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OPTIMAL CHANGE POINT DETECTION AND LOCALIZATION IN SPARSE
DYNAMIC NETWORKS

By Daren Wang∗, Yi Yu† and Alessandro Rinaldo‡

University of Chicago ∗, University of Warwick † and Carnegie Mellon University ‡

We study the problem of change point localization in dynamic
networks models. We assume that we observe a sequence of inde-
pendent adjacency matrices of the same size, each corresponding to
a realization of an unknown inhomogeneous Bernoulli model. The
underlying distribution of the adjacency matrices are piecewise con-
stant, and may change over a subset of the time points, called change
points. We are concerned with recovering the unknown number and
positions of the change points. In our model setting we allow for all
the model parameters to change with the total number of time points,
including the network size, the minimal spacing between consecutive
change points, the magnitude of the smallest change and the degree
of sparsity of the networks. We first identify a region of impossibil-
ity in the space of the model parameters such that no change point
estimator is provably consistent if the data are generated according
to parameters falling in that region. We propose a computationally-
simple algorithm for network change point localization, called Net-
work Binary Segmentation, that relies on weighted averages of the
adjacency matrices. We show that Network Binary Segmentation is
consistent over a range of the model parameters that nearly cover the
complement of the impossibility region, thus demonstrating the exis-
tence of a phase transition for the problem at hand. Next, we devise
a more sophisticated algorithm based on singular value thresholding,
called Local Refinement, that delivers more accurate estimates of the
change point locations. Under appropriate conditions, Local Refine-
ment guarantees a minimax optimal rate for network change point
localization while remaining computationally feasible.

1. Introduction. The analysis of network is a fundamental task in statistics due to the in-
creasing popularity of network data generated from various scientific areas, social sciences, emerging
industries, as well as everyday life. Over the last decade, most of the advances in the area of statis-
tical network analysis have revolved around static network models, where the properties of the data
generating process are inferred from a single realization of the network. For this type of problems,
a large collection of results of computational, methodological and theoretical nature exist.

In contrast to the basic premise of the static network modeling framework, many modern net-
work data sets consist instead of multiple network realizations indexed by time, so that both the
number of nodes and the connectivity structure of the network exhibit time-varying features. Such
a dynamic network modeling setting is naturally more complex and challenging, as it is necessary
to additionally formalize and model the underlying temporal dynamic. While there is a vast body
of work on dynamic network models (see, e.g., Barabási and Albert, 1999) in the broader scientific
literature, theoretical results on such models are comparatively scarce in the statistical literature,
with many of the contributions being fairly recent (see Section 1.3 below for some literature review).

Keywords and phrases: Change point detection; Low-rank networks; Stochastic block model; Minimax optimality.
MSC 2010 subject classifications: Primary 62M10; secondary 91B84
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In this article we are concerned with a discrete time network dynamic setting in which the set of
nodes is fixed but the edge probabilities are time-varying. We assume that we observe a sequence
of T independent and possibly sparse networks of constant size whose distributions may change
at K < T unknown time points, or change points. We impose minimal restrictions on the number
and locations of the possible change points and especially on the nature of the distributional
changes that may occur at those times. In particular, most popular static network models can
fit into our framework. Our goal is to detect whether any such change has taken place, and to
accurately estimate the time of the corresponding change point. Importantly, we are not interested
in estimating the underlying data-generating distributions. As our analysis will reveal, although we
only consider a fairly straightforward form of network dynamics, the associated inference problem is
rather subtle and far from trivial. Furthermore, if one is interested in the underlying distributions,
then static network estimation methods can be applied to the sample means of the adjacency
matrices between two consecutive change point estimators.

1.1. Problem setup. To set up the problem, we assume a sequence of T independent adjacency
matrices of size n, each from a possibly sparse inhomogeneous Bernoulli network model, defined
next.

Definition 1 (Inhomogeneous Bernoulli networks). A network with node set {1, . . . , n} is an
inhomogeneous Bernoulli network if its adjacency matrix A ∈ Rn×n satisfies

Aij = Aji =

{
1, nodes i and j are connected by an edge,

0, otherwise;

and {Aij , i < j} are independent Bernoulli random variables with E(Aij) = Θij.

Definition 1 covers a wide range of models for undirected networks, including the Erdős–Rényi
random graph (Erdős and Rényi, 1959), the stochastic block model (Holland et al., 1983), the
degree corrected block model (Karrer and Newman, 2011) and the random dot product model
(Young and Scheinerman, 2007), etc. It is worth pointing out that although we are only considering
undirected networks, our results extend straightforwardly to directed networks, i.e. asymmetric
adjacency matrices. Additionally, for technical convenience, we are allowing self-loops, even though
networks with no loops can be easily accommodated; see Section 3.2 below. Finally, discussions on
the possible relaxations on the independence and Bernoulli assumptions can be found in Section 5.

We further assume that the probability distributions of the networks change only over an un-
known subset of the time points, called change points. We formalize our setting below.

Assumption 1 (Change point dynamic network model). Let {A(t)}Tt=1 be a sequence of n× n
adjacency matrices of independent inhomogeneous Bernoulli networks with means {Θ(t)}Tt=1 satis-
fying the following properties.

1. The sparsity parameter

(1) ρ := max
t=1,...,T

‖Θ(t)‖∞

is such that

(2) ρn ≥ log(n),

where ‖ · ‖∞ denotes the entrywise maximum norm of a matrix.
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2. There exists a sequence (η0, . . . , ηK+1) of time points, called change points, such that 1 = η0 <
η1 < . . . < ηK ≤ T < ηK+1 = T + 1 and, for t = 2, . . . , T ,

Θ(t) 6= Θ(t− 1) if and only if t ∈ {η1, . . . , ηK}.

We let
∆ := min

k=1,...,K+1
{ηk − ηk−1} ≤ T

be the minimal spacing between two consecutive change points and set

(3) κ0 :=
mink=1,...,K ‖Θ(ηk)−Θ(ηk − 1)‖F

nρ
∈ (0, 1],

to be the normalized magnitude of the smallest changes in the data generating distribution, where
‖ · ‖F denotes the Frobenius norm.

A few comments on our modeling assumptions are in order. First, we rely on the Frobenius
norm of the difference between two consecutive expected adjacency matrices at a change point
to quantify the magnitude of the corresponding distributional change. This is a fairly general
metric, able to capture both “dense” changes caused by small variations spread across many edge
probabilities as well by “sparse” changes due to large difference only along few coordinates. Next,
the quantity κ0 ∈ (0, 1] appearing in (3) measures the size of the smallest distributional change in
the model in a manner that is independent of the choice of the other parameters. Indeed, the terms
‖Θ(ηk) − Θ(ηk − 1)‖F’s depend on both the sparsity parameter ρ and the size of the networks n.
To avoid such confounding, and using the fact that maxk ‖Θ(ηk)−Θ(ηk − 1)‖F ≤ nρ, setting κ0 as
in (3) yields a scale-free parameter in (0, 1] that is independent of both ρ and n.

The model described above is defined by the parameters ∆, κ0, n and ρ. We adopt a high-
dimensional framework whereby T grows unbounded and all the defining parameters are allowed
to change as a function of T . The number of change points K also may change with T , but since
K ≤ T

∆ by definition, we will capture any dependence on K only through ∆. We refer to any
relationship among all the model parameters (∆, κ0, n, ρ) and T that holds as T →∞ as a scaling.
For ease of readability we will not make the dependence on T explicit in our notation.

We are concerned with the problem of estimating the unknown number and unknown locations
of the change points based on one observation of a sequence (A(1), . . . , A(T )) of adjacency matrices
satisfying the above assumptions. More precisely, for a given scaling of the model parameters, we
aim to construct an estimator of (η1, . . . , ηK) of the form

(4) (A(1), . . . , A(T )) 7→ (η̂1, . . . , η̂K̂) ⊂ (2, . . . , T )

and with η̂1 < η̂2 < . . . < η̂K̂ satisfying the following notion of localization consistency.

Definition 2 (Consistent localization). A change point estimator of the form (4) is consistent
if, with probability tending to 1 as T →∞,

(5) K̂ = K and max
k=1,...,K

|η̂k − ηk| ≤ ε,

where ε = ε(T,∆, κ0, ρ, n) is such that

(6)
ε

∆
→ 0.

The term ε is called the localization error of the estimator and the sequence
{
ε
∆

}
the localization

rate.
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Infeasible regime
(Section 2.1)

Consistent localization
(Section 2.2)

Optimal localization
(Section 3)

An example: SBM
(Section 3.2)

Fig 1. Reading guide.

Thus, we will deem a change point estimator consistent if, with high probability as the number
of time points grows, its localization error is a vanishing fraction of the minimal distance between
consecutive change points. The limiting probability (in T ) of the event in (5) and the value of the
localization error ε depend on the choice of the scaling. For instance, it is intuitively clear that
scalings in which all parameters decrease with T will lead to a sequence of change point problems
of increasing difficulty.

Our main goal is to derive conditions on the scaling of the model parameters that guarantee
the feasibility of consistent estimation of the change points and to derive computationally efficient
estimators that are consistent and in fact optimal, in the sense of achieving the minimax localization
rate. Throughout, we will specify any scaling regime among the parameters by expressing them as
functions of the quantity

(7)
√
ρκ0,

which can be considered as a uniform lower bound on the signal-to-noise ratio for any network
change point model satisfying Assumption 1. Indeed, the above quantity is the minimal magnitude
of the signal jump, namely κ0nρ, divided by n

√
ρ, which is an upper bound on the total standard

deviation of the entries of A.

1.2. List of contributions. The main theoretical contribution of the paper is the identification
of three regions inside the space of model parameters corresponding to different types of scaling or
regimes: (i) an impossibility regimes, where no change point localization algorithm is guaranteed to
be consistent (see Section 2.1); (ii) a feasibility regime, described in Assumption 2), for which we
demonstrate the existence of a polynomial-time, consistent change point estimator (see Section 2.2);
and (iii) a subset of (ii), described in Assumption 3, for which we further show that change point
localization can be achieved at a nearly minimax optimal rate, again using a polynomial-time
algorithm (see Section 3). The partition of scaling regimes, represented pictorially in Figure 1, is
relatively sharp, in the sense that regimes (i) and (ii) are only off by any diverging factor in T .

To be specific, our contributions are as follows.

• We first demonstrate the existence of a phase transition for the problem at hand by giving
nearly matching necessary and sufficient conditions on the scaling of the model parameters
and T for consistent estimation of the change points. Specifically, under the low signal-to-noise
scaling

(8) ρκ2
0 .

log2(T )

n∆
,
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no algorithm is guaranteed to be consistent (in the minimax sense: there exists a change point
problem setting compatible with the above assumption such that any algorithm will have a
localization rate uniformly bounded away from 0). On the other hand, if for any ξ > 01,

(9) ρκ2
0 &

log2+2ξ(T )

∆n
,

we demonstrate a computationally-efficient procedure, called Network Binary Segmentation
(NBS) (see Algorithm 1 below) that is provably consistent. The procedure combines sample
splitting with the randomized search strategy implemented in the wild binary segmenta-
tion (WBS) algorithm of Fryzlewicz (2014). To show the consistency of the NBS we have
generalized in non-trivial ways the analysis in Venkatraman (1992) to allow for vector- and
matrix-valued CUSUM statistics; we believe that such generalization may be applied to other
change point detection problems and is of independent interest.
The NBS is consistent under nearly the weakest possible conditions, since it leads to a vanish-
ing localization rate under the scaling (9) which, save for a log2ξ(T ) term, matches the phase
transition boundary in (8). Remarkably, no structural assumptions on the distributions of the
networks themselves are used. Indeed, in deriving the bound (8), we construct a worst-case
class of distributions consisting of dynamic networks satisfying stochastic block models. This
reveals that, under the scaling in which the NBS is analyzed, imposing extra network struc-
tural assumptions do not necessarily lead to easier change point detection problems. This is in
stark contrast with many other network problems, such as graphon estimation, clustering and
testing, where some structural conditions on the edge probabilities are always necessary. For
instance, Gao et al. (2015) showed that, when the number of communities r in a stochastic
block model is of order n, the minimax lower bound under the normalized mean squared error
loss for graphon estimators is of order 1. The dynamic version optimality is shown in Pensky
(2016).
• In our second set of results, we seek to investigate conditions under which structural as-

sumptions do help with our change point localization task. Towards that end, we introduce
additional assumptions on the model defined in Assumption 1 by requiring that each differ-
ence Θ(ηk) − Θ(ηk − 1), k = 1, . . . ,K, be a matrix of rank at most r ≤ n, an additional
parameter that is also allowed to change with T . Such low rank condition is relative mild and
is satisfied by many instances of the stochastic block model. Then, with this assumption in
place and under the stronger scaling

(10) ρκ2
0 &

log2+2ξ(T )

∆

r

n
,

we are able to devise a computationally-efficient and consistent change points estimator with
localization error of the order

(11) ε .
log2(T )

κ2
0n

2ρ
.

The proposed procedure takes as input the estimates of the change point locations from any
reasonable (not necessarily consistent nor optimal) estimator, including the NBS, and further
improves their accuracy to deliver the above localization rate. At its core, the LR algorithm

1In fact, ξ is allowed to be zero if n diverges with T . More generally, in that case, we may replace the term logξ(T )
with any other quantity one diverging in T .
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relies on exactly K (this, we recall, being the number of change points) separate applications
of the universal singular value thresholding procedure of Chatterjee (2015). Furthermore, we
show that the localization rate afforded by the LR algorithm, given in (11), is in fact nearly
minimax rate-optimal, aside for the log2(T ) term. Interestingly, the expression of the rate
(11) is essentially identical to the optimal localization rate for covariance and mean change
point estimation, adjusted for the differences in the model settings (e.g. Wang et al., 2017).
More discussions on the gap between the scalings (9) and (10), and on the comparisons with
Wang et al. (2017) are provided later in the paper.
• We apply the LR algorithm to the problem of change point detection for sequence of networks

from stochastic block models and derive optimal localization rates. For networks without self-
loops – a common feature of network models – a technical complication arises in treating the
expected adjacency matrix from a stochastic model as a low-rank matrix. When the network
has no self-loops, the diagonal entries of the expected adjacency matrix are set to be zero,
which in general would prevent the low-rank assumption. In fact, this complication is often
ignored in the existing literature. In this case, we show that with a very mild additional
assumption, we are still able to recover the nearly optimal localization rate (11). In our
analysis we borrow tools and ideas from several areas, including change point detection,
network analysis and graphon estimation.

The rest of this paper is organized as follows. Section 1.3 summarize some of the related literature.
In Section 2, we first identify the scalings for which consistent localization is impossible and then
present the NBS change point estimator, which we show to be consistent under almost any scaling
outside this impossibility regime. In Section 3 we develop the more sophisticated algorithm LR,
which we then show to be almost minimax rate-optimal under an additional low-rank assumption.
We further demonstrate in Section 3.2 how our procedure is applicable to the dynamic stochastic
block model. Section 4 presents few illustrative simulations that verify the effectiveness of our
procedures. Finally, we conclude with more discussions including potential future work directions
in Section 5. The proofs of our results are presented in the the appendix and supplementary material.

1.3. Related work. Dynamic network is a topical area which is intensely studied across different
disciplines. The relevant papers listed in this section are by no means exhaustive. Readers may refer
to Carrington et al. (2005), Goldenberg et al. (2010), Boccaletti et al. (2014), Kolaczyk (2017) for
more comprehensive reviews.

In terms of the invariant quantities, most of the existing work focus on a fixed set of nodes
across time, but there are also exceptions. For instance, Barabási and Albert (1999) allowed for
time-varying nodes and edges, Crane (2015) assumed infinite population at every time point and
allowed for random observations at different time points, to name but a few. In terms of the network
models imposed for every time point, Snijders (2002) explored dynamic exponential random graph
models, Tang et al. (2013) studied a dynamic version of random dot product models, Ho et al.
(2011) extended the mixed membership models to a dynamic one, Xu and Zheng (2009), Sewell
and Chen (2015) among others considered dynamic latent space models, and dynamic stochastic
block models have also been extensively studied.

Among the work on dynamic stochastic block models, Xu (2015) proposed a stochastic block
transition model using a hidden Markov-type approach; Xu and Hero (2014) proposed to track
dynamic stochastic block models using Gaussian approximation and an extended Kalman filter
algorithm; Matias and Miele (2017) integrated a Markov chain determined group labels evolving
process; Pensky and Zhang (2019) exploited kernel-based smoothing techniques dealing with the
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evolving block structures; Bhattacharyya and Chatterjee (2017) focused on time-varying stochastic
block model and variants thereof with time-independent community labels, applied spectral clus-
tering on an averaged version of adjacency matrices, and achieved consistent community detection.
Bhattacharjee et al. (2018) dealt with a change point detection problem in a one-change-point
stochastic block model sequences and focused on recovering underlying models, which resulted in
a cost of sub-optimal change point detection. Wang et al. (2014) used two types of scan statistics
investigating change point detection on time-varying stochastic block model sequences, emphasiz-
ing testing connectivity matrices changes. Cribben and Yu (2017) proposed an eigen-space based
statistics testing the community structures changes in stochastic block model sequences. Liu et al.
(2018) proposed a loss function based on the eigen-space to track the changes of the community
structures in stochastic block model sequences. Both Cribben and Yu (2017) and Liu et al. (2018)
have roots in subspace tracking in signal processing, but both lack theoretical justifications. Chu
and Chen (2017) proposed a test statistics for general data type including network sequences, and
their method focuses on the testing perspective. Zhao et al. (2019) provided a two-step algorithm,
which first estimates the networks and then uses a moving window to detect change points. The
results thereof are consistent yet optimal. Another consistent yet optimal result on network change
point detection problems is derived in Chapter 5 in Mukherjee (2018).

1.4. Notation. For any A ∈ Rn×n, let Aij be the (i, j)th entry of A, Ai∗ and A∗j the ith row
and jth column of A. Let κi(A) be the ith eigenvalue of A with ordering |κ1(A)| ≥ |κ2(A)| ≥
. . . ≥ |κn(A)|, and ‖A‖op = |κ1(A)| be the operator norm of A. Let ‖A‖∞ = max1≤i,j≤n |Aij | be
the entrywise maximum norm. In addition, for any B ∈ Rn×n, let (A,B) =

∑
1≤i,j≤nAijBij be

the inner product of A and B in the matrix space, and ‖A‖F =
√

(A,A) be the Frobenius norm
of A. For any vector v ∈ Rp, let vi be the ith entry of v, ‖v‖ and ‖v‖∞ be the `2- and entrywise
maximum norms of v, respectively. For any set S, let Sc be its complement.

For any positive functions of n, namely f(n) and g(n), denote f(n) . g(n), if there exist constants
C > 0 and n0 such that f(n) ≤ Cg(n) for any n ≥ n0; denote f(n) & g(n), if g(n) . f(n); and
denote f(n) � g(n), if f(n) . g(n) and f(n) & g(n).

We now recall the definition of cumulative sum (CUSUM) statistic (Page, 1954).

Definition 3 (CUSUM statistics). For a collection of any type of data {X(t)}Tt=1, any pair
of time points (s, e) ⊂ {0, . . . , T} with s < e − 1, and any time point t = s + 1, . . . , e − 1, let the
CUSUM statistics be

X̃s,e(t) =

√
e− t

(e− s)(t− s)

t∑
i=s+1

Xi −

√
t− s

(e− s)(e− t)

e∑
i=t+1

Xi.

Since the CUSUM statistic is linear in its arguments, we have that, for any 0 ≤ s < t < e ≤ T ,

E(Ãs,e(t)) = Θ̃s,e(t).

2. Consistent localization. In this section we study the conditions under which consistent
estimation of the change point locations for the model described in Assumption 1 is feasible. Specif-
ically, we derive a phase transition in the space of the model parameters that separates parameter
scalings for which there exists some algorithm with a vanishing localization rate from the ones for
which no estimator is consistent. To be precise, when we say that consistent localization is impos-
sible for a given scaling, we mean it in a minimax sense that there exists some change point model
satisfying Assumption 1 for which no estimator of the change points is consistent.
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2.1. The impossibility regime. Below we establish an information-theoretic lower bound, which
demonstrates that, if

(12) ρκ2
0 .

log2(T )

n∆
,

then no consistent estimator of the change points exists. The proof constructs two sequences of
mixtures of stochastic block models with two communities of all possible sizes that cannot be
reliably discriminated under the above scaling, and then employs the convex version of Le Cam’s
Lemma (see, e.g. Yu, 1997) to conclude that any change point estimator must have a localization
rate bounded away from zero. As a by-product of our lower bound construction, we also see that
imposing additional structural assumptions on the edge probabilities (such as that of a stochastic
block model with a bounded number of communities and therefore low rank) does not necessarily
lead to a consistent estimator under the scaling in (12). The details are given in Section S.1.

Lemma 1. Let {A(t)}Tt=1 be a sequence of independent inhomogeneous Bernoulli networks sat-
isfying Assumption 1 with K = 2 (i.e. there exist two and only two change points). Let P Tκ0,∆,n,ρ

denote the corresponding joint distribution. Consider the class of distributions

P =

{
P Tκ0,∆,n,ρ : ∆ = min

{⌊
4ζ log(T )

nρκ2
0

⌋
, bT/4c

}
, ρ ≤ 1/2, κ0 ≤ 1, 0 < ζ < 1/2

}
.

Then there exists a T (ζ), which depends on ζ, such that for all T ≥ T (ζ),

inf
η̂

sup
P∈P

EP (H(η̂, η(P ))) ≥ ∆/2,

where the infimum is over all estimators η̂ = {η̂k}K̂k=1 of the change point locations, η(P ) is the set
of the change points of P ∈ P and H(·, ·) denotes the Hausdorff distance.

2.2. Network Binary Segmentation. In our next result, we show that parameter scalings of the
form given in (12) are essentially the only ones for which consistent change point estimation is
infeasible, thus proving the existence of a phase transition in the space of parameters. In particular,
we will derive an algorithm (see Algorithm 1 below) that will return a consistent estimator provided
the following signal-to-noise condition is met.

Assumption 2. For a constant Cα > 0 and any ξ > 0, we have that

(13) κ0
√
ρ ≥ Cα

√
1

n∆
log1+ξ(T ).

Recalling (12), our results cover all parameter scalings, aside from a logξ(T ) term, where ξ > 0
can be arbitrarily small. When the size of the networks n diverges with T , arguably a very natural
asymptotic regime, one can take ξ in Assumption 2 to be zero. In fact, in this case the signal-to-

noise ratio condition (13) can be weakened to be of the form κ0
√
ρ ≥ Cα

√
1
n∆ log(T )eT , for any

sequence of positive numbers {eT }T=1,2,... diverging to infinity arbitrarily slowly.
To appreciate how Assumption 2 is compatible with a broad range of network change point

scenarios and is therefore fairly mild, we highlight the following two extreme cases.
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• Assume a non-sparse setting (i.e. ρ � 1). If the minimal spacing ∆ is of order log2+2ξ(T ),
then Assumption 2 demands that nκ0 � n1/2. This means that the edge probabilities need to
change for at least

√
n order many nodes.

• On the other hand, in the sparse setting where ρ is chosen to be log(n)/n as in (2), if ∆ � T
(so that the number of change points is bounded), then Assumption 2 only requires κ0 to be
at least of the order

log1+ξ(T )√
T log(n)

.

Thus κ0 is allowed to vanish with T , even for fixed n.

We now introduce the procedure Network Binary Segmentation (NBS), detailed in Algorithm 1,
for consistent estimation under nearly the worst possible scaling of Assumption 2.

Algorithm 1 Network Binary Segmentation. NBS((s, e), {(αm, βm)}Mm=1, τ1)

INPUT: Two independent samples {A(t)}Tt=1, {B(t)}Tt=1 ∈ Rn×n, τ1.
for m = 1, . . . ,M do

[s′m, e
′
m]← [s, e] ∩ [αm, βm]

(sm, em)← [s′m + 64−1(e′m − s′m), e′m − 64−1(e′m − s′m)]
if em − sm ≥ 1 then

bm ← arg maxt=sm+1,...,em−1(Ãsm,em(t), B̃sm,em(t))

am ← (Ãsm,em(bm), B̃sm,em(bm))
else

am ← −1
end if

end for
m∗ ← arg maxm=1,...,M am
if am∗ > τ1 then

add bm∗ to the set of estimated change points
NBS((s, bm∗), {(αm, βm)}Mm=1, τ1)
NBS((bm∗ + 1, e), {(αm, βm)}Mm=1, τ1)

end if
OUTPUT: The set of estimated change points.

The NBS is a novel algorithm that builds on the traditional machinery developed for the univari-
ate mean change point detection problem. The cornerstones of the NBS are the CUSUM statistics
Ãsm,em(t) and B̃sm,em(t) (see Definition 1). However, instead of searching for the maximum CUSUM
statistics directly, as it is traditionally done in the binary segmentation and its more modern vari-
ants (see, e.g. Vostrikova, 1981; Fryzlewicz, 2014; Wang and Samworth, 2018), the NBS maximizes
the inner product of two CUSUM statistics based on two independent samples. This is due to the
fact that each entry of the adjacency matrix is a Bernoulli random variable, and for any Bernoulli
random variable X, it holds that X2 = X. As a result, ‖Ãsm,em(t)‖2F cannot serve as a good esti-

mator of ‖Θ̃sm,em(t)‖2F. In practice, these two independent samples can be acquired by splitting the
data into, say, odd and even time points. In addition, every random interval (s′m, e

′
m) provided to

the algorithm is shrunk by a constant fraction of its original length. This is done in order to avoid
false positives around newly-found change points, a correction usually performed in WBS-style al-
gorithm: see, e.g., the parameter δ used in Algorithm 3 in Wang et al. (2017) and the parameter β
used in Algorithm 4 Wang and Samworth (2018). Note that in our paper, however, the amount of
shrinking does not depend on unknown quantities.

An interesting and possibly surprising feature of the NBS algorithm is that it merely relies on
network CUSUM statistics – weighted sample averages of adjacency matrices (see Definition 3) –
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and does not rely on any network or graphon estimation procedures, which are computationally
costly. Though the NBS is not estimating any network parameters at all, it is still able achieve
consistent network change point detection for a fairly large class of models in a fast fashion. In our
next result we show that the NBS yields in fact a consistent estimator the change points.

Theorem 1. Assume the model described in Assumption 1 and the condition of Assumption 2.
There exist absolute positive constants CR > 3/2, Cβ, c2 ∈ (0, 1), c, cT and C1 such that, letting
{(αm, βm)}Mm=1 ⊂ (0, T ) be a collection of random intervals whose end points are drawn indepen-
dently and uniformly from {1, . . . , T} and such that

(14) max
m=1,...,M

(βm − αm) ≤ CR∆,

and

(15) Cβρn log3/2(T ) < τ < c2κ
2
0n

2ρ2∆

guarantees that the collection of the estimated change points B = {η̂k}K̂k=1 returned by the NBS
procedure with input parameters (0, T ), {(αm, βm)}Mm=1 and τ will satisfy

P
{
K̂ = K; max

k=1,...,K
|ηk − η̂k| ≤ ε

}
≥ 1− exp

(
log

(
T

∆

)
−M ∆

4CRT

)
− (6T 3−cT + 2T 3−c),(16)

where

(17) ε = C1 log(T )

( √
∆

κ0nρ
+

√
log(T )

κ2
0nρ

)
.

The constants in the theorem statement and their hierarchy of dependencies can be explicitly
tracked in the proof; in particular, we require that the signal-to-noise ratio constant Cα in As-
sumption 2 to be sufficiently large. See the remark at the beginning of the proof of Theorem 1 in
Appendix A.

To see how Theorem 1 implies that the NBS is consistent according to Definition 2, we plug in
the inequalities

√
ρκ0 ≥

Cα log1+ξ(T )√
n∆

and ρ ≥ log(n)

n
,

stemming from Assumptions 2 and 1, respectively, into the bound (17) on the localization error to
get that

ε

∆
= C1 log(T )

( √
∆

κ0nρ
+

√
log(T )

κ2
0nρ

)
1

∆

≤ C1

(
1

Cα
√

log(n) logξ(T )
+

1

C2
α log1/2+2ξ(T )

)
→ 0,(18)

as T →∞ (with all the remaining parameters also possibly changing in accordance to any scaling
compatible with Assumption 2). The last expression also shows that, if n diverges as T grows
unbounded, the parameter ξ can be taken to be 0 in Assumption 2 and consistent localization is
still guaranteed. More interestingly, (18) continues to hold also when n � 1, so that consistent
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localization is possible even when the number of nodes remains bounded. Of course, this is in
striking contrast with the problem of consistent estimation of the edge probabilities – or, more
generally, of an underlying graphon – which requires n→∞.

We remark that, while Theorem 1 shows that the NBS algorithm is consistent, we make no
claim as to whether the localization rate is optimal. In the next section we will propose a two-step
algorithm for change point localization that is not only consistent but nearly minimax rate-optimal
under more favorable scalings on the parameters than the ones considered in Theorem 1.

We conclude this section with few technical remarks on the assumptions of Theorem 1. In order
for the NBS algorithm to be consistent, the threshold parameter τ needs to belong to an appropriate
range: see (15). Such choice essentially guarantees that τ is both large enough to avoid false positives
and small enough to never miss any true change points, both events occurring with high probability.
Next, the condition in (14) requires that each of the random intervals fed to the NBS algorithm is
not too large, compared to the minimal spacing parameter ∆. Without assuming (14), and using
the trivial bound CR ≤ T/∆, it can be shown that the NBS will achieve a larger localization error
of

ε = C1 log(T )

( √
∆

κ0nρ
+

√
log(T )

κ2
0nρ

)(
T

∆

)2

,

under the scaling

κ0
√
ρ ≥ Cα

√
1

n∆
log1+ξ(T )

√
T

∆
,

which is stronger than the one in Assumption 2. Assumption (14) about the length of the random
time intervals used as input to the algorithms is of somewhat technical nature, but it appears
necessary to yield the localization error in (17). Indeed, this condition, or analogous ones requiring
some knowledge of ∆, are commonly assumed in the literature for change point localization to derive
theoretical guarantees for WBS-style methods: see, e.g., Fryzlewicz (2014), Wang and Samworth
(2018), Wang et al. (2018b), Baranowski et al. (2019), Anastasiou and Fryzlewicz (2019) and
Eichinger et al. (2018). Finally, the parameter M , the number of random intervals used by the
procedure, affects the results through the probability lower bound in (16). In order to guarantee
that the probability tends to 1, one needs that

M &
T

∆
log

(
T

∆

)
.

3. Optimal localization. In the previous section we saw how the NBS algorithm can consis-
tently estimate the locations of the change points for the dynamic network model of Assumption 1
under nearly any scaling for which this task is feasible, albeit possibly not in an optimal manner.
In this section, we are to show that under stronger, but still fairly general, conditions on both the
model and the scaling, a two-step procedure that first applies the NBS and then refines the resulting
estimators of the locations of the change points, will achieve a minimax optimal localization rate.
The additional step beyond the NBS is named local refinement (LR) and is detailed in Algorithm 3.

The LR algorithm takes as input two identically distributed sequences of networks fulfilling
Assumption 1 (obtained for instance by sample splitting), along with a sequence {νk}Kk=1 of initial
change point estimates that are sufficiently close to the locations of the true change points, in way
made precise in (20) below. In particular, this preliminary estimates may be computed on the same
data. The procedure then inspects all the triplets of consecutive change point estimators one at a
time (with the time points 1 and T + 1 as two dummy change points, for notational consistency).

11



Algorithm 2 Universal Singular Value Thresholding. USVT(A, τ2, τ3)

INPUT: Symmetric matrix A ∈ Rn×n, τ2, τ3 > 0.
(κi(A), vi)← the ith eigen-pair of A, with |κ1(A)| ≥ · · · |κn(A)|
A′ ←

∑
i:|κi(A)|≥τ2 κi(A)viv

>
i

USVT(A, τ2, τ3)← (A′′ij) with

(A′′)ij ←

{
(A′)ij , if |(A′ij)| ≤ τ3
sign((A′)ij)τ3, if |(A′ij)| > τ3

OUTPUT: USVT(A, τ2, τ3).

Algorithm 3 Local Refinement

INPUT: {A(t)}Tt=1, {B(t)}Tt=1 ∈ Rn×n, τ2, τ3, {νk}Kk=1 ⊂ {1, . . . , T − 1}, ν0 = 1, νK+1 = T + 1.
for k = 1, . . . ,K do

[s, e]← [2−1(νk−1 + νk), 2−1(νk + νk+1)]

∆̃k ←
√

(e−νk)(νk−s)
e−s

Θ̂k ← USVT(B̃s,e(νk), τ2, τ3∆̃k)

bk ← argmaxs≤t≤e(Ã
s,e(t), Θ̃k)

end for
OUTPUT: {bk}Kk=1.

For each such triplet, the LR utilizes the universal singular value thresholding (USVT) algorithm
(Chatterjee, 2015) to construct a more accurate estimator of a local CUSUM matrix of the expected
adjacency matrix at the middle point estimator. This estimator is in turn used to probe nearby
locations in order to refine the original estimator of the location of the middle change point location.
This results in a provably more precise estimator of that location. From a computational standpoint,
Algorithm 3 is parallelizable in the sense that we can deal with each k ∈ {1, . . . ,K} separately.

The signal-to-noise ratio conditions under which the LR improves upon the NBS are stronger
than the ones that guarantee consistency of the latter, and are imposed in order to ensure that the
USVT procedure is effective (see, e.g. Xu, 2018). We formalize them next.

Assumption 3. Let {Θ(t)}Tt=1 be defined as in Assumption 1. For some 0 < r ≤ n,

max
k=1,...,K

rank (Θ(ηk)−Θ(ηk − 1)) ≤ r.

Furthermore, for a constant Cα > 0 and any ξ > 0,

(19) κ0
√
ρ ≥ Cα

log1+ξ(T )√
∆

√
r

n
.

The fixed quantity ξ > 0 in in the previous assumtion is required only for the case of r � n � 1
and can be set to zero in all other scenarios. The parameter r controlling the maximal rank of the
difference of consecutive expected adjacency matrices is, like all the other parameters, also allowed
to change with T . The first condition in Assumption 3 is about the model itself and requires that,
in addition to all the properties listed in Assumption 1, the difference between any two different
consecutive expected adjacency matrices is of low rank. Using the fact that, for any matrices
A,B ∈ Rn×n of rank r1 and r2 respectively, it holds that

rank(A−B) = min{r1 + r2, n},

12



we see that Assumption 3 indirectly constraints the ranks of {Θ(t)}Tt=1. In particular, if Θ(ηk)
and Θ(ηk−1) are the expected adjacency matrices of stochastic block models with M1 and M2

communities respectively, then rank (Θ(ηk)−Θ(ηk−1)) ≤ min{M1 +M2, n}.
Assumption 3 is compatible with a broad range of parameter scalings. Focusing on the rank

parameter, we highlight two extreme cases.

• When r � 1, the scaling (19) match the one in Assumption 2.
• On the other hand, if the change points are far from each others so that ∆ � T and again
κ0
√
ρ � n−1/2, then as long as r . T log−(2+2ξ)(T ), then Assumption 3 holds. This includes

the situation where T log−(2+2ξ)(T ) ≥ n, which essentially leaves the order of magnitude of r
unconstrained (though, of course, necessarily, r ≤ n.)

3.1. Upper and lower bounds on the localization error. The next theorem derives improved
localization rates for the LR procedure under and is the main result of this section.

Theorem 2. Assume the model described in Assumption 1 and the conditions of Assumption 3.
There exist absolute positive constants C, Cε, C2 and C3 such that if {νk}Kk=1 ⊂ (2, . . . , T ) is an
increasing sequence satisfying

(20) max
k=1,...,K

|νk − ηk| < ∆/6,

then the collection of the estimated change points B = {η̂k}Kk=1 returned by the LR procedure with
input parameters (0, T ), {νk}Kk=1,

τ2 = (3/4)(C
√
nρ+ Cε log(T )) and τ3 = ρ,

is such that

P
{

max
k=1,...,K

|ηk − η̂k| ≤ ε
}
≥ 1− 2T 3−3Cε/4 − 4T 3−3C2

3/8,

where

(21) ε = C2
log2(T )

κ2
0n

2ρ
.

The proof of Theorem 2 is given in Appendix A. The values and dependence among the constants
can be tracked throughout and, just like with Theorem 1, demand that the constant Cα in the
signal-to-noise ratio condition (19) is chosen large enough.

It is immediate to see that Theorem 2 offers stronger consistency guarantees than Theorem 1.
Indeed, using Assumption 3 along with the assumption that ρ ≥ log(n)

n , we see that the localization
rate implied by (21) is

(22)
ε

∆
≤ 1

C2
α log2ξ(T )r log n

→ 0,

as T → ∞. This upper bound on the localization error is of smaller order than the one in (18)
afforded by Theorem 1. Furthermore, as remarked above, change point consistency is still guaranteed
even as n � 1. On the other hand, if n is diverging in T , we may set ξ = 0 in Assumption 3.

To gain a further appreciation for the type of improvement Theorem 2 delivers over Theorem 1,
assume that r � n. Then, according to Theorem 1, in order for the NSB procedure to yield the
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same localization error as in Theorem 2 it appears necessary to strengthen the signal-to-noise ratio
requirement to be

κ0

√
nρ∆ &

√
n log1+ξ(T )

instead of just κ0
√
nρ∆ & log1+ξ(T ).

In addition to Assumption 3, Theorem 2 further requires that the sequence {νk}Kk=1 of prelim-
inary estimates used as an input to the procedure to be within a constant fraction of ∆ from
the true change points; see (20). Notice that this assumption may be satisfied even if the ratio
maxk=1,...,K |νk − ηk| is not a vanishing fraction of ∆, thus failing to fulfill Definition 2. Of course,
the change point estimators obtained using the NBS algorithm satisfy (20) with high probability
and for all large enough T , as demonstrated above in Theorem 1, and therefore can be used as
inputs to the LR algorithm.

Finally, the choices of threshold parameters τ2 and τ3 stem from the analysis of the USVT
procedure for network estimation in Xu (2018). In particular, the parameter τ2 serves as a cutoff
for the upper bound of the operator norm difference between the sample and population version of
certain matrices of interest.

In the second result of the section we prove that the localization rate demonstrated in Theorem 2
is nearly minimax optimal, save for a term poly-logarithmic in T .

Lemma 2. Let {A(t)}Tt=1 be a sequence of independent inhomogeneous Bernoulli networks sat-
isfying Assumption 1 with K = 1 (i.e. there exists one and only one change point). Let P Tκ0,∆,n,ρ

denote the corresponding joint distribution. Consider the class of distributions

Q =
{
P Tκ0,∆,n,ρ : κ0 ≤ 1/2, ρ ≤ 1/2

}
.

Then,
inf
η̂

sup
P∈Q

EP (|η̂ − η|) ≥ max{cκ−2
0 n−2ρ−1, 1/2}.

The family of distributionsQ allows for a wide range of changes. Indeed, the constraints that κ0 ≤
1/2 is fairly general and, in particular, include the challenging scenario where all edge probabilities
change at the change points. The constant 1/2 is arbitrary and can be replaced by any constant
between 0 and 1.

3.2. Sparse stochastic block model. In Theorem 2 we show that, for network models with rank
constraints, combining the NBS and the LR algorithms yields nearly optimal localization under the
low rank assumption and the scaling described in Assumption 3. Low rank network models include
a wide range of common network models, e.g. the Erdős–Rényi random graph model (Erdős and
Rényi, 1959), stochastic block models (e.g. Holland et al., 1983) and random dot product models
(Young and Scheinerman, 2007). However, in these models, it is often also assumed that no self-
loops are allowed, i.e. the diagonal entries of the adjacency matrices are always 0. As a result,
the low rank assumption no longer holds. In this section we show that, for the case of stochastic
block models, this issue can be overcome and that the guarantees of Theorem 2 hold also in this
case. For completeness, we include the definition of a sparse stochastic block model and some of its
properties.

Definition 4 (Sparse Stochastic Block Model). A network is from a sparse stochastic block
model with size n, sparsity parameter ρ, membership matrix Z ∈ {0, 1}n×s and connectivity matrix
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Q ∈ [0, 1]r×r, if the expected adjacency matrix satisfies

E(A) = ρZQZ> − diag
(
ρZQZ>

)
.

Each of the rows of the membership matrix Z contains only one non-zero entry; moreover, Z is a
column full rank matrix, i.e. rank(Z) = r. In particular, rank(ZQZ>) ≤ r, with identity holding
when Q is a full rank matrix.

In order to accommodate for the lack of self-loops we rely on a new set of conditions, described
next.

Assumption 4. Let {A(t)}Tt=1 ∈ Rn×n be a sequence of independent adjacency matrices satis-
fying the dynamic network model of Assumption 1. Assume that, for all k = 1, . . . ,K,

Θ(ηk)−Θ(ηk − 1) = Λ(k)− diag(Λ(k)),

where Λ(k) = ZkQkZ
>
k , Zk is a membership matrix such that rank(Zk) ≤ r, and Qk is a connectivity

matrix. Furthermore, for a constant Cα > 0 and any ξ > 0,

κ0
√
ρ ≥ Cα

log1+ξ(T )√
∆

√
r

n
.

Assumption 4 differs from Assumption 3 only in the how it constraints the difference of the
expected adjacency matrices. Indeed, under Assumption 4, Θ(ηk) − Θ(ηk − 1) is typically not a
low rank matrix, and therefore Assumption 3 would not hold. Aside from this, the signal-to-noise
condition is identical in the two sets of assumptions.

Now, unlike in the problem of recovering the community assignment in a stochastic block model,
where zeroing out the diagonal entries of the low rank matrix corresponding to the expected ad-
jacency matrix is essentially inconsequential, in the localization problem this is not the case. To
see this, observe that if the time interval (s + 1, . . . , e) contains one change point ηk, then for
t ∈ (s+ 1, . . . , e− 1),

Θ̃s,e(t) =


√

t−s
(e−s)(e−t)(e− ηk)(Λ(k)− diag(Λ(k))), if t ≤ ηk,√

e−t
(e−s)(t−s)(ηk − s)(Λ(k)− diag(Λ(k))), if t ≥ ηk.

In particular, at t = ηk,∥∥∥∥∥
√

(t− ηk)(e− ηk)
(e− s)

diag(Λ(k))

∥∥∥∥∥
F

. ρ
√
n
√

min{e− ηk, ηk − s},

a quantity that depends on the spacing between change points and may potentially be quite large.
In order to handle such issue we make the following assumption.

Assumption 5. For each k = 0, . . . ,K, set

Θ(ηk) = Γ(k)− diag(Γ(k)),

where Γ(k) = Z ′kQ
′
kZ
′>
k , Z ′k is a membership matrix and Q′k is a connectivity matrix. For an absolute

constant CΓ > 0, it holds that
‖Γ(k)‖F ≥ CΓ‖diag(Γ(k))‖F.
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Since ‖Γ(k)‖F is of order no larger than ρn and ‖diag(Γ(k))‖F is of order no larger than ρ
√
n,

overall Assumption 5 is a mild condition. Of course, if Γ(k) is a diagonally-dominant matrix, then it
is unclear how to estimate Γ(k) because in the no-self-loop networks, the diagonals of the adjacency
matrices are always 0.

Theorem 3. In Theorem 2, if Assumption 3 is replaced by Assumption 4 and Assumption 5,
then the same conclusion still holds.

The proof of Theorem 3 can be found in Appendix A. The main difference between this proof
and the proof of Theorem 2 is the treatment on the diagonal entries under Assumption 5.

4. Illustrative Simulations. In this section we will present the results of various illustrative
simulations intended to corroborate the theory developed in the paper and to demonstrate the
type of improvements the LR delivers over the NBS. As for this, we will use well-tuned tuning
parameters, which will be reported.

We point out that we could not find a methodology for the problem of multiple change point
localization in network models with which to directly compare the NBS and LR. We have looked
into existing methods for multiple change point localization that have been proposed for change
point localization in settings different than dynamic network models, such as the ones put forward
in Keshavarz et al. (2018), Cho (2015), Cho and Fryzlewicz (2015) and Wang and Samworth (2018),
among others. However, none of these procedures could be successfully deployed in the simulation
settings described below. For this reason, we do not report the results of these comparison.

We consider the following three simulation settings. All settings have equally-spaced change
points, therefore the total number of time points T = (K + 1)∆.
Setting (i). We set ∆ = 60, 80, 120, 200, K = 2, n = 150 and ρ = 0.02. Each network is gener-
ated from a balanced 3-community stochastic block model. At the change points, the connectivity
matrices are

Q1 = ρ

 0.6 1 0.6
1 0.6 0.5

0.6 0.5 0.6

 , Q2 = ρ

 0.6 0.5 0.6
0.5 0.6 1
0.6 1 0.6

 and Q3 = Q1,

respectively.

Setting (ii). We set ∆ = 60, 80, 120, 200, K = 2, n = 150, ρ = 0.015 and the connectivity matrix
be

Q = ρ

 0.25 0.5 0.25
0.5 1 0.5
0.25 0.5 0.25

 .

Each network is generated from a balanced 3-community stochastic block model. At the change
points, membership are reshuffled randomly.

Setting (iii). We set ∆ = 80, K = 2, n = 150, 180, 210, 240, ρ = 0.01. Each network is gener-
ated from a balanced 3-community stochastic block model. At the change points, the connectivity
matrices are

Q1 = ρ

 0.9 0.8 0.3
0.8 0.3 0.3
0.3 0.3 0.3

 , Q2 = ρ

 0.3 0.3 0.7
0.3 0.6 0.3
0.7 0.3 0.3

 and Q3 = ρ

 0.3 0.3 0.3
0.3 0.3 0.6
0.3 0.6 0.1

 ,

16



respectively.
For each of the above settings we simulated a dynamic network realization and applied both

the NBS and LR 200 times. In fact, we have applied a simplified version of the NBS algorithm
based on the BS procedure (see, e.g. Vostrikova, 1981) instead of WBS. Since the number of change
points is small, it can be shown that the guarantees of Theorem 3 hold true even for this simpler,
computationally less demanding algorithm2.

To evaluate the performance of the algorithms, for each simulation we recorded

• d(Ŝ, S)/T , the Hausdorff distance between the set of change point estimators and the set of
the true change points, normalized by T ,
• |K̂−K|, the absolute difference between the numbers of the change point estimators and the

true change points,
• and Prop, the proportion of simulations (out of 200) for which K̂ = K.

Table 1 presents the results in the form of mean(standard error). The columns labeled by sub.
d(Ŝ, S)/T displays the results only for the simulations in which K̂ = K. All the numerical analysis
were conducted on machines with CPU Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz.

Since the LR is a local refinement to the NBS, the columns corresponding to the LR algorithm
report, by construction, the same K̂ and therefore the same correct proportion. Due to (20), which
requires the LR to be deployed only as a refinement of an estimator that returns the correct
number of change points, in order to show the improvement afforded by the LR we only considered
simulations in which the NBS outputs the correct number of change points.

d(Ŝ, S)/T |K̂ −K| Prop sub. d(Ŝ, S)/T
NBS LR NBS LR

Setting (i)

T = 180 0.164(0.010) 0.130(0.011) 0.955(0.062) 0.400 0.043(0.005) 0.008(0.004)
T = 240 0.113(0.009) 0.078(0.009) 0.820(0.063) 0.485 0.023(0.002) 0.000(0.000)
T = 360 0.049(0.006) 0.027(0.006) 0.450(0.051) 0.675 0.010(0.001) 0.000(0.000)
T = 600 0.019(0.003) 0.003(0.001) 0.265(0.036) 0.770 0.004(0.000) 0.000(0.000)

Setting (ii)

T = 180 0.033(0.003) 0.004(0.002) 0.195(0.033) 0.830 0.021(0.002) 0.000(0.000)
T = 240 0.013(0.002) 0.001(0.000) 0.070(0.018) 0.930 0.009(0.001) 0.000(0.000)
T = 360 0.006(0.001) 0.001(0.000) 0.070(0.018) 0.930 0.003(0.000) 0.000(0.000)
T = 600 0.002(0.000) 0.000(0.000) 0.055(0.016) 0.945 0.001(0.000) 0.000(0.000)

Setting (iii)

n = 150 0.115(0.010) 0.095(0.010) 0.415(0.038) 0.610 0.029(0.004) 0.014(0.005)
n = 180 0.027(0.003) 0.008(0.003) 0.250(0.034) 0.775 0.012(0.001) 0.000(0.000)
n = 210 0.013(0.002) 0.000(0.000) 0.165(0.027) 0.840 0.004(0.001) 0.000(0.000)
n = 240 0.013(0.002) 0.000(0.000) 0.165(0.026) 0.835 0.002(0.000) 0.000(0.000)

Table 1
Simulation results for both the NBS and LR.

As for tuning parameters, recall that we have one tuning parameter τ1 for the NBS, and two
tuning parameters, τ2 and τ3, for the LR. The choices of tuning parameters in these three different
settings are given in Table 2, where Inf is equivalent to no entrywise truncation in the USTV
step, and M is the number of communities in the stochastic block model. In selecting the tuning

2In general, however, when the number of change points increases with T , BS is sub-optimal compared to WBS.
Note that the default choices in R packages based on Cho (2015), Cho and Fryzlewicz (2015) and Wang and Samworth
(2018) are all based on BS instead of WBS.
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parameters we have used the true number of communities M ; of course, in practice, this quantity
needs to be estimated from the data (e.g. Chen and Lei, 2018). Finally we estimate ρ using ρ̂,
defined to be the 95% quantile of{

T−1
T∑
t=1

Aij(t), 1 ≤ i, j ≤ n

}
.

Setting τ1 τ2 τ3

(i) nρ̂ log2(T )/21 Mnρ̂ ρ̂
(ii) nρ̂ log2(T )/20 Mnρ̂ Inf
(iii) 3nρ̂/4 Mnρ̂ Inf

Table 2
Tuning parameter choices.

It can be seen from Table 1 that, with these choices of the tuning parameters, the performance of
both the NBS and LR improves as T , n and ρ increase. In addition, the LR significantly outperforms
the NBS.

For all the settings described above, we have also conducted additional simulations with an
omnibus default choice for the tuning parameter which does not require knowledge of M : τ1 =
nρ̂ log2(T )/20. The results are shown in Table 3. Due to the default choice of the tuning parameter,
it is not easy to show how the performance changes with different model parameters. Therefore we
only collect the NBS results to demonstrate that we can achieve good performances in terms of
|K̂ −K|, d(Ŝ, S)/T and Prop, with easily chosen tuning parameter.

d(Ŝ, S)/T |K̂ −K| Prop Time(second/repetition)

Setting (i)

T = 180 0.166(0.010) 1.025(0.062) 0.360 1.607(0.030)
T = 240 0.121(0.010) 0.760(0.061) 0.520 3.104(0.055)
T = 360 0.042(0.006) 0.285(0.044) 0.805 7.126(0.060)
T = 600 0.011(0.002) 0.125(0.023) 0.875 20.837(0.149)

Setting (ii)

T = 180 0.332(0.000) 0.970(0.012) 0.030 1.061(0009)
T = 240 0.444(0.000) 0.955(0.015) 0.045 2.032(0.028)
T = 360 0.667(0.000) 0.985(0.009) 0.015 3.950(0.023)
T = 600 1.111(0.000) 1.000(0.000) 0.000 10.994(0.022)

Setting (iii)

n = 150 0.154(0.013) 0.415(0.038) 0.610 1.861(0.004)
n = 180 0.050(0.006) 0.255(0.035) 0.770 2.683(0.010)
n = 210 0.015(0.002) 0.195(0.032) 0.825 4.936(0.021)
n = 240 0.009(0.001) 0.210(0.033) 0.815 8.785(0.039)

Table 3
Simulation results for the NBS with a default tuning parameter.

It can be seen in Table 3 that with this default choice of tuning parameter, the NBS is still
producing good results.

5. Discussion. We have studied the change point localization problem in sparse dynamic
network settings. We have proposed two computationally-efficient algorithms based on CUSUM
statistics: Network Binary Segmentation (NBS) and Local Refinement (LR). The NBS is able to
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localize multiple change points consistently under virtually all parameter scalings for which this
task is feasible. The LR guarantees sharper localization errors under slightly stronger scalings and
is nearly minimax rate-optimal under those scalings. Our results are applicable to a wide class
of dynamic network models and, in particular to the ones assuming a sequence of time-varying
stochastic block models.

While we are able to demonstrate a nearly optimal localization procedure only under a certain
low rank assumption (see Assumption 3), it remains an open problem to design a computationally
efficient algorithm that is provably optimal across all scalings for which consistent localization is
possible, described in Assumption 2.

The assumptions used in this paper can be possibly generalized in a few directions. If one wishes
to relax the independence across time and/or within networks, or replace the Bernoulli assumption
with other distributional assumptions (e.g. sub-Gaussian), then it will be necessary to change in
the proofs of the concentration inequalities and the corresponding large probability events. This in
turn may lead to different scaling requirements for consistency and optimality, as well as possibly
different localization error bounds.

It is worth noting that, assuming a stochastic block model at each time point, replacing the
USVT algorithm used in the LR procedure with an NP-hard graphon-based algorithm (see, e.g.
Pensky, 2016; Gao et al., 2015) will produce the nearly optimal rate (11) under the scaling

(23) ρκ2
0 &

log2+2ξ(T )

∆

(
1 + r2/n

)
n

,

which is weaker than the scaling we assume for our polynomial time algorithms (NBS and LR),
namely (10). Equations (9), (10) and (23) reveal that

(i) in the very sparse regime, i.e. r .
√
n, there is no gap between the scaling (23) required by

NP-hard algorithms and the scaling (9);
(ii) in the moderately sparse regime, i.e.

√
n � r � n, then there is a gap between statistical and

computational limits;
(iii) in the very dense regime, i.e. r � n, (10) and (23) are the same, which means NP-hard

algorithms are not gaining over polynomial methods.

These observations is consistent with similar phenomena observed in other statistical problems, see
e.g. Zhang et al. (2012), Loh and Wainwright (2013), to name but a few.

To summarize, we have the following Table 4.

Rate Scaling Algorithm

ε/T = o(1) ρκ2
0 & log2+2ξ(T )

∆
1
n

Poly

ε/T = εopt
log2(T )
T

ρκ2
0 & log2+2ξ(T )

∆
r
n

Poly

ρκ2
0 & log2+2ξ(T )

∆

(
1+r2/n

)
n

NP

Table 4
Summary of our rates results.
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(doi: COMPLETED BY THE TYPESETTER; .pdf). We moved the appendices containing many of
the technical proofs and detailed discussions to the supplementary document (Wang et al., 2018a).
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APPENDIX A: PROOFS OF THEOREMS 1, 2 AND 3

For simplicity, we set

‖Θ(ηk)−Θ(ηk − 1)‖F = κk > 0, for any k = 1, . . . ,K.

Proof of Theorem 1. The value of the constants in statememt of the theorem can be tracked
in the proof. The hierarchy can be abstracted as follows: first, c and cT are chosen such that
(16) tends to 0 as T → ∞; then, Cβ can be chosen depending on c and cT ; the constant c2

therefore depends on Cβ and Cα; finally, a sufficiently large C1 > 0 is chosen and depends on all
the aforementioned constants and CR. In particular, increasing Cα would decrease the lower bound
of C1.

As the random intervals {(αm, βm)}Mm=1 are generated independently from the data, we will
assume throughout the proof that the eventM defined in (25) in Section S.5 holds. By Lemma S.24,

21



the probability of the complementary event is smaller than

exp

{
log

(
T

∆

)
− M∆

4CRT

}
,

which vanishes provided that
M &

(
T/∆

)
log
(
T/∆

)
.

For 0 ≤ s < t < e ≤ T , we consider the event

(24) A(s, t, e) =
{∣∣∣(Ãs,e(t), B̃s,e(t))− ‖Θ̃s,e(t)‖2F

∣∣∣ ≤ Cβ log(T )
(
‖Θ̃s,e(t)‖F + log1/2(T )ρn

)}
.

Due to Lemma S.6, it holds that P(A(s, t, e)c) ≤ 6T−cT + 2T−c for some c, cT > 3, and, by a union
bound argument,

P(A) = P

 ⋃
1≤s≤t≤e≤T

A(s, t, e)

 ≥ 1− (6T 3−cT + 2T 3−c).

All the analysis in the rest of this proof is conducted on the event A ∩M.

The general strategy of the proof is to utilize a standard induction-like argument that is com-
monly used in proving the consistency of change point estimators; see, e.g. Fryzlewicz (2014), Wang
and Samworth (2018) and Wang et al. (2017). Of course the specific details and technicalities of
this argument are new and challenging in our problem. In a nutshell, we will show that, on the
event A ∩M and assuming that the algorithm has not made any mistakes so far in the detection
and localization of change points, the procedure will also correctly identify any undetected change
point and estimate its location within an error of ε, if such an undetected change point exists.
Towards that end, it suffices to consider any generic time interval (s, e) ⊂ (0, T ) that satisfies

ηr−1 ≤ s ≤ ηr ≤ . . . ≤ ηr+q ≤ e ≤ ηr+q+1, q ≥ −1

and
max{min{ηr − s, s− ηr−1},min{ηr+q+1 − e, e− ηr+q}} ≤ ε,

where q = −1 indicates that there is no change point contained in (s, e) and ε is given in (17).
Observe that

ε = C1 log(T )

( √
∆

κ0nρ
+

log1/2(T )

κ2
0nρ

)
≤ C1

(
∆

Cα log1/2(n) logξ(T )
+

∆

C2
α log1/2+2ξ(T )

)
,(25)

where the inequality follows from Assumption 1 part 1. and Assumption 2. Therefore, using the
previous bound,

ε ≤ 2C1∆ max

{
1

Cα log1/2(n) logξ(T )
,

1

C2
α log1/2+2ξ(T )

}
≤ ∆/4,

by appropriately assuming Cα to be large enough. It, therefore, has to be the case that, for any
change point ηp ∈ (0, T ), either |ηp − s| ≤ ε or |ηp − s| ≥ ∆ − ε ≥ 3∆/4. This means that
min{|ηp− e|, |ηp− s|} ≤ ε indicates that ηp is a change point that has been previously detected and
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estimated within an error of magnitude ε in the previous induction step, even if ηp ∈ (s, e). Below
we will say that a change point ηp in [s, e] is undetected if min{ηp − s, ηp − e} ≥ 3∆/4.

In order to complete the induction step, it suffices to show that NBS((s, e), {(αm, βm)}Mm=1, τ)
(i) will not detect any new change point in (s, e) if all the change points in that interval have been
previously detected, and (ii) will find a point b in (s, e) such that |ηp− b| ≤ ε if there exists at least
one undetected change point in (s, e).

Step 1. Suppose that there does not exist any undetected change points within (s, e). Then, for
any (s′m, e

′
m) = (αm, βm) ∩ (s, e), one of the following situations must hold:

(a) there is no change point within (s′m, e
′
m);

(b) there exists only one change point ηr within (s′m, e
′
m) and min{ηr − s′m, e′m − ηr} ≤ ε or

(c) there exist two change points ηr, ηr+1 within (s′m, e
′
m) and max{ηr − s′m, e′m − ηr+1} ≤ ε.

We will analyze situation (c) only, as the other two cases are similar and in fact simpler. Observe
that if (c) holds, then by (25) and (15),

ε ≤ 64−1∆ ≤ 64−1(e′m − s′m),

where the second inequality is fulfilled by choosing a sufficiently large Cα. Therefore, the interval

[sm, em] = [s′m + 64−1(e′m − s′m), e′m − 64−1(e′m − s′m)],

contains no change points. To see this, notice that, on the eventA, Θ̃sm,em(t) = 0 for all t ∈ (sm, em),
as there is no change point in [sm, em]. Furthermore, by Lemma S.6, there exists a large enough
constant Cβ > 0 such that

max
sm<t<em

(Ãsm,em(t), B̃sm,em(t)) ≤ Cβρn log3/2(T ).

Thus, with the input parameter τ satisfying

τ ≥ Cβρn log3/2(T ),

we conclude that NBS((s, e), {(αm, βm)}Mm=1, τ) will always correctly reject the existence of unde-
tected change points.

Step 2. Suppose now that there exists a change point ηp ∈ (s, e) such that min{ηp − s, ηp − e} ≥
3∆/4. Let am, bm and m∗ be defined as in NBS((s, e), {(αm, βm)}Mm=1, τ). On the eventM, for any
ηp ∈ (s, e) such that min{ηp − s, e − ηp} ≥ 3∆/4, there exists an interval [s′m, e

′
m] containing only

one change point ηp such that

ηp − 3∆/4 ≤ s′m ≤ ηp −∆/2 and ηp + ∆/2 ≤ e′m ≤ ηp + 3∆/4.

Therefore, if [sm, em] = [s′m + 64−1(e′m − s′m), e′m − 64−1(e′m − s′m)], then one has that

(26) ηp −∆3/4 ≤ sm ≤ ηp −∆/8 and ηp + ∆/8 ≤ em ≤ ηp + ∆3/4.

Next, on the event A, it holds that

(Ãsm,em(ηp), B̃
sm,em(ηp)) ≥ ‖Θ̃sm,em(ηp)‖2F − Cβ log(T )(log1/2(T )ρn+ ‖Θ̃sm,em(ηp)‖F).
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It then follows from Lemma S.17 that

‖Θ̃sm,em(ηp)‖2F =
(ηp − sm)(em − ηp)

em − sm
κ2
p ≥ min{em − ηp, ηp − sm}κ2

p ≥ κ2
p∆/8,

where the last inequality stems from (26). Thus, due to Assumption 1 part1. and Assumption 2,
we conclude that

κ2
p∆/16 ≥ κ2

0n
2ρ2∆/16 ≥ C2

α/16nρ log2+2ξ(T ) > Cβnρ log3/2(T ),

and

(27) κp
√

∆/4 ≥ κ0nρ
√

∆/4 ≥ Cα/4
√
nρ log1+ξ(T ) ≥ Cα/4 log1/2(n) log1+ξ(T ) > 2Cβ log(T ),

provided that, for n, T ≥ 2,

(28) Cβ < min
{

8−1Cα logξ(T ) log1/2(n), C2
α/16 log1/2+2ξ(T )

}
.

We remark that as for the hierarchy of all the absolute constants involved, (28) is a constraint on
Cα. Thus, with a large enough Cα, there exists an absolute constant c2 > 0, such that

(Ãsm,em(ηp), B̃
sm,em(ηp)) ≥ c2κ

2
p∆.

By the definition of m∗, one then obtain the inequality

am∗ = (Ãsm∗,em∗(bm∗), B̃
sm∗,em∗(bm∗)) ≥ c2(κs,emax)2∆,(29)

where κs,emax = max{κk : min{ηp − s, e− ηp} ≥ 3∆/4}. Thus, with input parameter τ satisfying

τ < c2κ
2
0n

2ρ2∆,

The NBS can consistently detect the existence of undetected change points.

Step 3. Assume next that there exists at least one undetected change point ηp ∈ (s, e) such that
min{ηp − s, ηp − e} ≥ 3∆/4. Let am, bm and m∗ be defined as in Algorithm 1.

To complete the induction step and therefore the proof, it suffices to show that there exists a
(necessarily undetected) change point ηp ∈ [sm∗, em∗] such that

(30) min{ηp − s, ηp − e} ≥ 3∆/4

and that

(31) |bm∗ − ηp| ≤ ε.

In this step we will prove that (30) holds. Denote

[sm∗, em∗] = [s′m∗ + 64−1(e′m∗ − s′m∗), em∗ − 64−1(e′m∗ − s′m∗)].

Suppose for the sake of contradiction that

max
sm∗<t<em∗

‖Θ̃sm∗,em∗(t)‖2F < c2(κs,emax)2∆/2.(32)
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Then

max
sm∗<t<em∗

(Ãsm∗,em∗(t), B̃sm∗,em∗(t))

≤ max
sm∗<t<em∗

‖Θ̃sm∗,em∗(t)‖2F + Cβ log(T )(log1/2(T )ρn+ max
sm∗<t<em∗

‖Θ̃sm∗,em∗(t)‖F),

≤ c2(κs,emax)2∆/2 + Cβ log3/2(T )ρn+ Cβ log(T )
√
c2/2κ

s,e
max

√
∆

< c2(κs,emax)2∆/2 + c2(κs,emax)2∆/4 + c2(κs,emax)2∆/4 = c2(κs,emax)2∆,

where the first inequality is due to the definition of the event A, the second inequality follows from
(32) and the third inequality from Assumption 2, for an appropriately large Cα. This contradicts
(29). Therefore

max
sm∗<t<em∗

‖Θ̃sm∗,em∗(t)‖2F ≥ c2(κs,emax)2∆/2.(33)

Observe that if [sm∗, em∗] contains two change points, then em∗ − sm∗ ≥ ∆ and if [sm∗, em∗]
contains one change point η, then it has to be the case that min{η − sm∗, em∗ − η} ≥ c2∆/2, as
otherwise by Lemma S.17,

max
sm∗<t<em∗

‖Θ̃sm∗,em∗(t)‖2F = ‖Θ̃sm∗,em∗(η)‖2F ≤ c2(κs,emax)2∆/2,

which contradicts (33).
Therefore, since em∗ − sm∗ ≥ c2∆/2,the bound (25) implies that

(34) ε ≤ C1

(
∆

Cα log1/2(n) logξ(T )
+

∆

C2
α log1/2+2ξ(T )

)
≤ 64−1(e′m∗ − s′m∗),

where the second inequality follows if Cα is sufficiently large. By a similar argument as in Step
1, [sm∗, em∗] contains no detected change points. Observe that by (29), [sm∗, em∗] contains at least
one undetected change point.

Step 4. In the final step of the proof we will show that (31) occurs. To that end, we will apply
Lemma S.7. Let

(35) λ = max
sm∗<t<em∗

∣∣(Ãsm∗,em∗(t), B̃sm∗,em∗(t))− ‖Θ̃sm∗,em∗(t)‖2F
∣∣.

Observe that (33) and (27) imply that

c3 max
sm∗<t<em∗

‖Θ̃sm∗,em∗(t)‖2F/2 > Cβ log(T ) max
sm∗<t<em∗

‖Θ̃sm∗,em∗(t)‖F,

and
c3 max

sm∗<t<em∗
‖Θ̃sm∗,em∗(t)‖2F/2 > Cβ log3/2(T )ρn,

for a sufficiently large c3 > 0. Then, due to the definition of the event A,

(36) λ ≤ Cβ log(T )

(
log1/2(T )ρn+ max

sm∗<t<em∗
‖Θ̃sm∗,em∗(t)‖F

)
≤ c3 max

sm∗<t<em∗
‖Θ̃sm∗,em∗(t)‖2F.
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Since (5) follows from (29), (6) follows from (35), and (7) follows from (36), all the conditions in
Lemma S.7 hold. Lemma S.7 implies that there exists an undetected change point ηp within [s, e]
such that

|ηk − b| ≤
C3∆λ

‖Θ̃sm∗,em∗(ηk)‖2F
and ‖Θ̃sm∗,em∗(ηk)‖2F ≥ c′ max

sm∗≤t≤em∗
‖Θ̃sm∗,em∗(t)‖2F.

and this combining with (33) provides that

|ηk − b| ≤
2C3Cβ
c2(c′)2

log3/2(T )

κ2
0nρ

+

√
2C3Cβ
c′
√
c2

√
∆ log(T )

κ0nρ
≤ C1 log(T )

(
log1/2(T )

κ2
0nρ

+

√
∆

κ0nρ

)
,

where C1 >
2C3Cβ
c2(c′)2 +

√
2C3Cβ
c′
√
c2

and c′ < 2 log(2)Cβ/c3. This completes the induction.

Proof of Theorem 2. The dependence among the constants involved in Theorem 2 is as
follows. Firstly, C and Cε are chosen to guarantee that 2T 3−3Cε/4 → 0. Secondly, C3 is chosen
such that 4T 3−3C2

3/8 → 0. In particular, we may take C > 64 × 21/4e2, Cε > 12 and C3 > 2
√

2.
Finally, the leading constant C2 > 0 in the error bound depends on all the aforementioned constants
and the signal-to-noise ratio constant Cα in Assumption 3, which should be chosen to be sufficiently
large.

For convenience, we have broken down the proof in five steps, each of which is applied to every
k ∈ {1, . . . ,K}. Before proceeding to the details, we have an overview of all steps.

In Step 1, we are to show that each working interval (s, e) contains one and only one true
change point, and the two endpoints are well separated; Step 2 shows that the population CUSUM
statistics within each working interval has good performances; the reasoning of the choices of the
parameters in Algorithms 2 and 3, and the good performances of the sampler CUSUM statistics in
large probability events, will be detailed in Step 3; additional probability controls regarding data
splitting are demonstrated in Step 4; and finally to show the localization rates, we are to transfer
the network CUSUM statistics into a univariate case in Step 5.

Step 1. By (20), ηk ∈ [νk−1, νk+1] and

ηk − νk−1 ≥ ηk − ηk−1 − |ηk−1 − νk−1| ≥ ∆−∆/6 ≥ 5∆/6,

νk+1 − ηk ≥ ηk+1 − ηk − |ηk+1 − νk+1| ≥ ∆−∆/6 ≥ 5∆/6.

Similar calculations show also that

min{νk − νk−1, νk+1 − νk} ≥ 2∆/3.

Therefore, it holds that
1/2 min{νk − νk−1, νk+1 − νk} ≥ ∆/6.

As a result, the interval

[s, e] = [νk−1 + 1/2(νk − νk−1), νk+1 − 1/2(νk+1 − νk)]

contains only one change point ηk. We have that

νk − s = (1− 1/2)(νk − νk−1) ≥ (1− 1/2)2∆/3 = ∆/3,
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and e− νk ≥ ∆/3. Therefore, min{e− νk, νk − s} ≥ ∆/3.

Step 2. Let Λ(k) = Θ(ηk)−Θ(ηk−1). Then, by Lemma S.17,

‖Θ̃s,e(t)‖2F =

{
t−s

(e−s)(e−t)(e− ηk)2‖Λ(k)‖2F, t ≤ ηk,
e−t

(e−s)(t−s)(ηk − s)2‖Λ(k)‖2F, t ≥ ηk.

Next, we set

∆̃k =

√
(νk − s)(e− νk)

e− s
and, without loss of generality, we may assume that νk ≤ ηk. Since

∆̃k ≥ min{νk − s, e− νk}/2 ≥ ∆/6,

we obtain that

‖Θ̃s,e(νk)‖2F =
νk − s

(e− s)(e− νk)
(e− ηk)2‖Λ(k)‖2F = ∆̃2

k

(
e− ηk
e− νk

)2

κ2
k

= ∆̃2
k

(
1− ηk − νk

e− νk

)2

κ2
k ≥

∆

6

(
1− ∆/6

∆/3

)2

κ2
k ≥ ∆κ2

k/24.(37)

Step 3. We next apply Lemma S.8 by letting ε = Cε log(T ), with Cε > 12. Define the event

A =

{
sup

0≤s<t<e≤T
‖Ãs,e(t)− Θ̃s,e(t)‖op ≤ C

√
nρ+ Cε log(T )

}
,

where C > 64× 21/4e2. Due to Lemma S.8, we have P (A) ≥ 1− 2T 3−Cε/4.
We then apply Lemma S.11. Set τ2 = (3/4)(C

√
nρ+ Cε log(T )), and define

B =

{
sup

0≤s<t<e≤T
‖USVT(Ãs,e(t), τ2,∞)− Θ̃s,e(t)‖F ≤ 3

√
r
(
C
√
nρ+ Cε log(T )

)}
.

In order to apply Lemma S.11, let A = Ãs,e(t), B = Θ̃s,e(t) and τ = τ2. We then have P(B) ≥
1− 2T 3−Cε/4.

Let

Âs,e(νk) = USVT(Ãs,e(νk), τ2, τ3∆̃k).(38)

Since νk ≤ ηk, for any i, j = 1, . . . , n, it holds that

Θ̃s,e
ij (νk) =

√
νk − s

(e− s)(e− νk)
(e− ηk)Λij(k) ≤ ∆̃kρ

e− ηk
e− νk

≤ ∆̃kρ = ∆̃kτ3.

On the event B,

‖Âs,e(νk)− Θ̃s,e(νk)‖F ≤ ‖USVT(Ãs,e(νk), τ2,∞)− Θ̃s,e(νk)‖F ≤ 3
√
r
(
C
√
nρ+ Cε log(T )

)
.

By the triangle inequality and Assumption 3, we have that

‖Âs,e(νk)‖F ≥ ‖Θ̃s,e(νk)‖F − 3
√
r
(
C
√
nρ+ Cε log(T )

)
≥ c′1
√

∆κk,(39)
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where

c′1 ≤ 1/
√

24− 3C

Cα log1+ξ(2)
− 3Cε

Cα log1/2+ξ(2)
,

for any n, T ≥ 2. As a consequence,

2

(
Θ̃s,e(νk)

‖Θ̃s,e(νk)‖F
,

Âs,e(νk)

‖Âs,e(νk)‖F

)
= 2−

∥∥∥∥∥ Θ̃s,e(νk)

‖Θ̃s,e(νk)‖F
− Âs,e(νk)

‖Âs,e(νk)‖F

∥∥∥∥∥
2

F

≥2− 4

 ‖Θ̃s,e(νk)− Âs,e(νk)‖F
max

{
‖Θ̃s,e(νk)‖F, ‖Âs,e(νk)‖F

}
2

≥ 2−
9r
(
C
√
nρ+ Cε log(T )

)2
(c′1)2κ2

k∆
≥ 1,

where the second inequality follows from the definition of the event B and from (37), while the last
inequality follows from Assumption 3 with a sufficiently large Cα. Therefore,

(40) (Θ̃s,e(νk), Â
s,e(νk)/‖Âs,e(νk)‖F) ≥ ‖Θ̃s,e(νk)‖F/2 ≥ (4

√
6)−1
√

∆κk,

where in the last inequality we have used again (37).

Step 4. Since {B(t)}Tt=1 is independent of {A(t)}Tt=, the distribution of {B(t)}Tt=1 does not change
on the event B. Observe that, from (38),

‖Âs,e(νk)‖∞ ≤ ∆̃kτ3 = ∆̃kρ.

In combination with (39), the previous inequality implies that

(e− s)−1/2‖Âs,e(νk)‖∞/‖Âs,e(νk)‖F ≤
ρ

c′1
√

∆κk
.

Using this bound along with Lemma S.4, we obtain that, for any ε > 0,

P

(∣∣∣∣∣ 1√
e− s

e∑
t=s+1

(
Θ(t)−B(t), Âs,e(νk)/‖Âs,e(νk)‖F

)∣∣∣∣∣ ≥ ε
)
≤ 2 exp

(
−3/2ε2

3ρ+ ερ/(c′1κk
√

∆)

)
.

Setting ε = C
√
ρ log(T ), with C > 2

√
2, we finally obtain the probabilistic bound

P

(∣∣∣∣∣ 1√
e− s

e∑
t=s

(
Θ(t)−B(t), Âs,e(νk)/‖Âs,e(νk)‖F

)∣∣∣∣∣ ≥ C√ρ log(T )

)
≤ 2T−3C2/8.(41)

Similar arguments also show that

P
(∣∣∣(Θ̃s,e(t)− B̃s,e(t), Âs,e(νk)/‖Âs,e(νk)‖F

)∣∣∣ ≥ C√ρ log(T )
)
≤ 2T−3C2/8.(42)

Step 5. Consider the one dimensional time series y(t) = (B(t), Âs,e(νk)/‖Âs,e(νk)‖F). Conditional
on {A(t)}Tt=1, on the event B, it holds that

t ∈ [s, e] 7→ f(t) := E(y(t)) = (Θ(t), Âs,e(νk)/‖Âs,e(νk))‖F)

is a piecewise constant function with only one change point, namely ηk. Due to (40), it holds that

|f̃s,e(ηk)| = |(Θ̃s,e(ηk), Â
s,e(νk)/‖Âs,e(νk)‖F)| ≥ |(Θ̃s,e(νk), Â

s,e(νk)/‖Âs,e(νk)‖F)| ≥ (4
√

6)−1
√

∆κk,
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and, by (41) and (42),

P

(
sup
s≤t≤e

∣∣∣∣∣ 1√
e− s

e∑
t=s

(
x(t)− f(t)

)∣∣∣∣∣ ≥ C√ρ log(T )

)
≤ 2T−c

and

P
(

sup
s≤t≤e

∣∣∣x̃s,e(t)− f̃s,e(t)∣∣∣ ≥ C√ρ log(T )

)
≤ 2T−c,

where c = 3(C2/8 − 1) > 0. We then apply Lemma 12 in Wang et al. (2017) by setting λ =
C
√
ρ log(T ). It follows that bk = arg maxs<t<e |x̃s,e(t)| is an undetected change point such that, for

a large enough constant C2 > 0,

|bk − ηk| ≤ C2
ρ(log T )2

κ2
k

.

Proof of Theorem 3. In the proof of Theorem 2, note that arguments in Steps 1 and 2 still
hold under Assumptions in this theorem, and arguments in Steps 4 and 5 will still hold if the
conclusions in Step 3 still hold.

Let [s, e] be defined as that in the proof of Theorem 2. We apply Lemma S.8 by letting ε =
Cε log(T ), with Cε > 12. Define the event

A′ =

{
sup

0≤s<t<e≤T
‖Ãs,e(t)− Θ̃s,e(t)‖op ≤ C

√
nρ+ Cε log(T )

}
,

where C > 64× 21/4e2. Due to Lemma S.8, we have P (A′) ≥ 1− 2T 3−Cε/4.
For t ∈ {1, . . . , T}, define Γ(t) to be the block structure matrix satisfying

Γ(t)− diag(Γ(t)) = Θ(t);

in addition, for any s < t < e, define

Γ̃s,e(t) =

√
e− t

(e− s)(t− s)

t∑
i=s+1

Γ(i)−

√
t− s

(e− s)(e− t)

e∑
i=t+1

Γ(i).

By Lemma S.13, on the event A′, it holds that

B′ =
{

sup
0≤s<t<e≤T

‖USVT(Ãs,e(t), τ2,∞)− Γ̃s,e(t)‖2F

≤9r
(
C
√
nρ+ Cε log(T )

)2
+ 512‖diag(Γ̃s,e(νk))‖2F

}
.

Let
Âs,e(νk) = USVT(Ãs,e(νk), τ2, ∆̃kτ3).

Observe that since νk ≤ ηk and ‖Λ̃s,e(νk)‖∞ ≤ ∆̃kτ3, on the event B′ it holds that

‖Âs,e(νk)− Γ̃s,e(νk)‖F ≤ ‖USVT(Ãs,e(νk), τ2,∞)− Γ̃s,e(νk)‖F
≤3
√
r
(
C
√
nρ+ Cε log(T )

)
+ 16
√

2‖diag(Γ̃s,e(νk))‖F.
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Since [s, e] contains only one change point ηk, by Assumption 5 and Lemma S.17,

‖Âs,e(νk)‖F ≥ ‖Γ̃s,e(νk)‖F − 3
√
r
(
C
√
nρ+ Cε log(T )

)
− 16

√
2‖diag(Γ̃s,e(νk))‖F

≥ (1− 16
√

2/CΓ)‖Γ̃s,e(νk)‖F − 3
√
r
(
C
√
nρ+ Cε log(T )

)
≥ 1− 16

√
2/CΓ

1 + CΓ
‖Θ̃s,e(νk)‖F − 3

√
r
(
C
√
nρ+ Cε log(T )

)
≥ c′1
√

∆κk,(43)

with c′1 > 0 by choosing proper constants. Equation (43) follows from the fact that

‖Θ̃s,e(νk)‖F ≤ ‖Γ̃s,e(νk)‖F + ‖diag(Γ̃s,e(νk))‖F ≤ (1 + CΓ)‖Γ̃s,e(νk)‖F.

As a consequence,

2

(
Θ̃s,e(νk)

‖Θ̃s,e(νk)‖F
,

Âs,e(νk)

‖Âs,e(νk)‖F

)
= 2−

∥∥∥∥∥ Θ̃s,e(νk)

‖Θ̃s,e(νk)‖F
− Âs,e(νk)

‖Âs,e(νk)‖F

∥∥∥∥∥
2

F

=2−
‖‖Âs,e(νk)‖FΘs,e(νk)− ‖Θ̃s,e(νk)‖FÂs,e(νk)‖2F

‖Θ̃s,e(νk)‖2F‖Âs,e(νk)‖2F

≥2−
‖Θ̃s,e(νk)− Âs,e(νk)‖2F

‖Θ̃s,e(νk)‖2F
−

∣∣∣‖Âs,e(νk)‖2F − ‖Θ̃s,e(νk)‖2F
∣∣∣

‖Θ̃s,e(νk)‖2F

≥2− 2
‖Θ̃s,e(νk)− Âs,e(νk)‖2F

‖Θ̃s,e(νk)‖2F

≥2− 2

(
9r
(
C
√
nρ+ Cε log(T )

)2
(c′1)2κ2

k∆
+

513‖diag(Λ̃s,e(νk))‖F
‖Θ̃s,e(νk)‖F

)
≥ 1,

where the second inequality follows from (37) and the event B′, and the last inequality follows from
Assumption 4 and (43). Therefore

(Θ̃s,e(νk), Â
s,e(νk)/‖Âs,e(νk)‖F) ≥ 1/2‖Θ̃s,e(νk)‖F ≥ c′′

√
∆κk.

Thus all the conclusions in Step 3 of the proof of Theorem 2 still hold.
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