4 research outputs found

    Web-Based Flood Hazard Monitoring

    Get PDF
    Flood is a natural disaster. It occurs in several cities in Indonesia. Floods caused by rivers that overflowed and then flooded residential areas. It comes mostly unexpectedly without early warning. It causes many losses, especially the loss of material, and health threats to surrounding communities. The advance of network technology can reduce the adverse effects of flooding by providing warning alarms and water level monitoring system in real-time that can be accessed via the web. Based on the problem, a monitoring system was designed to monitor water levels via a web that work in real time for 24 hours, and store water level data into the database. The use of this website requires an internet connection, so that internet services must be available

    Flood Detection Using Multi-Modal and Multi-Temporal Images: A Comparative Study

    Get PDF
    Natural disasters such as flooding can severely affect human life and property. To provide rescue through an emergency response team, we need an accurate flooding assessment of the affected area after the event. Traditionally, it requires a lot of human resources to obtain an accurate estimation of a flooded area. In this paper, we compared several traditional machine-learning approaches for flood detection including multi-layer perceptron (MLP), support vector machine (SVM), deep convolutional neural network (DCNN) with recent domain adaptation-based approaches, based on a multi-modal and multi-temporal image dataset. Specifically, we used SPOT-5 and RADAR images from the flood event that occurred in November 2000 in Gloucester, UK. Experimental results show that the domain adaptation-based approach, semi-supervised domain adaptation (SSDA) with 20 labeled data samples, achieved slightly better values of the area under the precision-recall (PR) curve (AUC) of 0.9173 and F1 score of 0.8846 than those by traditional machine approaches. However, SSDA required much less labor for ground-truth labeling and should be recommended in practice

    Change detection and landscape similarity comparison using computer vision methods

    Get PDF
    Human-induced disturbances of terrestrial and aquatic ecosystems continue at alarming rates. With the advent of both raw sensor and analysis-ready datasets, the need to monitor ecosystem disturbances is now more imperative than ever; yet the task is becoming increasingly complex with increasing sources and varieties of earth observation data. In this research, computer vision methods and tools are interrogated to understand their capability for comparing spatial patterns. A critical survey of literature provides evidence that computer vision methods are relatively robust to scale and highlights issues involved in parameterization of computer vision models for characterizing significant pattern information in a geographic context. Utilizing two widely used pattern indices to compare spatial patterns in simulated and real-world datasets revealed their potential to detect subtle changes in spatial patterns which would not otherwise be feasible using traditional pixel-level techniques. A texture-based CNN model was developed to extract spatially relevant information for landscape similarity comparison; the CNN feature maps proved to be effective in distinguishing agriculture landscapes from other landscape types (e.g., forest and mountainous landscapes). For real-world human disturbance monitoring, a U-Net CNN was developed and compared with a random forest model. Both modeling frameworks exhibit promising potential to map placer mining disturbance; however, random forests proved simple to train and deploy for placer mapping, while the U-Net may be used to augment RF as it is capable of reducing misclassification errors and will benefit from increasing availability of detailed training data
    corecore