111,722 research outputs found
Data-Driven Chance Constrained Optimization under Wasserstein Ambiguity Sets
We present a data-driven approach for distributionally robust chance
constrained optimization problems (DRCCPs). We consider the case where the
decision maker has access to a finite number of samples or realizations of the
uncertainty. The chance constraint is then required to hold for all
distributions that are close to the empirical distribution constructed from the
samples (where the distance between two distributions is defined via the
Wasserstein metric). We first reformulate DRCCPs under data-driven Wasserstein
ambiguity sets and a general class of constraint functions. When the
feasibility set of the chance constraint program is replaced by its convex
inner approximation, we present a convex reformulation of the program and show
its tractability when the constraint function is affine in both the decision
variable and the uncertainty. For constraint functions concave in the
uncertainty, we show that a cutting-surface algorithm converges to an
approximate solution of the convex inner approximation of DRCCPs. Finally, for
constraint functions convex in the uncertainty, we compare the feasibility set
with other sample-based approaches for chance constrained programs.Comment: A shorter version is submitted to the American Control Conference,
201
Randomized Solutions to Convex Programs with Multiple Chance Constraints
The scenario-based optimization approach (`scenario approach') provides an
intuitive way of approximating the solution to chance-constrained optimization
programs, based on finding the optimal solution under a finite number of
sampled outcomes of the uncertainty (`scenarios'). A key merit of this approach
is that it neither assumes knowledge of the uncertainty set, as it is common in
robust optimization, nor of its probability distribution, as it is usually
required in stochastic optimization. Moreover, the scenario approach is
computationally efficient as its solution is based on a deterministic
optimization program that is canonically convex, even when the original
chance-constrained problem is not. Recently, researchers have obtained
theoretical foundations for the scenario approach, providing a direct link
between the number of scenarios and bounds on the constraint violation
probability. These bounds are tight in the general case of an uncertain
optimization problem with a single chance constraint. However, this paper shows
that these bounds can be improved in situations where the constraints have a
limited `support rank', a new concept that is introduced for the first time.
This property is typically found in a large number of practical
applications---most importantly, if the problem originally contains multiple
chance constraints (e.g. multi-stage uncertain decision problems), or if a
chance constraint belongs to a special class of constraints (e.g. linear or
quadratic constraints). In these cases the quality of the scenario solution is
improved while the same bound on the constraint violation probability is
maintained, and also the computational complexity is reduced.Comment: This manuscript is the preprint of a paper submitted to the SIAM
Journal on Optimization and it is subject to SIAM copyright. SIAM maintains
the sole rights of distribution or publication of the work in all forms and
media. If accepted, the copy of record will be available at
http://www.siam.or
Safe Approximations of Chance Constraints Using Historical Data
This paper proposes a new way to construct uncertainty sets for robust optimization. Our approach uses the available historical data for the uncertain parameters and is based on goodness-of-fit statistics. It guarantees that the probability that the uncertain constraint holds is at least the prescribed value. Compared to existing safe approximation methods for chance constraints, our approach directly uses the historical-data information and leads to tighter uncertainty sets and therefore to better objective values. This improvement is significant especially when the number of uncertain parameters is low. Other advantages of our approach are that it can handle joint chance constraints easily, it can deal with uncertain parameters that are dependent, and it can be extended to nonlinear inequalities. Several numerical examples illustrate the validity of our approach.robust optimization;chance constraint;phi-divergence;goodness-of-fit statistics
Two-Stage Subspace Constrained Precoding in Massive MIMO Cellular Systems
We propose a subspace constrained precoding scheme that exploits the spatial
channel correlation structure in massive MIMO cellular systems to fully unleash
the tremendous gain provided by massive antenna array with reduced channel
state information (CSI) signaling overhead. The MIMO precoder at each base
station (BS) is partitioned into an inner precoder and a Transmit (Tx) subspace
control matrix. The inner precoder is adaptive to the local CSI at each BS for
spatial multiplexing gain. The Tx subspace control is adaptive to the channel
statistics for inter-cell interference mitigation and Quality of Service (QoS)
optimization. Specifically, the Tx subspace control is formulated as a QoS
optimization problem which involves an SINR chance constraint where the
probability of each user's SINR not satisfying a service requirement must not
exceed a given outage probability. Such chance constraint cannot be handled by
the existing methods due to the two stage precoding structure. To tackle this,
we propose a bi-convex approximation approach, which consists of three key
ingredients: random matrix theory, chance constrained optimization and
semidefinite relaxation. Then we propose an efficient algorithm to find the
optimal solution of the resulting bi-convex approximation problem. Simulations
show that the proposed design has significant gain over various baselines.Comment: 13 pages, accepted by IEEE Transactions on Wireless Communication
Risk-Constrained Dynamic Programming for Optimal Mars Entry, Descent, and Landing
A chance-constrained dynamic programming algorithm was developed that is capable of making optimal sequential decisions within a user-specified risk bound. This work handles stochastic uncertainties over multiple stages in the CEMAT (Combined EDL-Mobility Analyses Tool) framework. It was demonstrated by a simulation of Mars entry, descent, and landing (EDL) using real landscape data obtained from the Mars Reconnaissance Orbiter. Although standard dynamic programming (DP) provides a general framework for optimal sequential decisionmaking under uncertainty, it typically achieves risk aversion by imposing an arbitrary penalty on failure states. Such a penalty-based approach cannot explicitly bound the probability of mission failure. A key idea behind the new approach is called risk allocation, which decomposes a joint chance constraint into a set of individual chance constraints and distributes risk over them. The joint chance constraint was reformulated into a constraint on an expectation over a sum of an indicator function, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the chance-constraint optimization problem can be turned into an unconstrained optimization over a Lagrangian, which can be solved efficiently using a standard DP approach
Differentiation Formula for Integrals Over Sets Given by Inclusion
Formulae for differentiation with respect to the parameter of an integral over the set given by an inclusion are proposed. Such formulae are useful for solving chance constrained optimization problems. Using these formulae one can compute the gradient (or stochastic quasi-gradient) of the chance constraint and consequently apply gradient (or stochastic quasi-gradient) algorithm for the optimization
Stochastic Nonlinear Model Predictive Control with Efficient Sample Approximation of Chance Constraints
This paper presents a stochastic model predictive control approach for
nonlinear systems subject to time-invariant probabilistic uncertainties in
model parameters and initial conditions. The stochastic optimal control problem
entails a cost function in terms of expected values and higher moments of the
states, and chance constraints that ensure probabilistic constraint
satisfaction. The generalized polynomial chaos framework is used to propagate
the time-invariant stochastic uncertainties through the nonlinear system
dynamics, and to efficiently sample from the probability densities of the
states to approximate the satisfaction probability of the chance constraints.
To increase computational efficiency by avoiding excessive sampling, a
statistical analysis is proposed to systematically determine a-priori the least
conservative constraint tightening required at a given sample size to guarantee
a desired feasibility probability of the sample-approximated chance constraint
optimization problem. In addition, a method is presented for sample-based
approximation of the analytic gradients of the chance constraints, which
increases the optimization efficiency significantly. The proposed stochastic
nonlinear model predictive control approach is applicable to a broad class of
nonlinear systems with the sufficient condition that each term is analytic with
respect to the states, and separable with respect to the inputs, states and
parameters. The closed-loop performance of the proposed approach is evaluated
using the Williams-Otto reactor with seven states, and ten uncertain parameters
and initial conditions. The results demonstrate the efficiency of the approach
for real-time stochastic model predictive control and its capability to
systematically account for probabilistic uncertainties in contrast to a
nonlinear model predictive control approaches.Comment: Submitted to Journal of Process Contro
- …
