89 research outputs found

    Changepoint Detection over Graphs with the Spectral Scan Statistic

    Full text link
    We consider the change-point detection problem of deciding, based on noisy measurements, whether an unknown signal over a given graph is constant or is instead piecewise constant over two connected induced subgraphs of relatively low cut size. We analyze the corresponding generalized likelihood ratio (GLR) statistics and relate it to the problem of finding a sparsest cut in a graph. We develop a tractable relaxation of the GLR statistic based on the combinatorial Laplacian of the graph, which we call the spectral scan statistic, and analyze its properties. We show how its performance as a testing procedure depends directly on the spectrum of the graph, and use this result to explicitly derive its asymptotic properties on few significant graph topologies. Finally, we demonstrate both theoretically and by simulations that the spectral scan statistic can outperform naive testing procedures based on edge thresholding and χ2\chi^2 testing

    Sequential Changepoint Approach for Online Community Detection

    Full text link
    We present new algorithms for detecting the emergence of a community in large networks from sequential observations. The networks are modeled using Erdos-Renyi random graphs with edges forming between nodes in the community with higher probability. Based on statistical changepoint detection methodology, we develop three algorithms: the Exhaustive Search (ES), the mixture, and the Hierarchical Mixture (H-Mix) methods. Performance of these methods is evaluated by the average run length (ARL), which captures the frequency of false alarms, and the detection delay. Numerical comparisons show that the ES method performs the best; however, it is exponentially complex. The mixture method is polynomially complex by exploiting the fact that the size of the community is typically small in a large network. However, it may react to a group of active edges that do not form a community. This issue is resolved by the H-Mix method, which is based on a dendrogram decomposition of the network. We present an asymptotic analytical expression for ARL of the mixture method when the threshold is large. Numerical simulation verifies that our approximation is accurate even in the non-asymptotic regime. Hence, it can be used to determine a desired threshold efficiently. Finally, numerical examples show that the mixture and the H-Mix methods can both detect a community quickly with a lower complexity than the ES method.Comment: Submitted to 2014 INFORMS Workshop on Data Mining and Analytics and an IEEE journa

    Unsupervised robust nonparametric learning of hidden community properties

    Full text link
    We consider learning of fundamental properties of communities in large noisy networks, in the prototypical situation where the nodes or users are split into two classes according to a binary property, e.g., according to their opinions or preferences on a topic. For learning these properties, we propose a nonparametric, unsupervised, and scalable graph scan procedure that is, in addition, robust against a class of powerful adversaries. In our setup, one of the communities can fall under the influence of a knowledgeable adversarial leader, who knows the full network structure, has unlimited computational resources and can completely foresee our planned actions on the network. We prove strong consistency of our results in this setup with minimal assumptions. In particular, the learning procedure estimates the baseline activity of normal users asymptotically correctly with probability 1; the only assumption being the existence of a single implicit community of asymptotically negligible logarithmic size. We provide experiments on real and synthetic data to illustrate the performance of our method, including examples with adversaries.Comment: Experiments with new types of adversaries adde

    Spectral methods and computational trade-offs in high-dimensional statistical inference

    Get PDF
    Spectral methods have become increasingly popular in designing fast algorithms for modern highdimensional datasets. This thesis looks at several problems in which spectral methods play a central role. In some cases, we also show that such procedures have essentially the best performance among all randomised polynomial time algorithms by exhibiting statistical and computational trade-offs in those problems. In the first chapter, we prove a useful variant of the well-known Davis{Kahan theorem, which is a spectral perturbation result that allows us to bound of the distance between population eigenspaces and their sample versions. We then propose a semi-definite programming algorithm for the sparse principal component analysis (PCA) problem, and analyse its theoretical performance using the perturbation bounds we derived earlier. It turns out that the parameter regime in which our estimator is consistent is strictly smaller than the consistency regime of a minimax optimal (yet computationally intractable) estimator. We show through reduction from a well-known hard problem in computational complexity theory that the difference in consistency regimes is unavoidable for any randomised polynomial time estimator, hence revealing subtle statistical and computational trade-offs in this problem. Such computational trade-offs also exist in the problem of restricted isometry certification. Certifiers for restricted isometry properties can be used to construct design matrices for sparse linear regression problems. Similar to the sparse PCA problem, we show that there is also an intrinsic gap between the class of matrices certifiable using unrestricted algorithms and using polynomial time algorithms. Finally, we consider the problem of high-dimensional changepoint estimation, where we estimate the time of change in the mean of a high-dimensional time series with piecewise constant mean structure. Motivated by real world applications, we assume that changes only occur in a sparse subset of all coordinates. We apply a variant of the semi-definite programming algorithm in sparse PCA to aggregate the signals across different coordinates in a near optimal way so as to estimate the changepoint location as accurately as possible. Our statistical procedure shows superior performance compared to existing methods in this problem.St John's College and Cambridge Overseas Trus

    Spatial CUSUM for Signal Region Detection

    Get PDF
    Detecting weak clustered signal in spatial data is important but challenging in applications such as medical image and epidemiology. A more efficient detection algorithm can provide more precise early warning, and effectively reduce the decision risk and cost. To date, many methods have been developed to detect signals with spatial structures. However, most of the existing methods are either too conservative for weak signals or computationally too intensive. In this paper, we consider a novel method named Spatial CUSUM (SCUSUM), which employs the idea of the CUSUM procedure and false discovery rate controlling. We develop theoretical properties of the method which indicates that asymptotically SCUSUM can reach high classification accuracy. In the simulation study, we demonstrate that SCUSUM is sensitive to weak spatial signals. This new method is applied to a real fMRI dataset as illustration, and more irregular weak spatial signals are detected in the images compared to some existing methods, including the conventional FDR, FDRL_L and scan statistics

    Bayesian anomaly detection methods for social networks

    Full text link
    Learning the network structure of a large graph is computationally demanding, and dynamically monitoring the network over time for any changes in structure threatens to be more challenging still. This paper presents a two-stage method for anomaly detection in dynamic graphs: the first stage uses simple, conjugate Bayesian models for discrete time counting processes to track the pairwise links of all nodes in the graph to assess normality of behavior; the second stage applies standard network inference tools on a greatly reduced subset of potentially anomalous nodes. The utility of the method is demonstrated on simulated and real data sets.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS329 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Optimal change point detection and localization in sparse dynamic networks

    Get PDF
    We study the problem of change point localization in dynamic networks models. We assume that we observe a sequence of independent adjacency matrices of the same size, each corresponding to a realization of an unknown inhomogeneous Bernoulli model. The underlying distribution of the adjacency matrices are piecewise constant, and may change over a subset of the time points, called change points. We are concerned with recovering the unknown number and positions of the change points. In our model setting, we allow for all the model parameters to change with the total number of time points, including the network size, the minimal spacing between consecutive change points, the magnitude of the smallest change and the degree of sparsity of the networks. We first identify a region of impossibility in the space of the model parameters such that no change point estimator is provably consistent if the data are generated according to parameters falling in that region. We propose a computationally-simple algorithm for network change point localization, called network binary segmentation, that relies on weighted averages of the adjacency matrices. We show that network binary segmentation is consistent over a range of the model parameters that nearly cover the complement of the impossibility region, thus demonstrating the existence of a phase transition for the problem at hand. Next, we devise a more sophisticated algorithm based on singular value thresholding, called local refinement, that delivers more accurate estimates of the change point locations. Under appropriate conditions, local refinement guarantees a minimax optimal rate for network change point localization while remaining computationally feasible
    • …
    corecore