so that users fully 

utilized the algorithm in the experiment.  

 

4.2.3 Design of User Interface 

AI Mirror was developed as a web application that works on a mobile web browser 
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and uses a camera and photo album. The user interface of AI Mirror is composed 

of four main views: guide view, photo selection view, evaluation view, and review 

view (Figure 4-1).  

• Guide view: This screen is the first screen of the user interface and provides 

a basic explanation of the system with a simple concept image. A user can 

start using the system by entering his or her username. 

• Photo selection view: On the next screen, the user can select a picture to be 

evaluated by the AI. In the process, the user can select one of two functions: 

(1) taking a picture with the camera app and (2) selecting a picture from the 

photo album. If the user chooses the former, the camera of the smartphone is 

activated so that the user can take a picture. If the user selects the latter, the 

photo album is activated so that the user can browse pictures and select a pic-

ture.  

• Evaluation view: Right after taking or choosing a picture, AI Mirror shows 

the user the aesthetic score of the picture on a 10-point scale, stating in text, 

“I think the aesthetic score for this photo is 8.99.”  

• Review view: In this view, the user can view the pictures that have been eval-

uated by the AI so far. Photos are presented in a tile layout. If the user selects 

a photo, the photo is enlarged in the pop-up window. The aesthetic score is 

displayed at the bottom of the photo.  

 

4.3 Study Design 

To understand how users interact with the system, we designed a user study with 

a mixed-methods approach using both quantitative and qualitative methods. We 

strictly followed the user study design protocol reviewed and approved by the 
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Institutional Review Board of Seoul National University Institute. 

 

Group ID Age Sex Characteristics 

AI/ML  
expert 

A1 
A2 
A3 
A4 

 
A5 
A6 

37 
35 
32 
29 
 

26 
24 

M 
M 
M 
M 
 

F 
F 

CTO of video AI startup (author of CVPR paper) 
CEO of video AI startup (author of CVPR paper) 
CTO of sound AI startup (author of DCASE paper) 
Researcher at IT research center (teaching ML/DL 
experience)  
Researcher at IT research center (majoring in ML) 
Researcher at IT company (AI field strategy) 

Photo 
expert 

P1 
P2 

 
P3 
P4 
P5 
P6 

34 
30 
 

34 
31 
30 
29 

F 
F 
 

M 
F 
M 
F 

Photographer (10 years of field experience) 
Amateur photographer (took camera education 
course) 
Photographer (10 years of field experience) 
Photographer (10 years of field experience) 
Amateur photographer (11 years of field experience) 
Photographer (majoring in fine arts) 

No  
expertise 

N1 
N2 
N3 
N4 
N5 
N6 

36 
34 
25 
32 
28 
28 

F 
M 
F 
F 
M 
M 

Administrative worker 
Researcher (urban planning) 
Nursing teacher 
Graduate school student (communication studies) 
English teacher 
Graduate school student (business) 

Table 4-1. Participant information. (IDs: “A”=AI/ML expert, “P”=photography 
expert, “N”=no expertise.) 

 

4.3.1 Participant Recruitment 

In recruiting participants, we sought to balance the following three groups: AI/ML 

experts, photographers, and the general public. We set specific recruitment criteria 

for each group. First, the AI/ML experts group included only those who had ma-

jored in computer science-related areas, such as ML and DL, or had experience as 

specialists in related fields. The group of photographers included only profes-

sional photographers, people with training in photography, or non-professional 
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photographers who had more than 10 years of photography experience. In partic-

ular, each group included only those without expertise in the area(s) of the other 

expert group(s). For the general public group, people who did not have these types 

of expertise were sought. We first posted a recruiting document on our institution’s 

online community and then used the snowballing sampling method. We recruited 

a total of 18 participants, with the same number of participants for each group 

(Table 4-1). Some of the recruited AI experts ran AI-related startups, some had 

authored papers for top conferences in computer vision, while others were in-

volved in related industries with relevant knowledge and expertise. The recruited 

photographers were people with more than 10 years of photography experience. 

 

4.3.2 Experimental Settings 

In the user study, we used a dedicated device, the iPhone X, as the main apparatus 

to control the experiment by providing the same conditions to all participants. 

Since the experiment was done in the laboratory, it was necessary to prepare a 

variety of objects and additional material that participants could use to take pic-

tures. Various objects of different colors and shapes (e.g., a yellow duck coin bank, 

a green android robot figure, a blue tissue box) were prepared so that users could 

combine various colors and attempt various compositions with them. In addition, 

we prepared backdrops so that users could keep the background clean and clear. 

We also prepared a small stand light. This setup allowed participants to freely take 

various photos. Meanwhile, to meet the users’ various photo selection needs, we 

entered many pictures in the photo album of the experimental device beforehand. 

This photo album included a total of 80 photos, ranging from images that received 

1 point from AI Mirror to images that received 8 points, with an equal number of 

high-scoring and low-scoring images. 
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4.3.3 Procedure 

In the study, participants completed a series of tasks, including interacting with AI 

Mirror and reasoning about its algorithm with the think-aloud method and survey, 

and then took part in interviews. In a separate guidance document of AI Mirror 

before the experiment started, we provided the participants with a detailed expla-

nation of the purpose and procedure of the experiment. Users were allowed to 

manipulate the system for a while to get used to it. On average, the experiments 

lasted about 60 minutes. All participant received a gift voucher worth $10 for their 

participation. 

 

Task  

The main task that participants were asked to perform in the experiment was to 

interact with AI Mirror and deduce the photo evaluation criteria of AI Mirror. 

Using AI Mirror, the participants took photos or selected photos from the photo 

album, and AI Mirror made aesthetic evaluations of the photos. There were no 

particular restrictions on the number of interaction trials or time. 

 

Survey 

In the questionnaire, we asked participants to answer three questions. The first 

asked participants about the expected score for the aesthetic evaluation of the pho-

tos they had taken or selected. Just prior to AI Mirror’s aesthetic evaluation of the 

picture, they were asked to give their own score on a 10-point scale. The second 

question asked participants whether AI Mirror’s aesthetic evaluation scores were 

interpretable for them. Participants rated this on a 5-point Likert scale (1-strongly 

disagree, 5-strongly agree). The third question asked participants whether AI 
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Mirror’s aesthetic evaluation scores were reasonable. Likewise, participants rated 

this on a 5-point Likert scale (1-strongly disagree, 5-strongly agree). In addition 

to these three items–expected score, interpretability, and reasonability–we meas-

ured difference between the participant’s aesthetic score (expected score) of the 

picture and that of AI Mirror. We also collected the trials over time along with 

these values to capture temporal changes in values for each participant. 

 

Think-aloud Session and Interview 

We conducted a qualitative study using the think-aloud method [194] and semi-

structured interviews to gain a deeper and more detailed understanding of users’ 

thoughts. While performing the tasks, the participants could freely express their 

thoughts about the tasks in real time. We audio recorded all the think-aloud ses-

sions. 

After all tasks were completed, we conducted semi-structured interviews. In 

the interviews, the participants were asked about their overall impressions of AI 

Mirror, especially focusing on its interpretability and reasonability. All the inter-

views were audio recorded. 

 

4.3.4 Analysis Methods 

From the study, we were able to gather two kinds of data: quantitative data from 

the surveys and the system logs and qualitative data from the think-aloud sessions 

and interviews.  
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Quantitative Analysis 

In the quantitative analysis, we ran statistical analysis of the six types of data col-

lected from each participant: group, trials over time, expected score, difference, 

interpretability, and reasonability. Based on this, we tried to determine the signif-

icant relation or difference between these variables. We used panel analysis, as it 

is specialized for analyzing “multidimensional” data collected “over time,” and 

over the same individuals, which matched the data we gained from our experiment 

exactly. Besides, it can run the regression model of each variable of multidimen-

sional data, so it can provide more concise and comprehensive results than an 

ANOVA, which produces results in an aggregated way without considering the 

time effect. Moreover, as we recruited users by group, we assumed that the unob-

served variables were uncorrelated with all the observed variables and accordingly 

used a random effects model.  

 

Qualitative Analysis 

The qualitative data from the thinkaloud sessions and post-hoc interviews were 

transcribed, and analyzed using thematic analysis [195]. In the process, we used 

Reframer [183], a qualitative research software tool provided by Optimal Work-

shop. To organize and conceptualize the main themes, three researchers used line-

by-line open coding. Through a collaborative, iterative process, we revised these 

categories to agreement and then used axial coding to extract the relationships 

between the themes. 

 

4.4 Result 1: Quantitative Analysis 

In the case of the statistical analysis results, since the number of responses was 
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relatively small, the emphasis was on understanding the basic relationship or ten-

dency between variables. We set difference, interpretability, and reasonability as 

dependent variables and sequentially investigated the effect of trials over time, 

group, and other independent variables on each dependent variable by conducting 

a panel data analysis. The average trials over time was 14.22, with a maximum of 

27 and a minimum of 10 (SD=4.48). (Statistically significant results are reported 

as follows: p<0.001(***), 518 p<0.01(**), p<0.05(*).) 

 

4.4.1 Difference 

First, in the analysis on difference, based on the results shown in Table 4-2, we 

observed that trials over time had a significant 524 influence on difference (t-

value=-2.66, p<0.01**). That is, as 525 trials over time increased, difference sig-

nificantly decreased, 526 which means that as users continued to interact with the 

AI, 527 they reduced the difference between their expected scores 528 and the 

AI’s scores. 

 

Variable coefficient Std. Error t-value p-value  

(Intercept) 
Trials over time 
General public 

Photographer 

2.611 
-0.049 
-0.203 
-0.373 

0.238 
0.018 
0.244 
0.236 

10.970 
-2.656 
-0.830 
-1.582 

<0.001 
0.008 
0.407 
0.115 

*** 
** 

!" = 0.035, ()*. !" = 0.023, ,(3, 252) = 3.02, 0 = 0.03∗ 

Table 4-2. Results of panel data analysis of difference. 

 

In addition, although we did not identify any significant effects of group, we found 

that there were slight differences in difference between user groups. Surprisingly, 

AI/ML experts showed the biggest difference from the AI (Mean: 2.14), followed 
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by the general group (Mean: 2.07), and finally the photographers (Mean: 1.84). 

 

4.4.2 Interpretability 

In the analysis on interpretability, based on the results shown in Table 4-3, we 

observed that difference had a significant influence on interpretability (t-value=-

7.63, p<0.001***). That is, as difference increased, interpretability significantly 

decreased, which means that users had difficulty interpreting AI scores when there 

was a big difference between their evaluations and those of the AI. 

 

Variable coefficient Std. Error t-value p-value  

(Intercept) 
Trials over time 

Difference 
General public 

Photographer 

3.034 
0.017 

-0.334 
0.488 
1.323 

0.251 
0.014 
0.044 
0.274 
0.272 

12.090 
1.280 

-7.615 
1.782 
4.860 

<0.001 
0.202 

<0.001 
0.076 

<0.001 

*** 
 
*** 
 
*** 

!" = 0.280, ()*. !" = 0.268, ,(4, 251) = 24.36, 0 < 0.001∗∗∗ 

Table 4-3. Panel data analysis of interpretability. 

 

In addition, we identified that group had a significant effect on interpretability, 

especially for photographers (tvalue=4.86, p<0.001***). The photographer group 

(Mean: 3.90 out of 5) showed a higher level of interpretation of the aesthetic 

scores evaluated by the AI compared to the AI/ML experts (Mean: 2.44). Alt-

hough it was not a significant difference, the general public (Mean: 2.96) also 

showed a higher level of interpretation than the AI/ML experts. Meanwhile, trials 

over time also showed a slightly positive effect on interpretability, but it was not 

significant either. 
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4.4.3 Reasonability 

In the analysis of reasonability, based on the results shown in Table 4-4, we ob-

served that difference had a significant influence on reasonability (t-value=-12.02, 

p<0.001***). That is, as difference increased, reasonability significantly de-

creased, which means that users did not think the AI score was reasonable when 

there was a difference between their thoughts and those of the AI.  

 

Variable Coefficient Std. Error t-value p-value  

(Intercept) 
Trials over time 

Difference 
General public 

Photographer 

3.797 
-0.024 
-0.485 
0.277 
1.057 

0.268 
0.013 
0.040 
0.318 
0.317 

14.156 
-1.884 

-12.021 
0.872 
3.334 

<0.001 
0.061 

<0.001 
0.384 

<0.001 

*** 
 
*** 
 
*** 

!" = 0.410, ()*. !" = 0.401, ,(4, 251) = 43.63, 0 < 0.001∗∗∗ 

Table 4-4. Results of panel data analysis of reasonability. 

 

We also identified that group had a significant effect on reasonability in the case 

of photographers (t-value=3.33, p<0.001***). The photographers gave higher rea-

sonability scores (Mean: 3.74 out of 5) than AI/ML experts did (Mean: 2.43). Alt-

hough it was not a significant difference, the general public also gave higher rea-

sonability scores (Mean: 2.92) than AI/ML experts did.  

On the other hand, trials over time slightly lowered the reasonability, but it 

did not show any significant effect.  

To summarize the results of the quantitative analysis, first, we partially iden-

tified that users in different groups showed differences in the process of interacting 

with the AI. The group of photographers showed the highest interpretability and 

reasonability among the three groups, with AI experts having the lowest. Second, 
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users were able to narrow the gap between their evaluation scores and those of the 

AI as they continually interacted with AI. Third, the difference between users’ 

thoughts and the AI’s predictions lowered both the perceived interpretability and 

reasonability of the AI.  

 

4.5 Result 2: Qualitative Analysis 

In the qualitative analysis results, we focused on finding detailed features not re-

vealed in the statistical analysis. Here, we report the characteristics of each group, 

the strategies users showed in the reasoning process, and the factors users consid-

ered important in their interpretability and reasonability evaluations. 

 

4.5.1 People Understand AI Based on What They Know 

Through the qualitative analysis, we identified that while interacting with AI Mir-

ror, the participants showed distinctive characteristics according to their group. In 

particular, we observed that the vocabulary they used reflected their expertise. 

Each participant also attempted a distinct approach in the process of reasoning. 

First, while interpreting the AI’s results, AI/ML experts commonly used words 

that reflected specialized knowledge of ML and DL, such as “algorithm,” “dataset,” 

“training,” “model,” “black box,” “pixel,” “classification,” and “feature,” which 

were never mentioned by the other groups. For example, A1 said, “It’s like evalu-

ating a model. It’s like putting unseen data into the test set and seeing if it works 

or not.” A6 said, “There may be some problems with the learning process and the 

database. It depends on if it was based on social media data, like Instagram. You 

know, colorful photos usually get a lot of likes.” A5 said, “And I think we should 

open the black box if possible and make it a white box.” People in this group also 
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used their AI/ML expertise in inferring the AI’s criteria. For instance, A4 said, “I 

think the boundaries of this object are not clear. It seems the algorithm is not 

detecting this object well. Normally vision technology needs to know the bounda-

ries of objects.” A4 then edited the photo of a white egg with a white background 

by drawing the outline of the egg. However, unexpectedly, AI/ML experts did not 

receive high scores overall and eventually said they were not confident in their 

understanding of the AI’s standards. In browsing the pictures that he took on the 

review view of AI Mirror, A2 said, “I do not know why this score is high .... and 

this is too low a score.” A3 concluded the experiment by saying, “The experiment 

itself is interesting .... but my pictures scored much lower than I expected.” 

Secondly, the photographers interpreted and inferred the results of the AI us-

ing their expertise in photography. They often mentioned important elements of 

photography, such as “light,” “color,” “moment,” “composition,” and “distance,” 

and camera controls, such as “focus,” “aperture,” and “lens.” For example, P02 

said, “This picture has a low depth of field, so I think it will get a higher score 

than the previous one.” P04 said, “The composition of this picture follows the rule 

of thirds well.” P01 said, “The light is concentrated toward the black background, 

so this doll is too bright. So I’m going to adjust the light by touching it on the 

camera app screen. I often do this. This makes the background darker and darker.” 

When choosing images in photo albums, people in this group also picked the pic-

tures that seemed likely to get high scores from the AI, taking advantage of their 

expertise. Taking the viewpoints of the photographer of the picture that he picked 

the album, P3 said, “This is definitely a good picture. The photographer must be 

proud of such a beautiful picture. He must have waited for this moment.” Empha-

sizing the importance of photoshopography, P6 also said, “I think this photogra-

pher did photoshopography on this image to express the colors of various spec-

trums.” P5 also assessed the quality of the photo selected from the album by 
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reasoning about the weather at the time of the picture. Overall, the group of pho-

tographers took or picked high-scoring pictures, often showing expected scores 

similar to those of the AI. When he realized that his score was almost identical to 

the AI’s score, A1 was surprised, and he said, “It was totally creepy. I think this 

AI is in my head.” 

Third, the general public group took pictures in the way that they typically 

take pictures without specific professional knowledge. They mainly took pictures 

of their favorite objects from what we had prepared for the experiment or chose 

pictures of famous landmarks or beautiful landscapes from the photo album, be-

lieving that the AI would appreciate these pictures. For example, N1 said, “This 

[a yellow duck coin bank] is really cute. I’ll take this.” N3 said, “I’m just looking 

for a picture that looks pretty. This picture is pretty. Everything in the picture looks 

pretty. It looks like a house from a fairy tale.” Looking at the photos in the photo 

album, N6 said, “And I think I’ve seen this quite a few times. It’s the Louvre Mu-

seum,” and picked the photo. However, they did not fully comprehend the scores 

of the AI. N2 said, “I think there must be a certain standard ... But I cannot quite 

grasp it. I do not know if it’s really aesthetic judgment.” N5 said, “I think the AI 

has another evaluation criterion. The AI does not think this picture is pretty.” N4 

even complained, saying, “I think it’ll give a very high score to this picture. Actu-

ally, I do not think this picture is pretty. However, the AI has always been so con-

trary to me, so this picture will have a high score.” 

 

4.5.2 People Reduce Difference Using Various Strategies 

Next, we identified that as they continued to interact with AI, users adopted their 

own personal strategies to infer the AI’s principles of evaluation. They used ap-

proaches that involved making subtle changes to various picture elements, and 
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they extended their ideas through various examples. 

First, when users took pictures, they tried to experiment with the AI by mak-

ing slight changes to the pictures. They changed the background color of an object 

or the composition of the same object. They sometimes added objects one at a 

time and looked at the AI’s reactions as different colors were added. P1 said, “The 

next thing I wanted to do was keep the background white and add another colored 

object. I wanted to see how the score changed when I did that.” N6 said, “This 

time, I’ll take the same background and object from a distance. It makes the object 

look small in the picture. I have to change only one element .... Oh .... 4.75 points. 

Size does not matter. Now I understand more.” N3 said, “And this time, I’ll take 

this same object on a yellow background. I think if the background is yellow, some-

how it looks like the background will be more in focus than the object, so the score 

will be lower. (Score: 2.19) Now I know more. I think the AI and I have a similar 

idea.” Through this process, most of the users found that the AI gave high scores 

(8 points on a 10-point scale) when one bright object in the photo stood out against 

a black background. Photographers tried these kinds of pictures relatively earlier 

in their trials than the other participants did.  

Second, some users even used the editing features of the iPhone photo app to 

actively modify the photos they took or the photos they picked from the album 

and asked the AI to evaluate the modified photos. A4 described, “I’ll edit this 

photo of the macaroons. Let me get rid of the color. The reason for doing this is to 

know if the color is important or not. The color has gone and I think it will be 

lower than 7.22.” P5 said, “I’ll crop the photo. Let’s move the object to the center. 

I just changed the position of the object. I think this picture will be rated at ab out 

8 points. (Score release) Uh-oh (...) The score is lowered (...) The composition is 

not a problem.” In this way, participants developed a better understanding of the 

characteristics of AI by creating slightly different versions of the photographs. 
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They all stated that this process enabled them to better understand and experience 

AI principles. 

Third, participants transferred their speculations about how AI works and ap-

plied them to different cases. They continued their testing of the aesthetic evalua-

tion criteria of AI by using similar examples. They wanted to know whether the 

criteria they had grasped could be applied to other photos with similar character-

istics (e.g., composition, contrast, color) but different objects from the photos they 

had taken or identified so far. N2 explained, “I’ll pick this crab signboard picture. 

I think this is going to have a score similar to the picture I took before. What was 

the score of the photo with the white background and the red toy?” A5 described, 

“I’ll pick a photo with a variety of objects and a central object in it. That’s the 

standard I’ve figured out so far.” After getting a high score for a photo with a 

black background, P1 said, “Then, this time, I’ll pick a picture with a black back-

ground similar to the last one.” Through this process, users were able to confirm 

whether their criteria were correct and narrow the gap between their thoughts and 

those of the AI. 

Lastly, we identified that participants tried to find new standards that they had 

not seen so far by choosing completely different pictures from the photo album. 

After finding a certain way to get a high score, some participants additionally at-

tempted to look at new types of photos. P4 described, “I’ll take a look at the kinds 

of pictures I have not seen before. I’ll try this .... I have to review the various 

pictures to see what it likes and what it does not like.” P3 said, “I’ll try it again. 

Um .... I’ll take this. This is just a pattern that I have not picked up so far.” N3 

also remarked, “I just want to try something I have not tried yet. I think it likes 

pictures of things that are distinct and colored. But from now on, I do not think I 

should choose things like that.” Through this process, users were able to find new 

and unexpected criteria, such as “a preference for photographs with repetitive 
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patterns.” 

Overall, based on these various strategies, while interacting with AI Mirror, 

participants were able to understand its scoring system and narrow the gap be-

tween its scores and their scores.  

 

4.5.3 People Want to Actively Communicate with AI 

Finally, regarding users’ perceptions on the interpretability and reasonability of 

the AI algorithm’s aesthetic evaluations, the participants wanted to actively com-

municate with AI Mirror in the experiment. 

During the think-aloud sessions and interviews, regardless of their group, us-

ers recounted interacting with the AI as a positive experience. Most participants 

described the process as interesting, fun, and enjoyable. In particular, while rea-

soning about the criteria of AI Mirror’s aesthetic evaluations, participants felt cu-

rious about the principles of AI and wanted to know about it. P4 described, “It 

was fun and interesting. It got me thinking. It stimulated my curiosity.” N1 ex-

pressed, “It was fun to find out the criteria it used to rate them. It was just an 

experiment, but I was really curious.” Participants were also delighted when the 

difference between the AI score and their expected score was not that large. They 

were even more delighted when the AI gave a higher score than they expected. 

They expressed that it was as if AI Mirror had read their thoughts and that they 

felt like they were being recognized and praised by the AI. N3 said, “Later, I felt 

good about the AI, because it was well aware of the points I had intended and 

appreciated my effort.” N5 said, “I feel good because I got a high score. I feel like 

I’m being praised by the AI.” Some participants even asked us to send the URL 

link to the AI Mirror webpage at the end of the experiment. They wanted to get 

ratings on their personal smartphone photos and to interact more with the AI. 
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Nonetheless, most participants stated that they also felt negative emotions 

during the interaction. When their expected scores differed significantly from 

those of the AI, especially when they were rated very poorly by the AI, partici-

pants felt embarrassed, unhappy, and frustrated. For example, N5 described, 

“Oh .... I feel terrible. This score is lower than the previous one. I took more care 

with it. I feel worse as my score drops. It’s pretty unpleasant.” Participants told us 

that they could not understand why the AI’s scores were lower than they thought 

and that they had difficulty interpreting the results. N6 said, “I’m so frustrated 

because I do not know why my score is so low.” A2 complained, saying, “This is 

really low, but I do not know why .... This is too low .... I know this is an ugly 

picture. But is there a big difference from the photo I took earlier?” Some even 

expressed that they could not understand the AI and regarded this interaction as 

meaningless. P6 said, “Maybe it just thinks so. It is just being like that. I do not 

want to deduce anything. My overall level of interest is .... pretty low. I have no 

understanding of it.” These unpleasant experiences also reduced participants’ 

trust in the system as well as their confidence that they could take pictures well. 

P2 said, “I think this picture will get 6 points. I have lost my confidence. I think 

my expectations for my picture have been lowered too.” 

In such a situation, the absence of communication between users and AI can 

be considered the main cause of the negative emotions of users. During the inter-

views, participants uniformly expressed a desire to communicate with the AI. 

They wanted the AI to explain not only the calculated scores but also the detailed 

reasons. N6 said, “I wanted to know the elements of the scores. I think it would be 

better if it could tell me more specifically.” P6 expressed, “It would be much better 

if it could tell me why it came up with this score. Then I could take better pictures.” 

Furthermore, users wanted to let the AI know their thoughts. P4 said, “I want to 

let the AI know this is not as good a picture as it thinks.” A6 described, “I had a 
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lot of disagreements with the AI. I think it would be nice if it could learn my 

thoughts on the points on which we disagreed. It is my app, and it has to appreciate 

what I think is beautiful.” Some users said that in this one-sided relationship, even 

though they could interpret the evaluations of the AI, they could not see them as 

reasonable. P1 said, “The weather in the photos is not that sunny, but I like the 

cloudy weather. I’m sure that AI Mirror will rate this picture too low. It only likes 

those pictures that are high contrast. I can clearly see why the score is low, but I 

cannot say that it is reasonable.” 

The various emotions that the participants experienced during the user study 

and their strong desire for communication for improved interpretability and rea-

sonability suggest that in the design of user interfaces with AI (namely, algo-

rithms), additional and careful discussion is needed. 

 

4.6 Limitations 

There are several limitations of this chapter. First, in the questionnaire analysis, 

the explanatory power of the model was relatively low, although several signifi-

cant relationships and differences were found. The reason seems to be that the 

numbers of participants and trials were too small due to limitations of the experi-

mental environment. Second, we limited the experimental context to a special sit-

uation (i.e., the aesthetic domain) and did not reflect the diverse capabilities of AI 

technology. Third, we assumed a one-sided relationship with AI and did not meas-

ure the effect of users’ various communications with AI. 

 

4.7 Conclusion 

In this chapter, we investigated how users reason about the results of an AI 
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algorithm, mainly focusing on their interpretability and reasonability issues. We 

designed AI Mirror, an interface that tells users the algorithmically predicted aes-

thetic scores of pictures that the users have taken or selected. We designed and 

conducted a user study employing both quantitative and qualitative methods with 

AI/ML experts, photographers, and the general public. Through the study, we 

identified that (1) users understood the AI using their own group-specific expertise, 

(2) users reduced the thought gap with the AI by interacting with it through vari-

ous strategies, and (3) the difference between users and the AI had a negative 

effect on interpretability and reasonability. Finally, based on these findings, we 

suggested design implications for user interfaces where AI algorithms can provide 

users with subjective information. We hope that this work will serve as a step 

toward a more productive and inclusive understanding of users in relation to AI 

interfaces and algorithm design. 

Based on this study of the process of inference by humans about artificial 

intelligence algorithms, the next chapter will discuss further on the process of ar-

tificial intelligence and user collaboration. 

 

 

 

 

 

 

 



 
 

 

- 80 - 

 

 

 

5 HOW PEOPLE BUILD 
SEQUENTIAL ACTIONS WITH 
ALGORITHM-BASED SYSTEMS 
USING ARTIFICIAL 
INTELLIGENCE 

 
Recent advances in artificial intelligence have increased the opportunities for us-

ers to interact with the technology. Now, users can even collaborate with AI in 

creative activities such as art. To understand the user experience in this new user– 

AI collaboration, we designed a prototype, DuetDraw, an AI interface that allows 

users and the AI agent to draw pictures collaboratively.4 We conducted a user 

study employing both quantitative and qualitative methods. Thirty participants 

performed a series of drawing tasks with the think-aloud method, followed by 

post-hoc surveys and interviews. Our findings are as follows: (1) Users were sig-

nificantly more content with DuetDraw when the tool gave detailed instructions. 

                                         
4 This chapter has adapted, updated, and rewritten content from a paper at CHI 2018 [232]. All 
uses of “we,” “our,” and “us” in this chapter refer to coauthors of the paper. 
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(2) While users always wanted to lead the task, they also wanted the AI to explain 

its intentions but only when the users wanted it to do so. (3) Although users rated 

the AI relatively low in predictability, controllability, and comprehensibility, they 

enjoyed their interactions with it during the task. Based on these findings, we dis-

cuss implications for user interfaces where users can collaborate with AI in crea-

tive works.  

 

5.1 Motivation 

It is the age of artificial intelligence, and recent advances in deep learning have 

yielded AI with capabilities comparable to those of humans in various fields 

([173]–[175]). Many interactions have been introduced based on this technology, 

such as voice user interfaces and autopilots of self-driving cars.  

AI is expected to become increasingly prevalent in numerous areas ([196]–

[199]). It will not only assist humans in repetitive and arduous tasks but also take 

on complex and elaborative works ([7], [31], [37]). Moreover, while humans can 

guide AI, AI can also guide humans ([200], [201]). They can even work together 

to produce reasonable results in various creative tasks, including writing, drawing, 

and problem solving ([106], [202], [203]).  

As users and AI are now interacting in these novel ways, understanding the 

user experience with these intelligent interfaces has become a critical issue in the 

human–computer interaction community ([11], [118], [121], [204]). Many HCI 

researchers have conducted user studies on various AI interfaces ([205]–[207]), 

and the concept of algorithmic experience has been suggested as a new perspec-

tive from which to view the user experience of AI interfaces [77]. In light of this, 

understanding this new user experience and designing better AI interfaces will 

require consideration of the following: How do users and AI communicate in 
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creative contexts? Would users like to take the initiative or let AI take it when they 

cooperate? What factors are associated with the various experiences in this pro-

cess?  

To explore user–AI collaboration, we designed a prototype, DuetDraw, with 

which AI and users can draw pictures in a collaborative manner. DuetDraw con-

tains a variety of AIbased functions. Using state-of-the-art AI techniques, the tool 

can help users perform drawing tasks, such as completing the rest of the object 

that the user was drawing, drawing the same object in a different style, suggesting 

an object that matches the picture, finding an empty space on the canvas, and au-

tomatically colorizing the sketches (Figure 5-1).  

 
Figure 5-1. Drawing using DuetDraw in the Lead mode. With DuetDraw, users 
and AI can collaboratively draw pictures. 

 

To understand the user experience of user–AI collaboration, we conducted a user 

study of DuetDraw with both quantitative and qualitative approaches. We focused 

on the effects of communication (Detailed/Basic) and initiative (Lead/Assist) on 
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the user experience. By combining the two factors, we designed four experimental 

conditions (Lead/Assist)×(Detailed/Basic) and one control condition (no-AI). We 

recruited 30 participants and asked them to conduct a series of drawing tasks with 

five conditions. We gathered users’ feedback during the tasks with the think-aloud 

method. We also conducted post-hoc surveys and semi-structured interviews. The 

results of the study indicated the following:  

• Users prefer detailed instructions to basic instructions when communicating 

with AI.  

• Users always want to take the initiative, and they want AI to provide detailed 

explanations about its process but only when they want it to do so. 

• AI can provide users with fun as well as useful, effective, and efficient expe-

riences.  

• AI can lower users’ perceived predictability, comprehensibility, and control-

lability of the drawing tasks, while detailed instructions can offset these ad-

verse effects. Moreover, low predictability can even increase users’ enjoyment.  

Based on these findings, we discuss the design implications for user interfaces 

with which users and AI can closely cooperate on creative work. 

The main contributions of this work to the HCI community are as follows:  

• We designed and created an interface based on neural network technology, 

thus pioneering the UX of AI-embedded interfaces. 

• Through both quantitative and qualitative approaches, we closely observed the 

interaction between AI and users and discovered new aspects of this interac-

tion. 

• Finally, we discussed implications for interfaces with which users and AI 

closely communicate and cooperate for creative work. 
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5.2 Duet Draw 

To understand the user experience of user–AI collaboration, we designed a re-

search prototype, DuetDraw, where AI and the user draw a picture together (Fig-

ure 5-1). The tool runs on a Chrome browser using P5.js [208], a JavaScript library 

for sketchbook software. For AI-based functions, DuetDraw uses the open source 

code of Google’s Sketch-RNN [115] and PaintsChainer [116]. Users can draw 

pictures using DuetDraw on a tablet PC with a stylus pen. We used an iPad Pro 

12.9-inch model and Apple Pencil as an experimental apparatus.  

 

5.2.1 Five AI Functions of DuetDraw 

Users can create collaborative drawings with the help of the various functions of 

DuetDraw. Specifically, DuetDraw provides five functions based on AI technolo-

gies.  

• Drawing the rest of an object: This function enables the AI to automatically 

complete an object that a user has drawn. When a user stops drawing an object, 

this function enables the AI to immediately draw the rest of the object (Step 2 

in Figure 5-1). It is based on Google’s Sketch-RNN [115]. 

• Drawing an object similar to a previous object: This function enables the AI 

to draw the same object that a user has just drawn in a slightly different form 

(Step 3 in Figure 5-1). The object is drawn to the right of the existing object 

and at the same scale. It is also based on Sketch-RNN [115]. 

• Drawing an object that matches previous objects: This function enables the 

AI to draw another object that matches the objects a user has just drawn. A 

clip-art-like object is drawn on the canvas considering the other objects’ posi-

tions (Step 4 in Figure 5-1). 
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• Finding an empty space on the canvas: This function enables the AI to find 

and display an empty space on the canvas. We implemented this by devising 

an algorithm finding the space where the biggest circle can be drawn without 

overlapping with the drawn objects (Step 6 in Figure 5-1). 

• Colorizing sketches with recommended colors: This function enables the AI 

to colorize sketches based on a user’s color choices. When the user chooses 

colors from the palette and marks them on each object with a line, this function 

automatically paints the entire picture according to the colors. It is imple-

mented using PaintsChainer [116], a CNN-based line drawing colorizer (Step 

9 in Figure 5-1).  

 

5.2.2 Initiative and Communication Styles of DuetDraw 

In designing DuetDraw, we considered two main factors, initiative and communi-

cation, and devised two different styles for each factor.  

• Initiative: There are two initiative styles: Lead and Assist. In the Lead style, 

users complete their pictures with the help of the AI. In this mode, users take 

the initiative. Users draw a major portion of the figure, and the AI then carries 

out secondary tasks. In contrast, in the Assist style, users help AI to complete 

the picture. In this mode, the AI takes the initiative. The AI draws the main 

parts of the picture and asks users to complete supplementary/subsidiary parts.  

• Communication: There are two styles of communication: Detailed Instruc-

tion and Basic Instruction. In Detailed Instruction, the AI explains each step 

and guides the user. At the bottom of the interface, an instruction is displayed 

as a message, and users can confirm the message by tapping yes or no buttons. 

On the contrary, in Basic Instruction, the AI automatically proceeds to the next 

step with basic notifications. An instruction is displayed as an icon on the 
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canvas (More detailed examples are given in Figure 5-2).  

 

 
Figure 5-2. Examples of two different communication styles of DuetDraw. 

 

5.3 Study Design 

To assess the user experience of DuetDraw from various angles, we designed a 

user study consisting of a series of drawing tasks, post-hoc surveys and semi-

structured interviews.  
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5.3.1 Participants 

We recruited participants by posting an announcement on our institution’s online 

community website. We recruited 30 participants (15 males and 15 females). Their 

mean age was 29.07, and the SD was 4.74 (M: Mean = 30.53, SD = 5.42, F: Mean 

= 27.6, SD = 3.54). Before the experiment, we explained the purpose and proce-

dures to the participants. As we identified that it is important to prevent the par-

ticipants from heavily weighting their first impressions of the interface through 

the pilot test, we devised ways to make them get used to the system. We specially 

prepared a separate guide document describing the functions, modes and condi-

tions, and scenarios of DuetDraw in as much detail as possible. We also let the 

participants try out the system a few times. Each experiment lasted about 1 hour, 

and each participant received a gift certificate valued at about $10 in exchange for 

participating in the experiment.  

 

5.3.2 Tasks and Procedures 

For the experiments, we designed five conditions for using DuetDraw: four treat-

ment conditions that combined its initiative and communication styles ((a) Lead-

Detailed, (b) LeadBasic, (c) Assist-Detailed, (d) Assist-Basic) and one control 

condition ((e) no-AI). The no-AI condition had the same interface but no interac-

tion with AI so that users could complete the picture independently on an empty 

canvas. The experiments had a within-subjects design in which all users per-

formed all five conditions. To reduce the bias due to the sequence of tasks, we 

randomized the orders of the five conditions.  
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5.3.3 Drawing Scenarios 

Although users can normally draw and color any object, for the experiments, it 

was necessary to control the users’ behaviors through assigning tasks rather than 

letting them perform too many different actions. Therefore, we designed user sce-

narios consisting of the following nine steps (Table 5-1) in which the AI and the 

user drew a picture together.  

 

Step Description 

1 
2 
3 
4 
5 
6 
7 
8 
9 

The leader starts to draw a part of an object. 
The assistant completes the rest of the object. 
The assistant draws the same object in a different style. 
The assistant draws another object that matches the objects.  
The leader freely draws on the canvas. 
The assistant finds the emptiest space on the canvas. 
The leader draws an appropriate object in the empty space. 
The leader chooses colors and marks them on each object. 
The assistant colorizes the sketch with the chosen colors. 

Table 5-1. Scenario of drawing a picture with DuetDraw 

 

In the experiments, in the Lead conditions, the user is the leader and the AI is 

the assistant. The user performs steps 1, 5, 7, and 8, leading the drawing. The AI 

performs steps 2, 3, 4, 6, and 9. Conversely, in the Assist conditions, the user and 

the AI do the opposite: the AI is the leader, and the user is the assistant. In the 

Detailed Instruction conditions, the AI provides detailed information, waiting for 

the user’s confirmation on each step. In the Basic Instruction conditions, the AI 

automatically goes to the next step without detailed guidance and explanation.  

We also limited the kinds of pictures and objects that users can draw to con-

duct an accurate and controlled experiment. In every drawing task, the participants 

select one of three types of drawings: landscape, still-life, or portrait. Although 
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Sketch RNN provides recognition and completion function for over 100 objects, 

there are quality differences depending on each object. Thus we have selected 

three best recognized objects that would be easy to work with and assigned these 

to each category of the drawing. Accordingly, when users are in the leader role, 

they were asked to start the task by drawing a palm tree when chosen landscape, 

a strawberry when chosen still-life, and a left eye when in portrait.  

 

5.3.4 Survey 

We conducted a survey to quantitatively evaluate the user experience of DuetDraw. 

At the end of each task, the participants filled out the questionnaires about the 

condition. The survey consisted of 15 items. We selected 12 items from the criteria 

commonly used for user interface usability and user experience evaluations ([209], 

[210]) in consideration of the characteristics of the tasks: 1) useful, 2) easy to use, 

3) easy to learn, 4) effective, 5) efficient, 6) comfortable, 7) communicative, 8) 

friendly, 9) consistent, 10) fulfilling, 11) fun, and 12) satisfying. In addition, we 

included three extra criteria that have been pointed out in the AI interface issue 

([95], [211], [212]): 13) predictability, 14) comprehensibility, and 15) controlla-

bility. Users evaluated each task on the survey with a 7-point Likert scale ranging 

from highly disagree to highly agree.  

 

5.3.5 Think-aloud and Interview 

We also conducted a qualitative study using the think-aloud method and semi-

structured interviews to gain a deeper and more detailed understanding of user 

experience in collaboration with AI. Since we asked the participants to use the 

thinkaloud method while performing the tasks [213], they could freely express 

their thoughts about the tasks in real time. We video recorded all the experiments 
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and audio recorded all the think-aloud sessions.  

After all tasks were completed, we conducted semi-structured interviews. In 

the interviews, the participants were asked about their overall impressions of Du-

etDraw, their thoughts on the two different styles of initiative and communication, 

and each of the functions of the AI. In this process, we used the photo projective 

technique [214], showing users the pictures they had just drawn so that they could 

easily recall their memories of the tasks. All the interviews were audio recorded.  

 

5.3.6 Analysis Methods 

From the study, we were able to gather two kinds of data: quantitative data from 

the surveys and qualitative data from the think-aloud sessions and interviews. We 

conducted quantitative analysis for the former and qualitative analysis for the lat-

ter, which are described in detail below.  

 

Quantitative Analysis  

In quantitative analysis, we aimed to examine if there was a significant difference 

between users’ evaluation of each condition and the way in which these differ-

ences could be explained. As every participant performed all five tasks (within-

subjects design), we analyzed the survey data using a one-way repeatedmeasures 

ANOVA, comparing the effect of each condition on the user experience of the 

interface. We also conducted Tukey’s HSD test as a post-hoc test for pairwise 

comparisons.  
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Qualitative Analysis  

The qualitative data from the think-aloud sessions and interviews were transcribed 

and analyzed using grounded theory techniques [215]. The analysis consisted of 

three stages. In the first stage, all research team members reviewed the transcrip-

tions together and shared their ideas, discussing main issues observed in the ex-

periments and interviews. We repeated this stage three times to develop our views 

on the data. In the second stage, we conducted keyword tagging and theme build-

ing using Reframer [183], a qualitative research software tool provided by Opti-

mal Workshop. We segmented the transcripts into sentences and finally obtained 

635 observations. While reviewing the data, we annotated multiple keyword tags 

in each sentence so that the keywords could summarize and represent the entire 

content. A total of 365 keyword tags were created, and we reviewed the tags and 

text a second time. Then, by combining the relevant tags, we conducted a theme-

building process, yielding 30 themes from the data. In the third stage, we refined, 

linked, and integrated those themes into four main categories. (The quotes are 

translated into English.)  

 
Figure 5-3. Pictures drawn by participants in experiment. 
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5.4 Result 1: Quantitative Analysis 

Through the user study, we obtained the questionnaire responses from the survey, 

transcriptions from the interviews and think-aloud sessions, and 150 drawings 

drawn by 30 participants (Figure 5-3). The results of the analysis are as follows.  

The repeated measures one way ANOVA revealed that there are significant 

effects of conditions on users’ ratings on user experience. Except for fulfilling, all 

the 14 items showed significant difference: useful, easy to use, easy to learn, ef-

fective, efficient, comfortable, communicative, friendly, consistent, fun, satisfying, 

predictable, comprehensible, controllable (F-values and p-values are shown in 

Figure 5-4).  

 
Figure 5-4. Box plots of user ratings of each item according to each condition and 
result of one-way repeated-measures ANOVA. Except for fulfilling, all items 
showed significant differences. ((a) Lead-Detailed, (b) Lead-Basic, (c) Assist-De-
tailed, (d) Assist-Basic, (e) no-AI, F(4, 26). The dotted lines represent the mean 
of each item. The items in the rightmost column with the light blue background 
are related to AI-specific issues. Statistically significant results are reported as p 
< 0.001***, p < 0.01**, p < 0.05*) 

Based on the result, we further conducted Tukey’s HSD test as a post-hoc test 

to identify pairwise comparisons between each condition. As there were 150 
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comparisons and 58 significantly different pairs among them, we categorized the 

results focusing on the main issues below.  

 

5.4.1 Detailed Instruction is Preferred over Basic Instruction 

From the multiple pair comparisons, we observed that the participants tended to 

prefer Detailed Instruction to Basic Instruction. Specifically, we checked if com-

munication mode significantly affected users’ ratings when the drawing mode was 

the same.  

 

item 

Comparison 1 Comparison 2 Comparison 3 
(a) Lead-Detailed 
- (b) Lead-Basic 

(c) Assist-Detailed  
- (d) Assist-Basic 

(c) Assist-Detailed  
- (d) Assist-Basic 

diff. t p diff. t p diff. t p 
useful 
easy to use 
easy to learn 
effective 
efficient 
comfortable 
communicative 
friendly 
consistent 
fulfilling 
fun 
satisfying 
predictable 
comprehensible 
controllable 

0.57 
1.00 
0.90 
1.03 
0.66 
1.34 
2.53 
2.97 
0.96 
0.47 
0.20 
0.87 
0.37 
1.17 
1.13 

1.653 
3.411 
3.239 
3.198 
1.817 
4.828 
6.898 
8.830 
3.400 
1.233 
0.605 
2.574 
1.026 
4.148 
3.220 

0.4673 
0.0078** 
0.0133* 
0.0151* 
0.3691 
<.0001*** 
<.0001*** 
<.0001*** 
0.0081** 
0.7321 
0.9740 
0.0819 
0.8427 
0.0006*** 
0.0141* 

0.80 
0.54 
0.90 
1.03 
0.50 
0.80 
2.00 
2.53 
1.14 
0.23 

0.4 
0.57 
0.84 
1.00 
0.70 

2.333 
1.819 
3.239 
3.198 
1.362 
2.897 
5.446 
7.540 
3.986 
0.617 
1.210 
1.683 
2.333 
3.556 
1.989 

0.1420 
0.3675 
0.0133** 
0.0151** 
0.6528 
0.0358* 
<.0001*** 
<.0001*** 
0.0011** 
0.9722 
0.7455 
0.4484 
0.1421 
0.0049** 
0.2780 

-0.57 
-1.04 
-0.94 
-1.00 
-0.60 
-1.37 
-2.37 
-2.67 
-1.30 
0.07 
0.33 

-0.77 
-1.07 
-1.47 
-0.60 

-1.653 
-3.525 
-3.359 
-3.095 
-1.635 
-4.949 
-6.444 
-7.937 
-4.573 
0.176 
1.008 

-2.277 
-2.986 
-5.215 
-1.705 

0.4673 
0.0054** 
0.0092** 
0.0205* 
0.4784 
<.0001*** 
<.0001*** 
<.0001*** 
0.0001*** 
0.9998 
0.8510 
0.1598 
0.0280* 
<.0001*** 
0.4352 

Table 5-2. Results of Tukey’s HSD test. Results of Comparison 1 ((a) > (b)) and 
Comparison 2 ((c) > (d)) show that participants preferred Detailed to Basic In-
struction. Results of Comparison 3 ((c) > (b)) show that Assist-Detailed provides 
a better experience than Lead-Basic. 

 

First, when the initiative style was Lead, we identified that nine items among 

the 15 showed that Detailed Instruction was placed significantly higher than Basic 

Instruction (Comparison 1 in Table 5-2, t-values and p-values are shown in the 

table): easy to use, easy to learn, effective, comfortable, communicative, friendly, 
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consistent, comprehensible, controllable. Even though the differences were not 

significant, these trends were the same in the remaining six items. Second, when 

the initiative style was Assist, we observed the same pattern and significant dif-

ferences (Comparison 2 in Table 5-2): easy to learn, effective, comfortable, com-

municative, friendly, consistent. Even though the differences were not significant, 

these trends were the same in the remaining six items.  

 

5.4.2 UX Could Be Worse with Lead-Basic than Assist-Detailed 

One of the most interesting results of the survey analysis was that user experience 

could be lower when users were provided Basic Instruction with initiative than 

when provided Detailed Instruction without initiative. The pairwise comparison 

analysis result indicated that in 9 of the 15 items, (b) Lead-Basic produced signif-

icantly lower scores than (c) Assist-Detailed (Comparison 3 in Table 5-2): easy to 

use, easy to learn, effective, comfortable, communicative, friendly, consistent, pre-

dictable, comprehensible. Even though the differences were not significant, these 

trends were the same in the remaining items except for fun. This result suggests 

that the problem related to communication with AI could be more significant than 

that related to the initiative issue.  

 

5.4.3 AI is Fun, Useful, Effective, and Efficient 

We also identified that the treatment conditions received higher scores in all four 

tasks than the control condition (Comparisons 4–7 in Table 5-3, t-values and p-

values are shown in the table): useful, effective, efficient, fun. In the case of useful, 

effective, and efficient, when the Detailed Instruction was provided, both Lead and 

Assist showed significantly higher scores than Basic (Comparisons 4, 6 in Table 

5-3). These items are related to the basic usability of the interface, and we think 
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that the interactions with AI could be helpful for users’ task performance itself. 

Besides, in the case of fun, the treatment conditions showed significantly higher 

scores than the control condition in all four modes (Comparisons 4–7 in Table 5-

3). This shows that the interaction with AI can bring fun and excitement to the 

user as well as enhance basic usability.  

 

item 

Comparison 5 Comparison 6 Comparison 7 Comparison 8 
(a) Lead-Detailed 

- (e) no-AI 
(b) Lead-Basic 

- (e) no-AI 
(c) Assist-Detailed 

- (e) no-AI 
(d) Assist-Basic 

- (e) no-AI 
diff. t p diff. t p diff. t p diff. t p 

useful 
effective 
efficient 
fun 
predictable 
comprehensible 
controllable 

0.97 
1.13 
1.30 
1.97 

-2.20 
-0.53 
-1.94 

2.82 
3.51 
3.54 
5.95 

-6.16 
-1.90 
-5.49 

0.0441* 
0.0057** 
0.0051** 
<.0001*** 
<.0001*** 
0.3252 
<.0001*** 

0.40 
0.10 
0.64 
1.77 

-2.57 
-1.70 
-3.07 

1.166 
0.309 
1.726 
5.345 

-7.184 
-6.044 
-8.713 

0.7704 
0.9980 
0.4224 
<.0001*** 
<.0001*** 
<.0001*** 
<.0001*** 

0.97 
1.10 
1.24 
1.44 

-1.50 
-0.23 
-2.47 

2.819 
3.404 
3.361 
4.336 

-4.199 
-0.830 
-7.008 

0.0441* 
0.0080** 
0.0091** 
0.0003*** 
0.0005*** 
0.9209 
<.0001*** 

0.17 
0.07 
0.74 
1.04 

-2.34 
-1.23 
-3.17 

0.486 
0.206 
1.998 
3.126 

-6.531 
-4.385 
-8.997 

0.9885 
0.9996 
0.2734 
0.0187** 
<.0001*** 
0.0002*** 
<.0001*** 

Table 5-3. Results of Tukey’s HSD test. In fun, useful, effective, efficient, all 
treatment conditions produced higher scores than the control condition ((a), (b), 
(c), (d) > (e)). On the contrary, in predictable, comprehensible, and controllable, 
all treatment conditions produced lower scores than the control condition. 

 

5.4.4 No-AI is more Predictable, Comprehensible, and Controllable 

However, as pointed out in previous studies ([95], [211], [212]), the treatment 

conditions recorded lower scores for the predictable, comprehensible, and con-

trollable items than the control condition. In the case of predictable, all four treat-

ment conditions recorded significantly lower scores than the control condition 

(Comparisons 4–7 in Table 5-3). For controllable, all four treatment conditions 

recorded significantly lower scores than the control condition (Comparisons 4–7 

in Table 5-3). In the case of comprehensible, when the communication mode was 

Basic, the treatment conditions showed a significant difference (Comparisons 5, 

7 in Table 5-3).  

Meanwhile, Detailed Instruction could be a way to overcome these 
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shortcomings of the AI interface. Although they received lower scores than the 

control condition, the Detailed Instruction conditions received higher ratings than 

the Basic Instruction conditions for all three items: predictable, comprehensible, 

and controllable. In the case of comprehensible, every Detailed Instruction con-

dition recorded significantly higher scores than the Basic Instruction conditions 

(Comparisons 1, 2 in Table 5-2). In the case of controllable, in the Lead conditions, 

the Detailed Instruction conditions received significantly higher scores than the 

Basic conditions (Comparison 1 in Table 5-2). We could identify the same ten-

dency in all other cases, even if this was not to a significant degree.  

 

5.4.5 Even if Predictability is Low, Fun and Interest Can Increase 

Through further analysis, we investigated the correlation between the predictable 

scores and the fun scores, which showed the opposite trend. The result revealed 

that there was a significant negative correlation between predictable and fun (cor-

relation coefficient: -0.847, p=.0010**). This means that although the AI interface 

has the disadvantage of low predictability, at the same time, it can provide users 

with a more fun and interesting experience [216].  

 

5.5 Result 2: Qualitative Analysis 

In the qualitative analysis, we aimed to investigate the users’ thoughts in more 

depth and derive hidden characteristics behind the survey results. Specifically, we 

sought to identify users’ perceptions of initiative and communication methods, the 

features they showed, and the factors they valued in interacting with the AI. We 

identified that users wanted the AI to provide detailed instructions but only when 

they wanted it to do so. In addition, they wanted to make every decision during 
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the tasks. They sometimes anthropomorphized the AI and demonstrated a clear 

distinction between human and nonhuman characteristics. Finally, they reported 

that drawing with AI was a positive experience that they had never had before.  

 

5.5.1 Just Enough Instruction 

Overall, the participants wanted the AI to provide enough instruction during the 

tasks. However, at the same time, they did not want the AI to give too many in-

structions.  

As seen in the survey results, we also identified that participants preferred 

Detailed Instruction to Basic Instruction in the qualitative analysis. Participants 

said Detailed provided a better understanding of the system and made them feel 

they were communicating and interacting with another intelligent agent. For ex-

ample, P28 said, “I like the fact that it tells me what to do next.” P27 also said, 

“It’s a lot better. This guide makes me feel like I’m doing it right.” Interacting with 

the AI also increased the users’ confidence. P24 said, “I liked the Detailed mode. 

I think it improved my confidence. I felt like I was communicating with someone.” 

P02 said, “I like the way it talks to me. It confirms that I am doing a good job. It’s 

like I’m being praised.” In contrast, users expressed negative feelings about the 

Basic Instruction. They thought that in the Basic mode, it was hard to understand 

the system’s intended meaning. Besides, they worried that they would miss the 

guidance, as it would pass quickly without their noticing. P14 said, “There is no 

explanation. It’s not clear what I have to do. Does this mean that I have to draw 

something here? What should I draw?” P10 said, “It was my first task, so I didn’t 

know what to do. I did not see the guide once, as it disappeared too quickly.”  

However, we also observed that some participants preferred Basic Instruction. 

They thought that in the long term, the Basic mode might have an advantage if 
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users become more accustomed to the interface. They believed that straightfor-

ward and clear instructions would ultimately be more efficient. P08 said, “I think 

it [Basic] would be nice if I get used to the communication with the icon.” P27 

said, “If I become accustomed to it, I think I will pass on the Detailed Instruction. 

Basic could be more helpful.”  

Meanwhile, even the Detailed mode did not always guarantee a good experi-

ence. If the words of the AI seemed to be empty or automatic, users felt frustrated. 

When the system showed the message “It’s a nice picture” as a reaction to a draw-

ing, P27 said, “I think that it is an empty word; I mean, it just popped up automat-

ically.” P22 also talked about a similar experience; when he finished drawing an 

object, he was not satisfied with his drawing. However, immediately after he rec-

ognized that feeling, the AI praised his drawing, which made him feel disap-

pointed. He said, “Do you really think it is nice? I want the AI to give me sincere 

feedback considering how I feel about my drawings. I felt like he was teasing me 

because I was not satisfied with my picture.”  

Participants wanted detailed communication rather than preset phrases. P15 

commented, “When I drew this, I was thinking about a building like the UN head-

quarters in NYC. I wanted the system to be aware of my thoughts and give me 

more detailed feedback.” They thought it would be better if the AI mentioned the 

details of the picture based on the drawn object rather than automatically showing 

a list of pre-set words. Besides, P05 said he did not want to get simple comments 

from the AI. Rather, he wanted to be able to actively share opinions with the AI 

about the drawn pictures. He said, “I want it to pick on my drawing, like ‘Do you 

really think it is right here?’ I want a more interactive chat like I have with my 

friends or my girlfriend.”  
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5.5.2 Users Always Want to Lead 

One of the most important characteristics that participants showed during the ex-

periments was their strong desire to take the initiative, although Lead was not 

significantly preferred in the survey. Users’ ability to make the decision at every 

moment seemed more important than being in the Lead mode itself. Most of the 

participants “always” wanted to take the initiative. Even in the Assist mode where 

the AI leads and the user assists its drawing, they tried to take the initiative. P16 

mentioned, “Of course, I know that I should help the AI in the Assist mode, but I 

couldn’t be absorbed in that mode at all. Why should I support a computer? I 

cannot understand.” P06 said, “Well, I think it’s a very uncommon situation.” P07 

also said, “I did my best to do my role in the Assist mode, but it did not seem to be 

helpful. So I didn’t know why I should help it.”  

Participants wanted to distinguish their roles from those of the AI. They 

thought that humans should be in charge of making decisions and that the AI 

should take on the follow-up work created by these decisions. In particular, they 

often expressed that AI should do the troublesome and tiresome tasks for humans. 

Some thought that repetitive tasks, such as colorizing, were arduous for them and 

did not want to perform them at all. P26 said, “It’s very annoying. Why doesn’t the 

AI just do this part?” P22 argued that people and AI should play different roles 

according to the nature of the work. He commented, “I feel a little annoyed with 

coloring the whole canvas. It is very hard. I wish you [AI] would do this colorizing. 

We humans don’t have to do this. Humans have to make the big picture, and the 

AI has to do the chores.” P21 also argued that people should have the right to 

make decisions in creative work. He said, “It’s like I’m doing a chore [colorizing]. 

I like to make the decisions, especially when I do something artistic like this. It’s 

fun to see what [the AI] is doing, but I don’t want to do this myself.”  
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Participants felt as if they were being forced when the AI made unilateral 

decisions. P07 said, “What are you doing? This is not co-creation. It seems like 

one person is letting the other person do it. I don’t feel like we’re drawing pictures 

together at all.” P05 also felt as if he had become a passive tool for AI, saying, “I 

think he is using me as a tool.” Some participants even said that this forced expe-

rience strengthened their negative feelings toward AI. Some of them stated that 

they felt frustrated and discouraged. P23 said, “Do I have to color myself? This is 

so embarrassing.” P01 also said, “Anyway, I colored this vacuum cleaner and this 

sofa with the colors that the AI requested. Actually, it was not pleasant. I felt as if 

I was being commanded.”  

When asked to fulfill the AI’s requests, some of the participants wanted to 

know why the AI had made those decisions. When asked to complete the coloriz-

ing with the colors that the AI had specified, P12 said, “So I wonder why he rec-

ommended these colors.” Furthermore, participants wanted to negotiate with the 

AI so that their thoughts could be reflected in the drawing or to have more options 

from which they can choose. P19 said, “Usually, if I do not agree with someone’s 

idea, I try negotiating. But it does not seem to be a negotiation. If I could negotiate, 

I would feel more like drawing artwork with the AI.” P16 also said, “I think it 

would be better if I had more options or more room to get involved.” P15 com-

mented, “I don’t like the position of these birds. I want to move them a little. I want 

to give him a lot more feedback.”  

Furthermore, some participants even wanted to deny the AI’s requests. They 

tried to ignore the AI’s requests and change the picture in a way that they thought 

was more appropriate. P09 said, “Why is the cleaner red? It is weird. I wanna 

change it to a different color. I don’t like the color of the sofa either.” P06 also 

said, “I don’t think I should follow its request.” Meanwhile, P29 said, “These col-

ors are a little bit dull. I’m gonna put on different colors.”  
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5.5.3 AI is Similar to Humans But Unpredictable 

During the task, we observed that participants tended to anthropomorphize the AI. 

People personified it as a human based on its detailed features [64]. They consid-

ered it an agent with a real personality. Furthermore, they did not regard the AI as 

being equal to human beings; rather, they regarded it as a subordinate to people. 

P13 mockingly said, “But I do not know what my robot master wants. Hey robot 

master, what do you want?” P14 also regarded the AI as someone with a person-

ality. When the AI made a mistake, he said, “Oh poor thing, I forgive you for your 

mistake.” P22 argued that the AI should be polite to humans. She said, “I don’t 

like this request. He just showed me the message and told me to draw it. It’s in-

sulting. He should be polite, of course.” P01 said, “I am trying to teach him some-

thing new, because he is not that fun yet. I heard that AI should learn from humans.” 

This implies that she believed that AI is imperfect and must go through the process 

of learning through human beings.  

Participants also found human-like features and non-humanlike features of 

the AI. People felt the AI was like a human being when it drew objects imitating 

their drawing style, drew pictures in a natural way, or showed the process of its 

drawing. P18 said, “I felt as though it was a real human when it drew in a similar 

manner to how I draw.” P23 said, “Well, this is not a well-drawn picture, but it 

makes me think it’s drawn by a person. It seems to be drawn in a very natural way.” 

On the other hand, participants felt the AI did not seem human when it drew ob-

jects too precisely and delicately, did not show its drawing process, and drew ob-

jects more quickly than expected. P30 said, “This is too sophisticated and too 

round. It’s like a real coconut. It’s too computer-like.” P18 said, “I know it’s not a 

human. It draws too quickly.”  

The problem was that the users felt uncomfortable when the AI went between 
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being human-like and non-human-like. P11 told us that he felt it was awkward 

when it drew a clip art picture that was like a sophisticated and perfect object right 

after drawing a picture that was like a hand drawing. He said, “This nose is a bit 

different. It’s like a clip art picture in a Google image search, and it makes this 

entire picture weird. Some of these pictures look hand-drawn, and some are elab-

orately drawn, as if made by a computer. It seems unbalanced.” P22 also argued 

that pictures that had a mix of low- and high-quality parts seemed dissonant. He 

said, “It is a mixture of an excellent picture and a very poor picture. It’s like some-

one wearing a cheap t-shirt but at the same time wearing luxury shoes.”  

Besides, users said they felt unhappy when the AI drew pictures that were 

much better than their pictures. They sometimes compared their drawings with 

those of the AI, which hurt their confidence. P20, comparing the part the AI had 

drawn to the part he had drawn, said, “If he had drawn it alone, it would have been 

better.” He added that his role seemed to be meaningless. P18 also said, “It could 

be a perfect palm tree if he took out the part I drew.” P24 even told us that she felt 

like she was being ridiculed. She said, “Of course I like it. But AI seems to be 

teasing me.”  

 

5.5.4 Co-Creation with AI 

Despite some of the inconvenience and the awkwardness of DuetDraw, most of 

the participants described drawing with AI as a pleasant and fun experience. This 

was also confirmed by the survey results, and we examined the elements in more 

detail in the qualitative analysis. P11 commented, “I think this program is fun and 

enjoyable. It is definitely different from conventional drawing.” P01 said, “It was 

a bit of a new drawing experience. I was satisfied with it even though my drawing 

was not that good.” Participants also stated that the AI allowed them to complete 
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drawings quickly and efficiently. They said that the AI led them to the next step 

and helped with much of the picture. P29 said, “When I paused, the AI guided me 

to the next step quickly.” P07 said, “It is fast. The AI does a lot of work for me.”  

Users also positively assessed each function of AI. In particular, they were 

very satisfied with its ability to colorize sketches semi-automatically. Almost all 

the participants were impressed with the artistic work of the AI. P13 said, “Now 

he is going to colorize it like a décalcomanie. Please surprise me! (pause) Oh! 

Wow cool! It is terrific. This is a masterpiece!” P17 said, “Oh my god, I love this. 

It looks like an abstract painting. I am so satisfied.” The participants also evalu-

ated that the drawing function for the rest of the object was both wonderful and 

interesting. P25 commented that when the AI drew every element of the object 

that she was about to draw, she was delighted. She said, “That was incredible. 

Well. . . I am so surprised that he can recognize what I was drawing and what I 

was gonna draw. He completed my strawberry. He drew all the elements of a 

strawberry.” In addition, after seeing the AI draw the rest of his object, P17 ex-

pressed his greater expectations regarding the AI’s abilities. He said, “It’s wonder-

ful. This makes me look forward to seeing his next drawings. What will he do next?” 

Some participants were satisfied with its ability to recommend a matching object. 

As described above, when recommending the object, the AI presented a clip-art-

style object. Although some of the participants disliked it, as it was more like a 

computer than a human, other participants enjoyed the feature. They said that the 

clip art helped to increase the overall quality of their picture. P08 said, “He painted 

the plate very well. It is beautiful. I like beautiful things. They’re certainly better 

than ugly things. I think this pretty dish is much better than my strange strawberry.” 

The participants were also pleased with its ability to find an empty space on the 

canvas. Although finding the blank space itself was not that impressive, they be-

lieved that this feature allowed them to think about what was needed in their 
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paintings. P28 said, “It was terrific, as it let me think about what kind of object I 

could draw. I know it is not that useful. But it seemed to stimulate my imagination 

a little more.” This shows that AI can help to foster human creativity in collabo-

ration.  

Meanwhile, participants were highly satisfied with the AI when confronted 

with unexpected results. Users were amazed and pleased when the AI suddenly 

painted objects they wanted but did not expect AI to draw. They were also de-

lighted when the AI drew a picture that differed from what they had expected. P30 

said, “When I let him know about this empty space, I vaguely thought that a plane 

or birds flying around the sky would fit here. Of course, I didn’t expect that the AI 

would understand my thoughts. But the AI drew birds! I was thrilled.” P21 also 

described his similar experience. He said, “I think art sometimes needs uncertainty. 

Some painters just scatter paint on the canvas without any purpose. I thought the 

AI was like this. I just picked the color, and the AI painted it. The result was totally 

different from what I had expected, and I was delighted.” P17 said, “I think this is 

the best part of this experiment. The AI has drawn pictures in a way I have never 

thought of before.”  

Some users said that the experience of drawing with the AI made them feel 

as if they were with someone. P29 said, “When I was drawing this picture, I felt 

like I was drawing with someone.” P11 said that drawing with the AI made it 

possible to create a picture that would never have been created independently. He 

said, “If I had drawn alone, I would not have drawn this. Before I started this, I 

never knew I was going to paint this picture.” P02 mentioned that drawing to-

gether even made him feel more stable. He also said, “I think drawing is like put-

ting the thoughts in your head on paper. Usually, we do this alone, but it’s hard. 

But in this experiment, I felt like someone was involved in this process. I felt like 

I was talking with an agent and sharing my thoughts with him.”  
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Lastly, DuetDraw made users curious about the principles of its algorithms. 

During the tasks, the participants wanted to see how the AI algorithms worked 

underneath the interface and tried to test their guesses. During the task, P15 said, 

“How do you know this is a tree? You are so amazing. What made you think it was 

a tree?” P17 was more curious about the AI algorithms and created and tested 

hypotheses. He said, “I was curious about the principle of this colorizing. So I 

deliberately picked a variety of colors inside this contour, not just one color. If he 

recognized the object as a whole then the coloring would not seem out of line.” 

P14 also said, “Well, now I see. The AI seems to divide the area and color each 

sector differently.” P08 also said, “This is so smart. He mixed the colors and made 

a gradient. Hmm. . . I’m still curious about the criteria he used to paint each area 

differently.”  

 

5.6 Limitations 

We have identified three limitations of this chapter. First, although DuetDraw was 

designed for user–AI collaboration based on neural network algorithms, it cannot 

represent all AI interfaces. Second, in the experiments, we had to control the par-

ticipants’ behaviors with a task-oriented scenario, and users were not able to use 

the interface freely. Third, we could not address the long-term experience of user–

AI interaction, and the study results may have been influenced by users’ initial 

impressions of the interface.  

 

5.7 Conclusion 

This chapter examined the user experience of a user–AI collaboration interface 

for creative work, especially focusing on its communication and initiative issues. 
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We designed a prototype, DuetDraw, in which AI and users can draw pictures 

cooperatively, and conducted a user study using both quantitative and qualitative 

approaches. The results of the study revealed that during collaboration, users (1) 

are more content when AI provides detailed explanations but only when they want 

it to do so, (2) want to take the initiative at every moment of the process, and (3) 

have a fun and new user experience through interaction with AI. Finally, based on 

these findings, we suggested design implications for user–AI collaboration inter-

faces for creative work. We hope that this work will serve as a step toward a richer 

and more inclusive understanding of interfaces in which users and AI collaborate 

in creative works.  

Over the past three chapters, this thesis has stepped through an understanding 

of how people interact with artificial intelligence algorithms. Based on the results, 

in the next chapter, a case study of a practical application working on algorithms 

and its user experience will be presented.  
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6 HOW PEOPLE USE A PRACTICAL 
APPLICATION OF AN 
ALGORITHM-BASED SYSTEM 
USIGN ARTIFICIAL 
INTELLIGENCE 

 
Automated journalism refers to the generation of news articles using computer 

programs. Although it is widely used in practice, its user experience and interface 

design remain largely unexplored. To understand the user reception of an auto-

mated news system, we designed NewsRobot, a research prototype that automat-

ically generates news on major events of the PyeongChang 2018 Winter Olympic 

Games.5 It produced six types of news by combining two kinds of content and 

three styles. A total of 30 users participated in using NewsRobot, completing sur-

veys and interviews on their experience. Our findings were as follows: (1) Users 

preferred selective news yet considered it less credible, (2) more presentation el-

ements were appreciated but only if their quality was assured, and (3) NewsRobot 

                                         
5 All uses of “we,” “our,” and “us” in this chapter refer to contributors of the study. 
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was considered factual and accurate yet shallow in depth. Based on our findings, 

we discuss implications for designing automated journalism user interfaces. 

 

6.1 Motivation 

Automated journalism (also known as robot journalism) refers to the generation 

of news articles using algorithmically designed computer programs ([126]–[128]). 

They usually collect and process data and integrate it in a predesigned article 

structure, producing news articles [128]. Unlike human journalists, the programs 

can create articles on a large scale quickly, cost-effectively, and even accurately.  

Many companies, such as Narrative Science and Automated Insights, are al-

ready producing and providing news articles based on this technology ([129], 

[130]), and traditional media companies, like The Los Angeles Times and Thom-

son Reuters, are also distributing automatically generated news articles [131]. The 

technology is also used in a variety of areas, such as sports event highlights, 

weather forecasts, and disaster and election reports ([128], [140], [217]).  

Surprisingly, while the importance of automated journalism is often noted 

([148], [149]), the topic is rarely studied in the field of human–computer interac-

tion. Although not directly addressing automated journalism, recent discussions 

on the transparency and fairness of algorithms in automated systems show that it 

is important to not only focus on the technical design of the algorithm but also 

closely observe the user experience of these systems ([81], [84]). This calls for the 

active involvement of designers and HCI researchers in the design of automated 

news generation systems. 

In this chapter, we aim to explore the user experience of automated journalism 

and discuss design implications for automated news generation systems based on 
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the findings. In particular, we focus on the issues of content and style. Both are 

crucial factors in automated journalism as well as HCI, in that the former is effec-

tive when delivering a large amount of content to many users, and the latter could 

be a means of delivering content to users more effectively.  

To assess the user experience of an automated news generation system, we 

designed a research prototype, NewsRobot (Figure 6-1). It automatically gener-

ates a series of summary news articles of the PyeongChang 2018 Winter Olympic 

Games in real time. It collects data on the results of major events and players’ 

information from the official website [218], processes the data, and inputs it into 

a predesigned article structure. We designed the system to generate news with two 

different types of content (general/personalized) in three different styles 

(text/slide/video). By combining the two factors, it can produce six different types 

of news articles for every event. 

We conducted a user study of NewsRobot with both quantitative and qualitative 

approaches. We asked 30 recruited participants to watch Olympic Games races on 

TV and then showed them six types of news articles per game. They then filled 

out questionnaires on each news article and took part in semi-structured interviews. 

The results of the study can be summarized in the following three points:  

• Content: While users preferred selective news to general news, they consid-

ered selective news less credible than general news. 

• Style: As more news presentation elements were added, users’ preference in-

creased. People liked video news the most, followed by slide news and then 

text news. On the other hand, in terms of quality, users rated slide news as 

more clear and concise than video and text news. 

• Overall assessment: While people were satisfied with NewsRobot’s accuracy, 

objectivity, personalization function, and various presentation elements, they 
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found the articles were sometimes dull, repetitive, and out of context.  

Based on these findings, we discuss the design implications for user interfaces 

for algorithm-based automated news generation systems and the responsible role 

of designers in automatic news algorithm and interface design. 

The main contributions of this work to the HCI community are as follows:   

• NewsRobot, an interface of a real-time automated news generation system that 

produces multiple news articles considering content and style 

• The results of the user study with quantitative and qualitative approaches, in-

vestigating the user experience of an automated news generation system, and  

new discoveries on various aspects of this experience 

• Design implications for automated news generation systems, stressing the im-

portant role of system designers 

 

 
Figure 6-1. The overview of NewsRobot. To assess the user experience of an au-
tomated news generation system, we designed a research prototype, NewsRobot. 
It automatically generates a series of summary news of the PyeongChang 2018 
Winter Olympic Games. It collects data on the results of major events and players’ 
information from the official website, processes the data, and inputs it into the pre-
programmed article structure. We designed the system to generate news with two 
different types of content. 

 

6.2 News Robot 

In this section, we describe NewsRobot, the research prototype of this study. In 
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the design of NewsRobot, we aimed to create a system that generates real-time 

news about an actual sports event so that users could immerse themselves in the 

experiment. 

 

6.2.1 Selecting Main Event and Data Source 

As the first step, we selected the main event that NewsRobot would report about 

and its relevant data source. Since we aimed to create a variety of news articles in 

real time, considering major sports events, we chose the PyeongChang 2018 Win-

ter Olympic Games.6 

During the PyeongChang Olympic Games, the International Olympic Com-

mittee updated the results of all matches on the official website in real time [218]. 

The committee prepared separate pages for every match, providing not just the 

basic information of the match, such as location and date, but also all participants’ 

intermediate records and ranks, differences from other participants, speeds, and 

finish records in real time. The committee also created separate pages for all ath-

letes participating in the Olympics and posted their personal information, such as 

nationality, birthdate, age, gender, event and rank, and even biographical infor-

mation. Information on players’ previous Olympic and world championships, in-

juries, family relationships, idols, mottos, and even nicknames was included in the 

biographical information. By building a crawler of both pages with Python pro-

gramming, we were able to collect both the real-time data of the results of each 

match and athlete information.  

It was necessary to create articles in the same format for the controlled 

                                         
6 It was an international winter multi-sport event held between February 9 and 25, 2018 in 
PyeongChang, South Korea. It featured 102 events over 15 disciplines in seven sports, and 2,914 
athletes from 92 countries competed in the games. 
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experiment. We limited main matches to races where multiple players competed 

for the record so that NewsRobot could create articles for every player and com-

pare records between them according to their intermediate records. Finally, we 

chose three games: (1) Speed Skating Men’s 1,000 Meters (February 14, 2018), 

(2) Alpine Skiing Women’s Downhill (February 21), and (3) Short Track Speed 

Skating Women’s 1,000-Meter Final (February 22).  

 

Component General news Selective news 

Head Headline 

Olympic {Alpine Skiing Men’s 
Downhill} results 2018: {{Nor-
way} wins gold and silver}; 
{Switzerland} wins bronze 

{Beat Feuz} of {Switzerland} wins 
{Alpine Skiing Men’s Downhill} 
{bronze} 

Lead 

Most im-
portant in-
formation 
(5W1H) 

{Aksel Lund Svindal} of {Nor-
way} won the gold medal with 
his {1: 40.25} run in the {Alpine 
Skiing Men’s Downhill} event at 
the {Jeongseon Alpine Center} 
on {February 15}. 

{Beat Feuz} of {Switzerland} {won 
the bronze medal} with his {1: 
40.43} run in the {Alpine Skiing 
Men’s Downhill} event at the 
{Jeongseon Alpine Center} on {Feb-
ruary 15}. 

Body 

Supporting 
details 

He passed the main intermediate 
measurement points {9th-9th-
8th-2nd-2nd}, passing the finish 
line first with {1: 40.25}. This 
record is {0.12} seconds faster 
than that of the silver medal 
player. 

He passed the main intermediate 
measurement points {18th-3rd-3rd-
3th-3rd}, passing the finish line 
{third} with {1: 40.43}. This record 
is {0.18} seconds slower than that of 
the gold medal player. 

Back-
ground de-
tails 

{His most recent record was 
fourth place in the same event at 
the Sochi Olympic Games 
2014.} 

{His most recent record was first 
place in the same event at the Alpine 
World Ski Championships St. Moritz 
2017.} 

General 
details 

Meanwhile, {Kjetil Jansrud} of 
{Norway} won the silver medal 
with his {1: 40.37} run. 
{Beat Feuz} of {Switzerland} 
won the bronze medal with his 
{1: 40.43 run}. 

Meanwhile, {Aksel Lund Svindal} 
of {Norway} won the gold medal, 
and {Kjetil Jansrud} of {Norway} 
won the silver medal. 

Table 6-1. General news vs. selective news. The braces are interlocked with the 
database, so they are tailored to each news article. The original version is written 
in Korean, and this table contains the English-translated version. 



 
 

 

- 113 - 

6.2.2 Designing News Article Structure 

After the main events and data were defined, we designed a news article template 

that could cover all three races. We made the template following the inverted pyr-

amid structure ([219]–[221]), the most common method for writing news stories. 

In the inverted pyramid, the widest part at the top represents the most important 

information, while the tapering lower portion illustrates that other material should 

follow in order of diminishing importance. We placed the headline in the first 

sentence of the template, followed by the lead sentence and then the body sen-

tences. The lead sentence summarizes the most important information according 

to 5W1H (who, what, where, when, why, and how) [222]. The body sentences are 

then composed of supporting details, background details, and general details (Ta-

ble 6-1).  

 

6.2.3 Content and Style 

In addition to the template article structure, we considered two main factors, con-

tent and style.  

Content 

We designed NewsRobot to create two different types of news: general news and 

selective news. The former is provided to all users equally, while the latter is cus-

tomized to the users’ interests and is provided differently for each user (Table 6-

1). 

• General news: general news, the most common type, summarizes the overall 

game in a comprehensive way. It focuses on the players who reached the po-

dium, especially the gold medalist. It details the record of the gold medalist 

(gap between silver records, intermediate ranks variation) with additional 
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information (from biographical information) and then briefly describes the 

records of the silver and the bronze medalists. Only one general news article 

is made per game. 

• Selective news: selective news is a recap of a particular athlete who partici-

pated in a match. Unlike general news, this details the record of the particular 

player (gap between gold records, intermediate ranks variation) with addi-

tional information (from biographical information) and then adds a brief sum-

mary sentence about the podium. In principle, the number of selective news 

articles made is the same as the number of players who participated in the 

match.7 

 

Style 

We designed NewsRobot to create news articles in three types of styles, text, slide, 

and video (see Figure 6-2), according to the level of multimedia modality. 

• Text news: Text news refers to basic news consisting of only text. This in-

cludes numerical data, such as player record and rank.  

• Slide news: Slide news is news that combines text with graphical features by 

sentence, turning it into multiple slides. Graphical features include the back-

ground color of the medal according to the player’s rank, a pictogram of the 

sport, the player’s image (from a real-time Twitter search using the player’s 

name as the hashtag), the player’s intermediate ranks variation graph, and a 

picture of the podium with the national flags. All of the features are 

                                         
7 However, considering the selection view of NewsRobot’s user interface, we limited the number 
of players to nine per game. In consideration of the high interest of users, the nine players included 
mainly high-ranked players and national players. In the case of the Short Track Speed Skating 
Women’s 1,000-Meter Final, as the total number of competitors was six, the number of articles was 
limited to six. 
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automatically integrated with each sentence of the article.  

• Video news: Video news refers to news that plays slide news with sound. The 

voice API engine [223] automatically reads out the text of the article as an 

announcer, and the graphical features are displayed when the corresponding 

text is being read. Background music is included to boost the intensity. 

By combining these two types of content and three types of styles, a total of six 

types of articles (general-text, general-slide, general-video, selective-text, selec-

tive-slide, selective-video) are created for each event. 

 
Figure 6-2. An example of Slide news of NewsRobot. Slide news is news that 
combines text with graphical features by sentence, turning it into multiple slides. 
Graphical features include the background color of the medal according to the 
player’s rank, a pictogram of the sport, the player’s image (from a real-time Twit-
ter search using the player’s name as the hashtag), the player’s intermediate ranks 
variation graph, and a picture of the podium with the national flags. All of the 
features are automatically integrated with each sentence of the article.  

 

6.2.4 Generating News Articles 

Based on the data, structure, and six types of news, we created the automatic news 

generation program with Python programming. The collected data were calculated, 

refined, and entered into the necessary parts of the news text. The news articles 
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were also created with various multimedia elements, such as images, graphs, voice, 

and sound. Through the pilot test before the three matches that we selected, we 

were able to elaborate on the algorithm and source codes of news generation. On 

each game day, we ran the news generation program immediately after the game 

finished, and finally, we were able to successfully generate all the news articles 

we had planned, for a total of 111 news articles.8 All news articles were generated 

within five minutes of running the program.  

 

6.2.5 Designing NewsRobot User Interface 

After successfully generating the news articles, we created the NewsRobot user 

interface. The interface was designed to operate on web browsers of users’ 

smartphones, and it was made with JavaScript and HTML5 programming. Partic-

ipants were able to access NewsRobot’s webpage and watch various news articles 

on the Olympics.9 

Specifically, users could select a game on the first screen of the user interface 

(Figure 6-3). On the next screen, the names of the athletes participating in each 

game were presented in the form of a tile with the national flags. NewsRobot then 

displayed the six types of news articles for that match in random order. 

                                         
8 30 from Speed Skating Men’s 1,000 Meters ((1 general + 9 personalized) × 3 styles), 30 from 
Alpine Skiing Women’s Downhill ((1 general + 9 personalized) × 3 styles), and 21 from Short 
Track Speed Skating Women’s 1,000-Meter Final ((1 general + 6 personalized) × 3 styles) 
9 Although the user study was conducted three months after the Olympics, no additional modifica-
tions were made to the news articles for the experiment. We only included the news that was gen-
erated in real time during the Olympics. 
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Figure 6-3. NewsRobot User Interface 

 

6.3 Study Design 

To assess the user experience of the system, we designed a user study. The design 

protocol was reviewed and approved by the Institutional Review Board of Seoul 

National University Institute. 

 

6.3.1 Participants 

In the recruitment of participants, we aimed to balance the age and gender of gen-

eral users who have no trouble accessing news articles using smartphones. We 

posted a recruiting document on our institution’s online community website and 

recruited a total of 30 participants (15 males and 15 females). Their average age 

was 30.4, and the SD value was 7.6 (M: Mean = 29.3, SD = 6.5; F: Mean = 31.5, 
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SD = 8.6). Before the experiment started, we provided the participants with a de-

tailed explanation of the purpose and procedure of the experiment as well as 

NewsRobot. They were told that the news was produced in real time by a com-

puter program during the Olympics. We also ensured that NewsRobot worked 

properly on the users’ smartphones. Users were allowed to manipulate the system 

for a while so that they could get used to using it. On average, each experiment 

lasted about 70 minutes. Each participant received a gift voucher worth $10. 

 

6.3.2 Procedures 

We designed a user study that consisted of watching racing events and read-

ing/watching news articles on NewsRobot, followed by completing surveys and 

interviews.  

 

Task 

To enhance the users’ immersion in the game situation, we prepared the pre-rec-

orded and edited race events videos and played them on a TV screen in the exper-

iment room. The videos of the three races were shown in random order. Before 

each race was played, the participants were asked to select one of the participating 

athletes on the NewsRobot interface on their smartphones according to their in-

terests. At the end of each video, the participants were given six types of articles 

in random order and were asked to respond to the questionnaire for each article 

type. 

 

Survey 

The survey consisted of 18 items from Sundar’s index, a representative evaluation 
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measure for online news [224]. Sundar identified multiple criteria used by the 

public in evaluating news articles, combining them into four major factors: credi-

bility, liking, quality, and representativeness. Credibility is composed of biased, 

fair, and objective, and liking consists of boring, enjoyable, lively, interesting, and 

pleasing. Quality has five sub-items: clear, coherent, comprehensive, concise, and 

well written. Representativeness is composed of accurate, believable, disturbing, 

informative, and sensationalistic. Users evaluated each news article on the survey 

with a 7-point Likert scale ranging from highly disagree to highly agree. 

 

Interview 

At the end of the experiment, participants were asked to take part in semi-struc-

tured interviews. In the interviews, they were asked about their overall impres-

sions of NewsRobot and their thoughts on content and style. 

 

6.3.3 Analysis Methods 

After the experiment, we conducted a quantitative analysis on the survey data and 

a qualitative analysis on the interview data.  

 

Quantitative Analysis 

In the quantitative analysis, we aimed to determine whether the content and style 

of NewsRobot news articles had any significant effects on users’ evaluations. As 

every participant consumed all six different news articles for the three different 

events (3×6 within-subjects design), we analyzed the survey data using a two-way 

repeated measures ANOVA. We also conducted Tukey’s HSD test as a post-hoc 

test for pairwise comparisons. 
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Qualitative Analysis 

The qualitative data from interviews were transcribed and analyzed using thematic 

analysis [195]. In the process, we used Reframer [183], a qualitative research soft-

ware tool. We segmented the transcripts into sentences and finally obtained 471 

observations. While reviewing the data, a total of 250 keyword tags were created. 

By combining the relevant tags iteratively, we conducted a theme-building process, 

yielding three main categories.  

 

6.4 Results 1: Quantitative Analysis 

In this section, we report the results of the quantitative analysis. As Sundar sug-

gested [224], we explain the 18 items by grouping them into the four main factors: 

credibility, liking, quality, and representativeness. 

 

6.4.1 Selective News Is Less Credible 

We found that content had a significant main effect on three of the items that make 

up credibility: biased (F1, 505 = 194.79; p<0.001***), fair (F1, 505 = 52.55; 

p<0.001***), and objective (F1, 505 = 34.07; p<0.001***). In the case of biased, 

selective news received higher scores than general news (Figure 6-4). In contrast, 

in the case of fair and objective, general news scores were higher than selective 

news scores. In other words, it can be seen that users felt that general news was 

more credible than selective news. Meanwhile, there was no significant main ef-

fect of style on the credibility of news articles. 
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Figure 6-4. Users’ evaluation of credibility of NewsRobot news articles 

 

6.4.2 Users Like Both Multimedia and Personalization 

We identified that style had a significant effect on all five items of liking: boring 

(F2, 505 = 41.78; p<0.001***), enjoyable (F2, 505 = 60.18; p<0.001***), lively 

(F2, 505 = 53.21; p<0.001***), interesting (F2, 505 = 55.82; p<0.001***), and 

pleasing (F2, 505 = 25.91; p<0.001***). The pairwise comparison from the post-

hoc analysis revealed that boring scored the highest in text, followed by slide and 

video (Figure 6-5), showing significant differences between text and slide (t=7.29, 

p<0.001***) and text and video (t=8.42, p<0.001***). In the case of enjoyable, 

the mean values were in the order of video-slide-text, showing significant differ-

ences between video and slide (t=7.64, p<0.001***) and slide and text (t=10.64, 

p<0.001***). Likewise, regarding lively, the mean scores were in the order of 

video-slide-text (video-slide: t=4.47, p<0.001***, slide-text: t=5.81, p<0.001***). 

In the case of interesting, although the difference between video and slide was not 

significant (p=0.43), the scores showed the same pattern: video-slide-text (slide-

text: t=8.33, p<0.001***). Lastly, pleasing showed the same pattern (video-slide: 

t=1.25, p=0.64, slide-text: t=5.52, p<0.001***). 
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Figure 6-5. Users’ evaluation of liking of NewsRobot news articles 

 

We also identified that users liked general news more than selective news. In 

all the items of liking except for lively (p=0.32), content showed a significant main 

effect: boring (F1, 505 = 12.36; p<0.001***), enjoyable (F1, 505 = 60.18; 

p=0.002**), interesting (F1, 505 = 7.99; p=0.005**), and pleasing (F1, 505 = 6.28; 

p=0.013*). Meanwhile, we found no significant interaction effect. 

 

6.4.3 Quality of Video Is Not Rated Highest 

In terms of quality, first, we found that style had a significant main effect on clear 

(F1, 505 = 13.15; p<0.001***) and concise (F1, 505 = 17.55; p<0.001***). How-

ever, unlike the order of video-slide-text in credibility and liking, in both items, 

slide news showed the highest value, followed by video and text (Figure 6-6). The 

pairwise comparison from the post-hoc analysis revealed that, in the case of clear, 

there were significant differences in the mean scores between slide and video 

(t=2.65; p=0.03*) as well as video and text (t=2.47, p=0.04*). In the case of con-

cise, the mean score difference between video and slide was significant (t=3.77; 

p<0.001***). Although it was not significant, video received a higher score than 

text (p=0.12). From this result, we identified that simply increasing the multime-

dia modality level does not guarantee the articles’ quality, especially in relation to 
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clearness and conciseness.  

 
Figure 6-6. Users’ evaluation of quality of NewsRobot news articles 

 

Second, we examined whether content had a significant main effect on con-

cise (F1, 505 = 4.52; p=0.03*) and comprehensive (F1, 505 = 193.75; 

p<0.001***). In the case of concise, selective news received higher scores than 

general news. On the other hand, for comprehensive, general news received higher 

scores than selective news. It seems that the selective news was considered clearer 

because it focused on one player without reporting any other information. In ad-

dition, it is presumed that general news was evaluated as more comprehensive 

because it dealt with various types of information in a comprehensive way. Mean-

while, we found no significant main effect on coherent or well written.  

 

6.4.4 NewsRobot Is Accurate but Not Sensational 

In the analysis of NewsRobot’s representativeness, we focused on some unusual 

patterns rather than significant relationships between the variables. First, overall, 

users evaluated NewsRobot’s news as relatively accurate and believable. Unlike 

any other items, all kinds of news articles received scores higher than 5 points in 

both items (Figure 6-7). Conversely, participants evaluated NewsRobot news as 

relatively less disturbing and sensationalistic (1–2 points).  
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Figure 6-7. Users’ evaluation of representativeness of NewsRobot news articles 

 

Finally, style showed a significant main effect on informative (F2, 505 = 

12.60; p<0.001***). The pairwise comparison analysis from the post-hoc test re-

vealed that participants rated the NewsRobot news as more informative in the or-

der of video, slide, and text (video-slide: t=1.25; p=0.64, slide-text: t=3.59; 

p=0.0011**, video-text: t=4.84; p<0.001***). This shows that increasing the mul-

timedia modality level can make news articles seem more informative. 

 

6.5 Results 2: Qualitative Analysis 

In this section, we present users’ in-depth thoughts about the news articles and 

NewsRobot.  

 

6.5.1 Users Evaluate NewsRobot Features Highly 

We were able to identify that several NewsRobot features provided a good expe-

rience for users. 

 

 



 
 

 

- 125 - 

Content  

Participants highly appreciated that NewsRobot could generate selective news as 

well as general news. They told us that selective news was more satisfying, since 

it contained customized information tailored to their personal interests and deliv-

ered it first in the articles. For example, P30 said, “I really liked the fact that the 

article started with the result of the player I selected.” Some participants even 

told us that selective news made them feel their interests were recognized and 

respected by the system. P22 said, “I felt that it [NewsRobot] was trying to learn 

more about me.” In addition, some of the participants told us that simply being 

able to select a player according to their interests made them feel they were pro-

vided with a better experience. P07 said, “I thought it was a simple selection pro-

cedure, but it was good. That’s why I was so attached to the article that I created.”  

 

Various Presentation Elements 

In addition, participants particularly appreciated NewsRobot’s various presenta-

tion elements. We identified users’ high preference for slide and video news, 

which contained more elements, such as background colors, pictograms, player 

images, graphs, and even voice and music. Regarding the colors that made up the 

slides, participants responded that they helped them intuitively understand how a 

particular player ranked. P27 said, “When I first saw the color, I thought it was 

useful. If the background was gold, I knew immediately that this player had won 

the gold medal.” Players’ real-time images from Twitter also helped users under-

stand the players. P13 said, “When the athlete’s image emerged in the background, 

I knew exactly who this athlete was.” Moreover, users evaluated the use of the 

voice API in video news as useful. Some users thought the voice was better than 

expected. P19 said, “I was curious about how it could read it so naturally.” P03 
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said, “I was able to concentrate more on the news, as the voice automatically read 

the news.” Some argued that it would be more useful in particular circumstances, 

such as driving situations. P06 said, “It would be great if I could use this while 

driving, when I cannot read news articles.”  

Among the various elements, participants were most satisfied with the inter-

mediate ranks variation and comparison graphs including each player. Usually, it 

was difficult for users to know the relative performances of each player, because 

the players completed their races one after another in turn. However, these graphs 

showed how quickly each player passed through each point relative to other play-

ers, which was like providing users with an appropriate visualization of infor-

mation that was not provided on the TV screens. P17 said, “The graph was good, 

in that I could see the game at a glance.” Some users told us that they were able 

to understand the players’ game flow through the graphs. P13 said, “This player 

started slowly at the beginning of the game, but he gradually increased his speed 

in the second half and eventually placed first.”  

 

Fast Speed of News Generation  

Participants were surprised that NewsRobot generated news articles so quickly all 

at once. Although they read the articles in the experiment after the Olympics, they 

were amazed and impressed when they heard that all the news articles were gen-

erated in real time during the event. For example, P09 said, “Producing news ar-

ticles quickly is very important. Of course, reporters can write quickly, but they 

cannot make so many articles at the same time.” P30 said, “It’s very fast. I am 

surprised that it could create so many articles as soon as the game was over.” P20 

said, “A reporter could never make slides or video news at this rate.” This showed 

that automated journalism could be a very effective and efficient way of producing 
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news, in that it can generate a large variety of articles quickly.  

 

6.5.2 NewsRobot Is Unbiased but Predictable 

In line with the survey results, the interviews also revealed that participants de-

scribed the NewsRobot news articles as accurate and matter-of-fact. They were 

convinced that since the system computed and included specific figures based on 

the input data, the information should be accurate. They noted that, for this reason, 

algorithm-based, automatically generated news articles provide objective and re-

liable information. P11 said, “The numerical information gave me the impression 

that the news was objective.” P25 also said, “The figures were reliable, not biased. 

It seemed to be based on facts. I think the biggest advantage of algorithmic news 

is that it calculates and displays figures based on data.” P16 also added, “News-

Robot cannot lie; it only tells the truth,” showing strong confidence in the accu-

racy of the news articles.  

Participants also expressed that the lack of emotional elements and the exclu-

sion of subjective judgments in the sentences increased the credibility of the news. 

For example, P01 said, “Regardless of whether the player is loved or famous, it 

[NewsRobot] will describe him in the same way.” People described algorithm-

based news as objective, because it only provides predefined expressions, unlike 

the news, which often reflects the subjective opinions of reporters and anchors. 

P05 said, “I could not find anything subjective in this news. You know, journalists 

often write using certain expressions to make their arguments more convincing.” 

P09 said, “Reporters’ subjective thoughts often influence the atmosphere of the 

news, but the program reports it as it is.” 

However, despite these advantages, users also pointed out the inherent short-

comings of NewsRobot: It seems tedious, is unable to convey anything but data, 
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and does not understand the context. Participants commonly expressed that the 

NewsRobot news articles were dull and uninteresting since all the articles fol-

lowed the predesigned structure without any variation. P27 said, “AI still seems to 

require a lot of refining. The biggest problem is that it is dull. I know it is accurate, 

but so far, it is only based on numbers.” P07 commented, “All the articles are 

almost identical in format. If I were to read more, I would feel bored.”  

Participants also complained that the algorithmic news articles could not de-

liver anything other than data and could not deliver in-depth news stories. As the 

system relied only on data, other information that was not included in the data was 

omitted. For example, in the Short Track Speed Skating Women’s 1,000-Meter 

Final, two players collided with each other and one of them was disqualified. 

When NewsRobot did not explain the collision in detail and only reported the 

disqualification, P21 said, “It just focused on the record; I could not get any more 

information. Shim Suk-hee was disqualified, and why she was disqualified was the 

most important part, but it did not discuss that.” P23 said, “If someone asked me 

to explain a race, I would first talk about the collisions between players. Reporters 

usually discuss the collisions in detail and mention the shocking reactions people 

have received. But it [NewsRobot] did not.”  

 

6.5.3 Benefits and Drawbacks of Using Multimedia 

The final point of the qualitative study results relates to the benefits and drawbacks 

of using multimedia. As outlined in the survey results and previous sections, peo-

ple were able to have a better user experience when NewsRobot produced news 

articles with multimedia, such as images and voice. They thought of video news 

as more vivid, pleasant, and informative than either slide or text. However, in 

terms of clearness and conciseness, video news provided a worse experience than 
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slide news, although the latter had a lower multimedia modality level than the 

former. We were able to confirm this in the in-depth interviews. 

Overall, people described that they were satisfied with the video news but 

found it strange for two reasons. First, participants discussed the dissonance be-

tween their expectations and the actual quality. They claimed that as the multime-

dia modality levels of news articles increased in order of text, slide, and video, 

their expectations also grew. However, the gap between their expectations and the 

actual quality of each style seemed to become larger. When reading text news, 

because of their low expectations for the text, they felt that the quality was some-

what good. In contrast, when watching video news, their high expectations for the 

news made them evaluate its quality as relatively low. P08 said, “In the order of 

text, slide, and video, I felt they were very different from what I expected. I believe 

that in video news, a reporter should appear on the screen and inform viewers of 

the result of the match with a realistic and vivid voice.”  

On the other hand, some participants added that presenting news with multi-

ple multimedia elements made the awkward parts of the news more noticeable. 

For example, when they read a sentence with an awkward expression, they just 

passed that part without noticing, whereas when they heard it, they suddenly felt 

strange and became less focused on the news. P09 said, “In video news, when 

NewsRobot read the name of the foreign player aloud, it sounded awkward.” P24 

said, “When the voice read the same word in succession, like ‘third place, third 

place, third place’, I suddenly found it strange. I did not notice it when I read the 

same thing in text news. If a reporter had read that part aloud, he would not have 

done that.” 
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6.6 Limitations 

We have identified several limitations of this chapter. First, we did not conduct a 

comparative study comparing NewsRobot’s articles and actual articles written by 

human reporters in the evaluation. Second, although we generated the news arti-

cles during the Olympic Games in real time, the user evaluation itself was not 

conducted in real time, since we had to consider unexpected situations that could 

occur in a real environment and control the experiment. Third, the user survey was 

limited to one sports game. Lastly, we designed the structure of the articles using 

a rule-based template and did not make various changes. 

 

6.7 Conclusion 

This chapter examined the user experience of automated journalism, where news 

articles are generated by algorithms, mainly focusing on its personalization and 

multimedia modality issues. We designed a research prototype, NewsRobot, 

which generated news articles about the PyeongChang 2018 Winter Olympic 

Games, and conducted a user study of the system using both quantitative and qual-

itative approaches. The results of the study revealed the following. (1) Although 

people regarded general news as more reliable than selective news, they preferred 

the latter to the former. (2) People also liked news with a high multimedia modal-

ity level, but they considered slide news to have the best quality. (3) People re-

garded NewsRobot as accurate and objective but monotonous, and they were 

mostly satisfied with its diverse elements. We hope that this work will serve as a 

step toward a more productive and more inclusive understanding of interfaces for 

automated news generation systems. 
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7 DISCUSSION 

 
So far, this dissertation has described four studies that investigated how people 

interact with algorithm-based systems using AI. Based on the results of each chap-

ter, this chapter discusses AI-based interface design and suggests design principles. 

 

7.1 Human Perception of AI Algorithms 

Based on findings from chapter 3, this section discusses the current public aware-

ness of AI and its implications for HCI.  

 

7.1.1 Cognitive Dissonance 

According to the theory of cognitive dissonance, when people face an unexpected 

situation that is inconsistent with their preconceptions, they could experience 

mental stress or discomfort [225]. We could also see the people’s fear of AI 

through the lens of cognitive dissonance. Through the interviews, we identified 

that the participants had preconceptions and fixed ideas about AI: (a) AI could be 

a source of potential danger, and (b) AI agents should help humans. Although 

these two stereotypes seem to be contradictory, one seeing AI as a potential danger 
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and the other seeing it as a tool, they are connected in terms of control over the 

technology. The idea that AI could be dangerous to humans can be extended to the 

idea that it should be controlled so that it can play a beneficial and helpful role for 

us.  

While watching the Google DeepMind Challenge Match, however, people 

might have faced situations that did not match these notions. The result of the 

event indicated that humans are no longer superior to AI and cannot control it, 

which was inconsistent with (b). People might have had difficulty dealing with 

the possibility of the reversal in position between humans and AI. The participants 

reported that they felt negative feelings, such as helplessness, disagreeability, de-

pression, a sense of human, and stress. On the contrary, (a) was strengthened. The 

idea that AI could harm humans provoked people’s negative emotions in itself. 

Thus, it rather reinforced the negative influence of cognitive dissonance caused 

by (b).  

Meanwhile, the negative emotional states attributed to the dissonance show 

that the fear of AI should not be considered in the view of traditional technophobia, 

which has focused on the users’ basic demographic information and everyday in-

teractions with computers. Users’ personal experience with AI is not restricted to 

real interactions or experiences. Rather, it could be formed from previous media 

experience and based on their notions and beliefs regarding the technology. In this 

regard, to understand and neutralize users’ technophobia toward AI, we need to 

include these factors in the theory and practice and discuss ways to reduce disso-

nance between users’ thoughts and real AI-embedded interfaces.  

 

7.1.2 Beyond Technophobia 

Two of our most important findings related to certain tendencies behind people’s 
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fear of AI: (1) anthropomorphizing and (2) alienating. They not only anthropo-

morphized AI as having an equal status with humans but also alienated it, again 

revealing hostility. While watching AlphaGo’s capacities, people regarded it as if 

it had human-like intelligence. People perceived AI’s capacity as being compara-

ble to a human’s and interpreted the behaviors of AI by treating it as if it were a 

rational agent who controls its choice of action [60]. However, at the same time, 

people also alienated AI by regarding it as different and showed hostility. They 

tried to find the different aspects of AI and evaluated it with the characteristics of 

a human being, and they dehumanized it [61] if it was thought to be transcending 

or differing from such characteristics.  

This tendency of anthropomorphizing and alienating AI was not a common 

phenomenon in their experience of computers, as the participants stated in the 

interviews. Since they regarded the computer as a tool to complete certain tasks, 

the computer problem is not related to the computer itself but mainly related to 

anxiety arising from interactions with it. On the contrary, people viewed AI as a 

being who almost has a persona. In this sense, the problem does not seem to be a 

technological issue but similar to communication and relationship problems 

among humans. In addition, they tried to find its different aspects and then alien-

ated it. Accordingly, the fear of AI may not be a problem of technophobia but an 

issue similar to xenophobia, the fear of that which is perceived to be foreign or 

strange.  

In this sense, reducing users’ fear of AI should be accomplished by under-

standing the communication among humans rather than simply investigating the 

superficial problems around the computer interface. Previous studies that proved 

people show similar social behavior during human-computer interaction by adapt-

ing human-human interaction ([64], [65]) also support the need for this viewpoint. 

In particular, in designing interfaces using AI, reflecting and considering major 
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factors common in human communications and establishing the relationship be-

tween AI and users could be crucial for improving the user experience. According 

to each interface’s function and purpose, the relationship and the manner of com-

munication between users and human-like agents (and algorithms) should be set 

clearly and appropriately.  

 

7.1.3 Toward a New Chapter in Human-Computer Interaction 

The Google DeepMind Challenge Match was not just an interesting event in 

which AI defeated the human Go champion. It was a major milestone marking a 

new chapter in the history of HCI. We found it to be an opportunity to assess and 

understand people’s view of AI technology and discuss considerations for HCI as 

we gradually integrate the AI technology within user interfaces.  

AI is expected to be used in various devices and services, and users will have 

more chances to interact with interfaces utilizing the technology. As the term “al-

gorithmic turn [226]“ suggests, algorithms will then play an increasingly im-

portant role in user interfaces and the experiences surrounding them. Moreover, 

as algorithms could be cross-linked on various interfaces, it is expected to affect 

users’ holistic experience, such as behavior and lifestyle. This is almost like the 

“environmental atmospheric” media that Hansen suggested for the twenty-first-

century media [227].  

In this respect, we suggest to the HCI community the concept of “algorithmic 

experience” as a new stream of research on user experience in AI-embedded en-

vironments. It encompasses diverse aspects of longitudinal user experience with 

algorithms that are environmentally embedded in various interfaces. This suggests 

considering long-term relationships with algorithms rather than the simple usabil-

ity and utility of interfaces. Regarding interfaces, we need to extend their borders 
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to the various devices and services to which algorithms could be applied. In terms 

of the user, user experience should not be restricted to simple interactions with 

machines or computers but should be extended to communication and relationship 

building with an agent. We believe this new concept can help the HCI community 

to accept and integrate AI into UI and UX design. It calls for a collaborative re-

search effort from the HCI community to study users and help them adapt to a 

future in which they interact with algorithms as well as interfaces.  

 

7.1.4 Coping with the Potential Danger 

Although it is not within the scope of this chapter to address ways of coping with 

the potential danger of AI, we cannot neglect the gravity of the issue. As shown 

in the interviews, people revealed their concerns about AI threatening their lives 

and existence. This shows that the AI problem is not restricted to individuals, and 

it needs to be addressed as a social problem. Participants insisted that there should 

be an institutional policy, encompassing law and common ethics, regarding AI. In 

addition, they argued that sufficient discussions should take precedence when do-

ing so. Recently, it was reported that the world’s largest tech companies, all of 

which are also closely linked to HCI fields, agreed to make a standard of ethics 

around the creation of AI [228]. This movement signifies the importance of un-

derstanding how people perceive and view AI. We believe discussions on building 

a desirable relationship between humans and AI will play a vital role in the process 

of devising the standards.  

  

7.2 Users’ Interpretation and Evaluation of AI Algorithms 

This section discusses lessons learned from the user study in chapter 4 and its 
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implications for user interfaces with AI algorithms that convey subjective infor-

mation that can be interpreted in diverse ways.  

 

7.2.1 Integrate Diverse Expertise and User Perspectives 

Through the user study, we identified that users interpreted AI in different ways 

according to their group. AI/ML experts tried to find out the characteristics of its 

training data and learning process based on their knowledge of AI. Photographers 

looked at it considering the elements of photography and cameras. The non-ex-

perts tried to understand it based on their impressions of the photos without rele-

vant prior knowledge. Most notably, contrary to our expectations, AI/ML experts 

showed the greatest difference from AI and the lowest interpretability and rea-

sonability scores. On the other hand, the photographers showed the smallest dif-

ference from AI and the highest interpretability and reasonability scores. 

The differences in viewpoints among users according to groups provide im-

plications for algorithmic transparency and fairness. Although advanced AI algo-

rithms are being developed in a wide range of fields, the algorithms that AI/ML 

experts design might not apply to their activities pertain. Even the best-performing 

algorithms do not consider the transparency or fairness. Even AI/ML experts 

themselves may have difficulty interpreting and understanding it. Such algorithms 

may not be understandable by a wide variety of people. The experts may not be 

sure of how many or what types of people and groups can agree with the algorithm. 

For these reasons, many people could feel that AI algorithms are obscure and bi-

ased and cannot embrace their own perspectives [84]. 

The fact that domain experts can better grasp the AI algorithm and narrow the 

gap with it shows that the views and opinions of field experts are vital for algo-

rithm development and refinement. AI experts should consider communicating 
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with them to gain the necessary perspectives and knowledge in the field. In addi-

tion, they should reflect this knowledge in the development of AI algorithms and 

further interface development and try to ensure the transparency of algorithms 

from the outset and avoid bias. Differences in viewpoints in the inferences of the 

general public without expertise also lead us to question what needs to be reflected 

for real users in algorithm design. To enable understanding among many people, 

we should obtain feedback from various general users and offset the inequality 

problem of the algorithm. Furthermore, various populations should be considered 

in planning and developing algorithms and securing data. 

 

7.2.2 Take Advantage of People’s Curiosity about AI Principles 

In the absence of any information about AI Mirror’s aesthetic score calculation 

process, users were curious about the algorithm and constantly strived to learn the 

principles actively through various strategies. Sometimes, people had hypotheses 

and tested them by taking slightly different photos. Other times, they just explored 

without a clear hypothesis or direction. Through these strategies, they were finally 

able to narrow the gap between their thoughts and those of AI. We can think of 

design implications on both the user side and the AI side.  

First, on the user’s side, we can consider introducing these factors into the 

design of tools that help people to understand AI/ML models, which has recently 

received a great deal of attention [229]. AI can use the strategies people utilized 

to help them understand its principles. An AI interface needs to prepare and show 

as many examples as possible so that people can understand the principle as easily 

as possible. It is also possible to improve the user’s understanding in a microscopic 

manner by preparing several examples and images with similar but clear differ-

ences. A macroscopic approach can be presenting users with completely different 
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examples or images to enable new and diverse ideas and expand their thinking. 

Through these, the public would be able to reduce the difference between their 

thoughts and those of AI and understand the principles of algorithms easily. 

On the other hand, the various strategies and willingness to discover the prin-

ciples shown by users suggest implications for the AI domain in relation to the 

production and securing of high-quality data. According to the information gap 

theory, when people are made aware of a gap between what they know and what 

they do not know, they become curious and engage in information-seeking behav-

ior to complete their understanding and resolve the uncertainty [230]. This innate 

desire to satisfy their curiosity can be helpful in gathering information about the 

way users interpret AI. Through this, we might collect feedback on various use 

cases and utilize it to improve algorithms. Indeed, curiosity interventions have 

been shown to improve crowd worker retention without degrading performance 

[231]. 

Designing a platform for AI to stimulate users’ curiosity and receive various 

opinions would be useful in securing the large-scale, high-quality data necessary 

for algorithm refinement. In fact, it is not that users have to reduce their differ-

ences with AI. It should actually be the other way around. AI should be designed 

to learn from users and narrow the gap with them rather than waiting for the users 

to do so. Such a view might have implications for online learning or reinforcement 

learning generally, as systems can adaptively learn from user feedback and im-

prove themselves. 

 

7.2.3 Provide AI and Users with Mutual Communication 

Finally, we focus on communication between users and AI. Although users tried 

various ways to understand the AI, they eventually expressed great dissatisfaction 
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with the lack of direct communication with the AI. Users wanted the AI to give 

them more detailed descriptions directly, but they also wanted to explain their 

ideas to the AI. Some users even felt negative feelings and sometimes lost confi-

dence. In particular, since aesthetic evaluation is intrinsically highly subjective, 

the problem of communication due to this difference in interpretation may be even 

greater. 

In this case, we can consider a mixed-initiative approach to help users and 

intelligent systems collaboratively achieve their goals [100]. Introducing commu-

nication channels for users and algorithms in the design of AI-based interfaces 

could be considered. To resolve users’ uncertainties, AI needs to present users with 

detailed explanations of the reasons for its decisions ([9], [74], [75], [100], [232]). 

Of course, users should also be able to present their opinions to the AI. The AI 

should be able to accept a user’s opinion, take it as a dataset, and reflect it in the 

learning process of the algorithm. Rather than a static AI that only presents pre-

determined results, a dynamic and adaptable AI that responds to users’ thoughts 

and controls should be considered. Through this process, a two-way communica-

tion interface could be designed where the user understands the AI and the AI 

understands the user, refining results.  

 

7.3 How People Build Sequential Actions with AI Algo-
rithms 

This section discusses the findings of the study in chapter 5 and its implications 

for user interfaces in which users and AI collaborate. 
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7.3.1 Let the User Take the Initiative 

As we have seen in the qualitative research, users wanted to take the initiative in 

collaborating with the AI. To enhance user experience in this context, it would be 

better to let users make most of the decisions. Even if a user receives an order or 

request from the AI, it might be better to provide him or her with options or ask 

permission for the request. In addition, if a user and AI have to do their tasks 

separately, repetitive and arduous tasks should be assigned to the AI and creative 

and major tasks should be assigned to the user.  

Meanwhile, it should be noted that the feeling of taking the initiative is not 

always guaranteed just because the user is in the leader role. This was also re-

vealed in the survey results, in that there was no significant difference between 

the effect of the Lead and Assist modes on users’ evaluations of each item. Re-

gardless of whether a user takes the role of the leader or the assistant, he or she 

always wants to take the initiative in the collaboration process. Rather than simply 

naming the user the leader, it would be more appropriate to give him or her the 

initiative at every decisive moment through close communication.  

 

7.3.2 Provide Just Enough Instruction 

As we have seen in both the survey and the qualitative research, users prefer AI 

to provide detailed instructions in their collaboration with AI but only in the way 

they want. In this context, cordial and detailed communication should be consid-

ered in AI and user collaboration first. As the survey results revealed, offering 

users detailed explanations could be an effective way to enhance the overall user 

experience of user–AI collaboration. Furthermore, it can improve users’ perceived 

predictability, comprehensibility, and controllability of the drawing tasks, all of 

which have been pointed out as shortcomings of AI interfaces in previous studies 
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([211], [212]). Detailed Instruction can also make users understand the tasks more 

easily, feel as if they are with somebody, and feel confident.  

However, it should be pointed out that the AI should only provide a descrip-

tion when the user wants it. Excessive or inappropriate descriptions can have an 

adverse impact on the user experience. These may make the user feel disturbed or 

disconnected from the tasks and even disappointed and frustrated. Rather than 

giving users automated utterances like template sentences or preset words, the AI 

should kindly and specifically comment on the actual behavior of the user or the 

result of the task.  

 

7.3.3 Embed Interesting Elements in the Interaction 

This is an important and challenging point. As we saw in the user study, people 

were pleased with the interaction with the AI, and they felt various positive emo-

tions. Users were especially amused when the AI drew unexpected objects. In this 

respect, placing serendipitous elements in the middle of the interactions could be 

considered as a means of enhancing the user experience and the interface’s usa-

bility. This could be a way of providing an interesting and pleasant user experience 

[233] during the task.  

At the same time, each function of AI should be designed to foster user’s 

curiosity and imagination for creative works. Traditionally, creativity support tool 

studies have revealed many principles for motivating users’ creative actions, such 

as presenting space, presenting various paths, lowering thresholds, and so forth 

[234]. We believe that these principles could be still more significant elements in 

providing a good experience when users collaborate with AI, thus enhancing users’ 

potential and unleashing their creative aspirations.  
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7.3.4 Ensure Balance 

The last point centers on the imbalance that users felt in collaborating with the AI. 

From the qualitative study, we observed that the participants felt confused when 

the ability of the AI differed across functions. They found it strange when there 

was a mixture of highand low-quality objects on the canvas. They felt frustrated 

when the AI showed human-like characteristics and machine-like characteristics 

in the same task and when it showed superior ability compared to them. Since the 

users tended to regard AI as an agent and sometimes personified it, their expecta-

tions of the interface might have been higher and more complex than those of 

other simple interfaces. For this reason, when it showed unbalanced and awkward 

qualities, they felt disappointed, leading to anthropomorphic dissonance ([235], 

[236]). As the AI platform will likely introduce various technologies or open 

sources and face a broad variety of users, balancing the multiple elements and 

providing a harmonious experience for users could be a key point in AI platform 

design.  

 

7.4 Practical Design of Algorithm-based Systems Using AI 

This section discusses lessons learned from the study in chapter 6 and its implica-

tions for user interfaces of automated news generation systems.  

 

7.4.1 Provide Selective news with Adaptable Interface 

The first thing we discuss is the personalization of news articles. Although many 

news channels have appeared and offered a variety of news to people, problems 

related to the bias of news production have been constantly raised [237]. The con-

centration of news production may not meet the diverse needs of users and may 
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even lead to social problems in which public opinion is biased toward specific 

issues.  

In this regard, NewsRobot showed the possibility and user experience of au-

tomated content. NewsRobot’s preprogrammed algorithm simultaneously gener-

ated multiple player-specific articles, without the extra expense, effort, or time 

associated with creating articles using human reporters. Users also showed great 

satisfaction with the selective news. They preferred selective news to general 

news and rated the former as less boring and more enjoyable, interesting, and 

pleasing than the latter. They felt that the algorithms produced news tailored to 

their interests. Some even described that the selective news made them feel their 

tastes were respected.  

However, at the same time, we need to consider and anticipate the adverse 

effects of selective news consumption. Selective news consumption can make 

people more biased in other respects. It can separate users from information that 

does not attract their interest, isolating them in their own thoughts. In particular, 

in political news rather than sports news, this can cause problems such as filter 

bubbles and echo chambers ([83], [152]). The survey results also showed that us-

ers were aware that selective news articles are less credible than general news 

articles. If personalization is accelerated and transparency in the personalization 

process is not ensured and recognizable by the people, selective news is likely to 

cause many side effects in spite of its many advantages. 

In this situation, we need to consider designing adaptable interfaces of auto-

mation systems [99]. Adaptable interfaces provide a customization mechanism 

that relies on the user to perform the adaptation (i.e., user-controlled personaliza-

tion). Users need to select their news according to their interests, by themselves, 

and be explicitly informed that the news articles they receive are based on their 
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choices [142]. Fortunately, users also responded that they had a good experience 

in the news selection process, as it made them feel like they were active news 

service consumers. 

Of course, designing these interfaces requires a lot of attention and effort from 

interface designers as well as reporters and algorithm engineers, as it is not just an 

algorithm problem but also an interface problem. In this regard, we urge the de-

signers of the HCI community to address their concerns and efforts in order to 

prevent the potential risks of such algorithms and to promote better user experi-

ences. 

 

7.4.2 Present Various Multimedia Elements but Not Too Many 

The second discussion point is about the style of NewsRobot. The user study 

showed that participants had better news consumption experiences when more 

multimedia elements were included. People thought that news articles were more 

enjoyable, lively, interesting, pleasing, and even informative in order of video, 

slide, and text news. They expressed high satisfaction by specifically mentioning 

the various presentation elements of NewsRobot. People appreciated the fact that 

it could produce those elements more quickly, accurately, and easily than human 

reporters and provide additional information not previously revealed. 

On the other hand, people complained that video news was a bit different 

from their expectations and that it brought out the awkwardness of automatically 

generated news content. According to user research studies on software or agents 

that replace human workers or simulate abilities of humans, people can feel more 

awkward or uncomfortable as they become more similar to humans ([235], [236]). 

The more elements that are included in the news, the greater the expectations of 

people. However, at the same time, the awkwardness could be more prominent, 
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and people’s disappointment could be greater [238]. Since people lose confidence 

in algorithmic reporters more quickly than they do in human reporters after seeing 

them make the same mistake [239], this problem needs to be solved in algorithm-

based news generation.  

To overcome these drawbacks while taking advantage of the various presen-

tation elements, we need to consider creating news content that is more perceptible 

to people rather than creating overly experimental and challenging news content. 

It is necessary to consider the mental models that people have about each multi-

media modality and reflect them in the design of each news article style. This 

means that we must first understand news media users. Based on this, if the infor-

mation representation is tailored to each style, it would be helpful for providing 

news consumers with a better user experience.   

 

7.4.3 Importance of Quality Data and Algorithm Refinement 

The last point we discuss is the importance of obtaining quality data and refining 

algorithms for automatic news generation. In the user study, participants highly 

appreciated NewsRobot’s data-driven news generation algorithm, describing it as 

accurate, objective, and even trustworthy. However, at the same time, they pointed 

out its limitations due to its excessive dependence on data, describing it as dull 

and shallow. Considering that software-generated content is usually perceived as 

descriptive and boring, although it is also considered objective [151], this could 

be an inherent problem that automotive journalism needs to address.  

In order to alleviate these problems while taking advantage of providing data-

based information, it is necessary to obtain more and better data and refine the 

news generation algorithm. It is necessary to use diverse data sources, such as 

image information extraction and social media reactions, and avoid using only 
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refined numerical data. The algorithms should actively interpret the input data and 

produce various versions of the articles. In addition, they should not only provide 

calculated values but also help users understand the information by adding more 

detailed explanations of the meaning.   

However, ultimately, it is necessary to introduce state-of-the-art artificial in-

telligence technologies that can learn and interpret data on their own, and generate 

sentences and elements based on it, rather than depending on rule-based templates. 

To do so, stakeholders, such as designers and developers, should continue to 

search for new technologies related to news generation, such as natural language 

generation APIs that can express various voices and emotions. Finally, reflecting 

the opinions of human actors, such as journalists, in the design of algorithms 

should also be considered to enhance news quality.  

 

7.5 Principles 

This paper proposes unique design principles based on the implications of each 

study.   

• Principle 1 (resulting from the study on perception, RQ1): AI-based systems 

should be able to mitigate the subtle unpleasantness that a user may have about 

AI, and interact with the user in a human-like way. 

• Principle 2 (resulting from the study on interpretation and evaluation, RQ2): 

AI-based systems should be able to present their internal logic, and communi-

cate their reasoning to users when providing information that is automatically 

calculated by the algorithm.  

• Principle 3 (resulting from the study on sequence of actions, RQ3): AI-based 

systems should yield to the user’s initiative in a series of interactions with the 
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user, and give only as much instruction as necessary. 

• Principle 4 (resulting from the fourth study on practical applications, RQ4): 

AI-based systems should be designed to fit users’ expectations and mental 

models of the system. Collaboration between designers and technicians can 

help elaborate this process. 
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8 CONCLUSION 

 
Artificial intelligence algorithms are affecting much of our daily lives in numerous 

areas. this thesis aims to understand how users interact with AI algorithms. Spe-

cifically, this dissertation examine algorithm-based human–AI interaction through 

different stages with various modes of human-computer interaction: The first 

study investigated how people perceive algorithm-based systems using artificial 

intelligence, finding that people tend to regard it as a human-like agent, which is 

distinct from their perceptions of computers. The second study investigated how 

people interpret and evaluate AI algorithms with a research probe, “AI Mirror,” 

which evaluates the aesthetic scores of given images based on a neural network 

algorithm. The results revealed that people understand AI algorithms based on 

their backgrounds and that they want to understand and communicate with the AI 

algorithm. The third study investigated how people build a sequence of actions 

with AI algorithms through a mixed method study with a research prototype, “Du-

etDraw,” a drawing tool where users and AI can draw pictures together. The re-

sults showed that people want to lead the collaboration while hoping to get appro-

priate instructions from the AI algorithm. Lastly, a case study on a practical appli-

cation of the AI was conducted with a research prototype, “NewsRobot,” which 

automatically generates news articles with different content and styles. Findings 
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showed the users’ preference for selective news and multimedia news. With these 

distinct but intertwined studies, this thesis argues that users want to have a more 

human-like relationship with AI algorithms. 

To sum up, artificial intelligence algorithms and users are in a subtle relation-

ship. People tend to not just anthropomorphize but also alienate AI. In particular, 

given the information automatically computed by the algorithm for the subjective 

domain, the user wants to know the rationale and wants to communicate with the 

artificial intelligence. The user does not want to lose control when continuing to 

interact with artificial intelligence and wants a detailed description of the infor-

mation they need. Users want to be provided with functionality that meets their 

expectations rather than artificial intelligence showing off their capabilities.  

 

8.1 Summary of Contributions 

The core contribution of this thesis is an increased understanding of AI algorithms 

in terms of human factors and user experience, investigated through HCI methods. 

It can be divided into the following detailed contributions.   

• Empirical results on human–AI algorithm interaction: Through both 

quantitative and qualitative approaches, this study closely observed the inter-

action between AI algorithms and users and discovered new aspects of this 

interaction. It investigated people’s fear of AI from various perspectives and 

identified the confrontational “us vs. them” view between humans and AI, 

which is distinct from existing views on computers. This work also yielded 

experimental results showing how users’ unique characteristics affected the 

process of interpreting the outcomes of AI algorithms in terms of strategy, and 

communication. Furthermore, the study provided insights on the user experi-

ence of an automated news generation system. 
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• Artifacts: AI-powered user interfaces were designed for three of the studies, 

playing a crucial role in understanding the user’s interactions: AI Mirror, a 

user interface that gives aesthetic scores to photographs based on a deep neural 

network model, DuetDraw, a collaborative drawing application based on neu-

ral network technology, and NewsRobot, an automated news generation sys-

tem that produces multiple news articles considering content and style.  

• Design implications: This thesis discussed design implications for intelligent 

user interfaces that are based on AI algorithms. These include implications for 

interfaces that deliver a variety of interpretable results, which could be utilized 

by both the AI/ML and HCI communities, interfaces with which users and AI 

can communicate and cooperate for creative work, and practical interfaces that 

provide users with information in various forms.  

• Theoretical contribution: This thesis stresses the importance of AI algo-

rithms and their human factors and user experience in the HCI field and sug-

gests the concept of an expanded user interface and algorithmic experience.   

 

8.2 Future Directions 

Understanding human-AI interactions through algorithm-based interfaces pro-

vides important opportunities for both the HCI and AI communities.  

First, based on the research limitations of each chapter, the following future work 

can be proposed. 

• Human perception of AI algorithms: Quantitative research investigating the 

worldwide reaction to AI by crawling and analyzing data from social network 

sites could be considered.  

• Users’ reasoning about AI algorithms: Determining a clearer relationship 
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between variables by carrying out an expanded study with more participants 

could be considered. A user study in which participants experience the AI sys-

tem in a real context rather than in a controlled environment could be consid-

ered. In addition, improving the research tool to cover various areas of AI 

rather than limiting it to aesthetic evaluation could be planned. Finally, re-

search that demonstrates the practical effects of the design recommendations 

that the chapter has proposed could be planned. 

• Human-AI collaboration: Investigating user experience in a wider variety of 

interfaces beyond the framework of drawing tools could be planned. As part 

of the ongoing research of this thesis, there are also plans to improve Duet-

Draw so that users can use it more flexibly and explore the long-term experi-

ence of cooperation with AI. 

• Designing algorithm-based user interfaces: A comparative study on news 

articles written by both human journalists and NewsRobot could be planned. 

Moreover, a user study on an event that is actually happening, measuring the 

user experience of the automated news generation system in real time could 

be considered. It could also be planned to expand the user study area to various 

topics, such as election reports and weather forecasts, to generalize our results 

on automated journalism. Lastly, improving the automation level of news gen-

eration by adopting state-of-the-art techniques could be considered. 

 

In addition, various HCI research topics related to AI can be considered:  

• Designers with Machine Learning: The study not only presented diverse 

design guidelines for AI interfaces but also discussed the role of designers in 

working with algorithms. As AI continues to expand, interaction designers 

must incorporate this new technology into their product and service designs. 
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Discussing the practical methods that help designers become accustomed to 

learning about AI and communicating with stakeholders in the field of AI 

could be considered for future work. 

• Human-Robot Interaction: Although the scope of this dissertation is limited 

to user interaction with intangible algorithms, the results can be extended to 

tangible AI, or robot interface design studies. This thesis could be extended to 

study the effects of the existence of robots on user behavior and perhaps in-

form the design of products that can positively affect people’s feelings, such 

as social robots. 

• Algorithmic Experience: Algorithms will play an increasingly important role 

in AI user interfaces. As algorithms become cross-linked and embedded in 

various interfaces, it is reasonable to expect that algorithms themselves will 

affect users’ holistic experience, including their behaviors and lifestyles. This 

possibility suggests that research should focus on understanding long-term re-

lationships with algorithms rather than simple usability and utility of inter-

faces. The human perception of AI algorithms revealed in this thesis can serve 

as the basis for research into these algorithmic experiences. 

• AI and Crowds: Although this study focused on the interaction between an 

individual user and an AI algorithm, the interaction between a large group of 

users (a crowd) and AI from a macroscopic point of view could be considered. 

The most critical consideration for AI is to have high-quality data. 

Crowdsourcing is an excellent way to obtain this, but it is necessary to discuss 

how to promote crowd participation in various conditions. In particular, inves-

tigating whether crowds’ behaviors are influenced by AI algorithms’ interpret-

ability, or, alternatively, whether crowd behavior could be directed via quality 

data production, could be considered. 
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논 문 초 록 

 

컴퓨팅 파워의 개선, 인터넷과 소셜미디어, 모바일 디바이스 등의 보급을 통

한 수많은 데이터의 축적, 딥러닝을 비롯한 기계학습 알고리즘의 발전으로 인공지

능 기술이 어느때보다 더욱 큰 성과를 보이고 있다. 음성 인식, 컴퓨터 비전, 자연

어 처리 등의 분야에서 인공지능은 이미 인간에 필적하거나 혹은 인간을 뛰어넘는 

성능을 보이고 있으며, 자율주행, 로봇, 의료서비스 등의 다양한 분야에 적용되어 

우리의 삶에 많은 변화를 가져올 것으로 기대된다.  

하지만 알고리즘 측면에서의 기술적인 발전에 비해 인공지능의 인간공학적 요

소와 사용자 경험에 대한 관심과 논의가 상대적으로 부족한 편이다. 이에 이 연구

는 인간컴퓨터상호작용의 관점에서 인공지능과 사용자가 상호작용 하는 방식에 대

해 다층적이고 통합적으로 이해하는 것을 목표로 하고 이를 통해 인공지능 기반의 

사용자 인터페이스 디자인을 위한 함의점을 도출하는 것을 목표로 한다. 특히 이 

논문은 인공지능 기술을 이용한 알고리즘 기반의 시스템과 사용자의 상호작용에 

주목하고, 이를 대상으로 인지, 해석 및 평가, 지속적인 인터랙션, 실용적인 어플리

케이션을 주제로 한 네 단계의 연구를 기획하고 진행하였다.  

첫번째 연구는 인공지능 알고리즘에 대한 사람들의 선험적 인식을 조사하였다. 

연령과 성별, 직업의 다양성을 고려하여 인구통계학적 대표성을 갖는 참가자를 모

집하였으며, 이들을 대상으로 인공지능 인식에 대한 정성적 방식의 조사를 진행하

였다. 조사 결과 사람들이 인공지능 알고리즘에 대해 갖는 선입견과 고정관념을 



 
 

 

- 174 - 

확인할 수 있었으며, 사람들이 인공지능을 의인화 할 뿐만 아니라 타자화 하는 경

향이 있음을 확인할 수 있었다. 또한 인공지능 알고리즘과 사용자의 관계에서 지

속적이고 전체적인 경험이 중요함을 확인하였다.  

두번째 연구는 인공지능 알고리즘에 대한 사용자의 해석과 평가에 관한 것이

다. 이를 위해 이미지의 미적 점수를 계산해주는 신경망 기반의 알고리즘이 구현

된 AI Mirror라는 연구 프로토타입을 제작하였으며, 인공지능/기계학습 분야의 전

문가, 사진전문가, 일반인으로 구분된 세 집단의 사용자를 모집하여 실험을 진행하

였다. 사용자는 저마다 다른 배경 지식을 반영해 인공지능 알고리즘을 해석하고 

평가하는 경향을 보였다. 사진전문가 집단이 알고리즘을 가장 높은 정도로 해석하

였으며 합리적이라고 여긴 반면, 인공지능/기계학습 전문가 집단은 가장 낮은 정

도로 알고리즘을 해석하고 평가했다. 사용자는 다양한 전략을 통해 인공지능 알고

리즘의 원리를 추론하고자 하였으며 이를 통해 인공지능 알고리즘과의 차이를 좁

혀갈 수 있었다. 또한 사용자는 인공지능 알고리즘과 쌍방 소통을 통해 의견을 교

환하고자 하는 니즈를 표출하였다.  

세번째 연구는 인공지능 알고리즘과 사용자가 공동의 목표를 두고 지속적인 

인터랙션을 이어가는 과정에 대한 이해를 목표로 하였다. 사용자가 일부 그린 물

체를 완성하고 스케치에 색칠을 자동으로 완성해주는 신경망 기반의 알고리즘 

API를 이용하여 DuetDraw라는 리서치 프로토타입을 제작하였고, 정량 및 정성적 

방법으로 이에 대한 사용자 평가를 진행하였다. 사용자 평가 결과 사용자는 인공

지능 알고리즘과의 협업 과정에서 인공지능으로부터 단순한 피드백 보다는 자세한 

설명을 제공받기를 원했으며, 알고리즘과의 관계에서 항상 주도적인 위치에 있고

자 하였다. 인공지능과의 인터랙션은 과업 수행에 대한 사용자의 예측가능성, 이해

도, 통제력을 낮추는 경항이 있었지만, 사용자에게 상대적으로 높은 사용성을 제공

하였을 뿐만 아니라 사용자가 전반적으로 만족스러운 경험을 할 수 있도록 하였다.    
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끝으로, 네번째 연구는 보다 실용적인 어플리케이션을 제작하여 이에 대한 사

용자 인터랙션을 이해하고자 하였으며, 이에 최근 큰 각광을 받고 있는 로봇저널

리즘 기술을 구현한 NewsRobot을 제작하였다. NewsRobot은 2018 평창동계올

림픽의 주요 경기 결과를 자동으로 수집하고 요약하며, 내용과 형식을 각각 종합

뉴스-선택뉴스, 텍스트-카드-동영상으로 달리하여 뉴스를 생성한다. 정량 및 정성

적 방법의 사용자 평가 결과, 선택뉴스가 종합뉴스에 비해 낮은 신뢰도를 보였음

에도 불구하고 선택뉴스에 대한 사용자의 높은 선호도를 확인할 수 있었다. 또한 

멀티미디어 모달리티가 높아질수록 사용자의 뉴스에 대한 만족도가 높아지지만 사

용자의 기대수준에 어긋난 경우 오히려 낮은 평가를 받는 것을 확인하였다. 사용

자는 알고리즘이 자동으로 생성한 뉴스에 대해 정확하고 객관적이라고 평가하였으

며, 빠른 뉴스 생성 속도와 다양한 정보 시각화 요소에 대해서도 만족감을 드러냈

다.  

본 연구는 이 네 가지 연구의 결과들을 바탕으로 인간-인공지능 상호작용에 

대한 다양한 시사점들을 도출하였으며, 인공지능을 이용한 알고리즘 기반의 시스

템의 사용자 인터페이스 디자인을 위한 함의점들을 제안한다. 

 

 

 

 

주요어: 인공지능, 인간-인공지능 인터랙션, 인공지능을 이용한 알고리즘 기반의 

시스템, 인간-컴퓨터 상호작용, 알고리즘 경험 

학  번: 2012-22466 


	1 INTRODUCTION
	1.1 Background
	1.2 Research Goal
	1.3 Research Questions
	1.4 How People Perceive Algorithm-based Systems Using Artificial Intelligence
	1.5 How People Interpret and Evaluate Algorithm-based Systems Using Artificial Intelligence
	1.6 How People Build Sequential Actions with Algorithm-Based Systems Using Artificial Intelligence
	1.7 How People Use a Practical Application of an Algorithm-based Systems Using Artificial Intelligence
	1.8 Thesis Statement
	1.9 Contributions
	1.10 Thesis Overview

	2 RELATED WORK
	2.1 Human Perception of AI Algorithms
	2.1.1 Technophobia
	2.1.2 Anthropomorphism

	2.2 Users Interpretation and Evaluation of AI Algorithms
	2.2.1 Interpretability of Algorithms and Users Concerns
	2.2.2 Sense-making and Gap between Users and AI algorithms
	2.2.3 User Control in Intelligent Systems

	2.3 How People Build Sequential Actions with AI Algorithms
	2.3.1 AI, Deep Learning, and New UX in Creative Works
	2.3.2 Communication and Leadership among Users and AI

	2.4 Practical Design of Algorithm-based Systems Using AI
	2.4.1 Automated Journalism
	2.4.2 Personalization of News Content
	2.4.3 Effect of Multimedia Modality on User Experience


	3 HOW PEOPLE PERCEIVE ALGORITHM-BASED SYSTEMS USING ARTIFICIAL INTELLIGENCE
	3.1 Motivation
	3.2 Google DeepMind Challenge Match
	3.3 Methodology
	3.3.1 Participant Recruitment
	3.3.2 Interview Process
	3.3.3 Interview Analysis

	3.4 Findings
	3.4.1 Preconceptions about Artificial Intelligence
	3.4.2 Confrontation: Us vs. Artificial Intelligence
	3.4.3 Anthropomorphizing AlphaGo
	3.4.4 Alienating AlphaGo
	3.4.5 Concerns about the Future of AI

	3.5 Limitations
	3.6 Summary

	4 HOW PEOPLE INTERPRET AND EVALUATE ALGORITHM-BASED SYSTEMS USING ARTIFICIAL INTELLIGENCE
	4.1 Motivation
	4.2 AI Mirror
	4.2.1 Design Goal
	4.2.2 Image Assessment Algorithm
	4.2.3 Design of User Interface

	4.3 Study Design
	4.3.1 Participant Recruitment
	4.3.2 Experimental Settings
	4.3.3 Procedure
	4.3.4 Analysis Methods

	4.4 Result 1: Quantitative Analysis
	4.4.1 Difference
	4.4.2 Interpretability
	4.4.3 Reasonability

	4.5 Result 2: Qualitative Analysis
	4.5.1 People Understand AI Based on What They Know
	4.5.2 People Reduce Difference Using Various Strategies
	4.5.3 People Want to Actively Communicate with AI

	4.6 Limitations
	4.7 Conclusion

	5 HOW PEOPLE BUILD SEQUENTIAL ACTIONS WITH ALGORITHM-BASED SYSTEMS USING ARTIFICIAL INTELLIGENCE
	5.1 Motivation
	5.2 Duet Draw
	5.2.1 Five AI Functions of DuetDraw
	5.2.2 Initiative and Communication Styles of DuetDraw

	5.3 Study Design
	5.3.1 Participants
	5.3.2 Tasks and Procedures
	5.3.3 Drawing Scenarios
	5.3.4 Survey
	5.3.5 Think-aloud and Interview
	5.3.6 Analysis Methods

	5.4 Result 1: Quantitative Analysis
	5.4.1 Detailed Instruction is Preferred over Basic Instruction
	5.4.2 UX Could Be Worse with Lead-Basic than Assist-Detailed
	5.4.3 AI is Fun, Useful, Effective, and Efficient
	5.4.4 No-AI is more Predictable, Comprehensible, and Controllable
	5.4.5 Even if Predictability is Low, Fun and Interest Can Increase

	5.5 Result 2: Qualitative Analysis
	5.5.1 Just Enough Instruction
	5.5.2 Users Always Want to Lead
	5.5.3 AI is Similar to Humans But Unpredictable
	5.5.4 Co-Creation with AI

	5.6 Limitations
	5.7 Conclusion

	6 HOW PEOPLE USE A PRACTICAL APPLICATION OF AN ALGORITHM-BASED SYSTEM USIGN ARTIFICIAL INTELLIGENCE
	6.1 Motivation
	6.2 News Robot
	6.2.1 Selecting Main Event and Data Source
	6.2.2 Designing News Article Structure
	6.2.3 Content and Style
	6.2.4 Generating News Articles
	6.2.5 Designing NewsRobot User Interface

	6.3 Study Design
	6.3.1 Participants
	6.3.2 Procedures
	6.3.3 Analysis Methods

	6.4 Results 1: Quantitative Analysis
	6.4.1 Selective News Is Less Credible
	6.4.2 Users Like Both Multimedia and Personalization
	6.4.3 Quality of Video Is Not Rated Highest
	6.4.4 NewsRobot Is Accurate but Not Sensational

	6.5 Results 2: Qualitative Analysis
	6.5.1 Users Evaluate NewsRobot Features Highly
	6.5.2 NewsRobot Is Unbiased but Predictable
	6.5.3 Benefits and Drawbacks of Using Multimedia

	6.6 Limitations
	6.7 Conclusion

	7 DISCUSSION
	7.1 Human Perception of AI Algorithms
	7.1.1 Cognitive Dissonance
	7.1.2 Beyond Technophobia
	7.1.3 Toward a New Chapter in Human-Computer Interaction
	7.1.4 Coping with the Potential Danger

	7.2 Users Interpretation and Evaluation of AI Algorithms
	7.2.1 Integrate Diverse Expertise and User Perspectives
	7.2.2 Take Advantage of Peoples Curiosity about AI Principles
	7.2.3 Provide AI and Users with Mutual Communication

	7.3 How People Build Sequential Actions with AI Algorithms
	7.3.1 Let the User Take the Initiative
	7.3.2 Provide Just Enough Instruction
	7.3.3 Embed Interesting Elements in the Interaction
	7.3.4 Ensure Balance

	7.4 Practical Design of Algorithm-based Systems Using AI
	7.4.1 Provide Selective news with Adaptable Interface
	7.4.2 Present Various Multimedia Elements but Not Too Many
	7.4.3 Importance of Quality Data and Algorithm Refinement

	7.5 Principles

	8 CONCLUSION
	8.1 Summary of Contributions
	8.2 Future Directions

	Bibliography
	논문초록
	감사의 글


<startpage>15
1 INTRODUCTION 1
 1.1 Background 1
 1.2 Research Goal 10
 1.3 Research Questions 11
 1.4 How People Perceive Algorithm-based Systems Using Artificial Intelligence 12
 1.5 How People Interpret and Evaluate Algorithm-based Systems Using Artificial Intelligence 13
 1.6 How People Build Sequential Actions with Algorithm-Based Systems Using Artificial Intelligence 15
 1.7 How People Use a Practical Application of an Algorithm-based Systems Using Artificial Intelligence 17
 1.8 Thesis Statement 18
 1.9 Contributions 18
 1.10 Thesis Overview 20
2 RELATED WORK 22
 2.1 Human Perception of AI Algorithms 22
  2.1.1 Technophobia 22
  2.1.2 Anthropomorphism 23
 2.2 Users Interpretation and Evaluation of AI Algorithms 24
  2.2.1 Interpretability of Algorithms and Users Concerns 24
  2.2.2 Sense-making and Gap between Users and AI algorithms 25
  2.2.3 User Control in Intelligent Systems 26
 2.3 How People Build Sequential Actions with AI Algorithms 26
  2.3.1 AI, Deep Learning, and New UX in Creative Works 27
  2.3.2 Communication and Leadership among Users and AI 28
 2.4 Practical Design of Algorithm-based Systems Using AI 29
  2.4.1 Automated Journalism 30
  2.4.2 Personalization of News Content 31
  2.4.3 Effect of Multimedia Modality on User Experience 32
3 HOW PEOPLE PERCEIVE ALGORITHM-BASED SYSTEMS USING ARTIFICIAL INTELLIGENCE 33
 3.1 Motivation 34
 3.2 Google DeepMind Challenge Match 36
 3.3 Methodology 38
  3.3.1 Participant Recruitment 38
  3.3.2 Interview Process 39
  3.3.3 Interview Analysis 40
 3.4 Findings 41
  3.4.1 Preconceptions about Artificial Intelligence 41
  3.4.2 Confrontation: Us vs. Artificial Intelligence 43
  3.4.3 Anthropomorphizing AlphaGo 47
  3.4.4 Alienating AlphaGo 49
  3.4.5 Concerns about the Future of AI 52
 3.5 Limitations 55
 3.6 Summary 56
4 HOW PEOPLE INTERPRET AND EVALUATE ALGORITHM-BASED SYSTEMS USING ARTIFICIAL INTELLIGENCE 57
 4.1 Motivation 58
 4.2 AI Mirror 60
  4.2.1 Design Goal 60
  4.2.2 Image Assessment Algorithm 61
  4.2.3 Design of User Interface 61
 4.3 Study Design 62
  4.3.1 Participant Recruitment 63
  4.3.2 Experimental Settings 64
  4.3.3 Procedure 65
  4.3.4 Analysis Methods 66
 4.4 Result 1: Quantitative Analysis 67
  4.4.1 Difference 68
  4.4.2 Interpretability 69
  4.4.3 Reasonability 70
 4.5 Result 2: Qualitative Analysis 71
  4.5.1 People Understand AI Based on What They Know 71
  4.5.2 People Reduce Difference Using Various Strategies 73
  4.5.3 People Want to Actively Communicate with AI 76
 4.6 Limitations 78
 4.7 Conclusion 78
5 HOW PEOPLE BUILD SEQUENTIAL ACTIONS WITH ALGORITHM-BASED SYSTEMS USING ARTIFICIAL INTELLIGENCE 80
 5.1 Motivation 81
 5.2 Duet Draw 84
  5.2.1 Five AI Functions of DuetDraw 84
  5.2.2 Initiative and Communication Styles of DuetDraw 85
 5.3 Study Design 86
  5.3.1 Participants 87
  5.3.2 Tasks and Procedures 87
  5.3.3 Drawing Scenarios 88
  5.3.4 Survey 89
  5.3.5 Think-aloud and Interview 89
  5.3.6 Analysis Methods 90
 5.4 Result 1: Quantitative Analysis 92
  5.4.1 Detailed Instruction is Preferred over Basic Instruction 93
  5.4.2 UX Could Be Worse with Lead-Basic than Assist-Detailed 94
  5.4.3 AI is Fun, Useful, Effective, and Efficient 94
  5.4.4 No-AI is more Predictable, Comprehensible, and Controllable 95
  5.4.5 Even if Predictability is Low, Fun and Interest Can Increase 96
 5.5 Result 2: Qualitative Analysis 96
  5.5.1 Just Enough Instruction 97
  5.5.2 Users Always Want to Lead 99
  5.5.3 AI is Similar to Humans But Unpredictable 101
  5.5.4 Co-Creation with AI 102
 5.6 Limitations 105
 5.7 Conclusion 105
6 HOW PEOPLE USE A PRACTICAL APPLICATION OF AN ALGORITHM-BASED SYSTEM USIGN ARTIFICIAL INTELLIGENCE 107
 6.1 Motivation 108
 6.2 News Robot 110
  6.2.1 Selecting Main Event and Data Source 111
  6.2.2 Designing News Article Structure 113
  6.2.3 Content and Style 113
  6.2.4 Generating News Articles 115
  6.2.5 Designing NewsRobot User Interface 116
 6.3 Study Design 117
  6.3.1 Participants 117
  6.3.2 Procedures 118
  6.3.3 Analysis Methods 119
 6.4 Results 1: Quantitative Analysis 120
  6.4.1 Selective News Is Less Credible 120
  6.4.2 Users Like Both Multimedia and Personalization 121
  6.4.3 Quality of Video Is Not Rated Highest 122
  6.4.4 NewsRobot Is Accurate but Not Sensational 123
 6.5 Results 2: Qualitative Analysis 124
  6.5.1 Users Evaluate NewsRobot Features Highly 124
  6.5.2 NewsRobot Is Unbiased but Predictable 127
  6.5.3 Benefits and Drawbacks of Using Multimedia 128
 6.6 Limitations 130
 6.7 Conclusion 130
7 DISCUSSION 131
 7.1 Human Perception of AI Algorithms 131
  7.1.1 Cognitive Dissonance 131
  7.1.2 Beyond Technophobia 132
  7.1.3 Toward a New Chapter in Human-Computer Interaction 134
  7.1.4 Coping with the Potential Danger 135
 7.2 Users Interpretation and Evaluation of AI Algorithms 135
  7.2.1 Integrate Diverse Expertise and User Perspectives 136
  7.2.2 Take Advantage of Peoples Curiosity about AI Principles 137
  7.2.3 Provide AI and Users with Mutual Communication 138
 7.3 How People Build Sequential Actions with AI Algorithms 139
  7.3.1 Let the User Take the Initiative 140
  7.3.2 Provide Just Enough Instruction 140
  7.3.3 Embed Interesting Elements in the Interaction 141
  7.3.4 Ensure Balance 142
 7.4 Practical Design of Algorithm-based Systems Using AI 142
  7.4.1 Provide Selective news with Adaptable Interface 142
  7.4.2 Present Various Multimedia Elements but Not Too Many 144
  7.4.3 Importance of Quality Data and Algorithm Refinement 145
 7.5 Principles 146
8 CONCLUSION 148
 8.1 Summary of Contributions 149
 8.2 Future Directions 150
Bibliography 153
논문초록 173
감사의 글 176
</body>

