111,722 research outputs found

    Data-Driven Chance Constrained Optimization under Wasserstein Ambiguity Sets

    Get PDF
    We present a data-driven approach for distributionally robust chance constrained optimization problems (DRCCPs). We consider the case where the decision maker has access to a finite number of samples or realizations of the uncertainty. The chance constraint is then required to hold for all distributions that are close to the empirical distribution constructed from the samples (where the distance between two distributions is defined via the Wasserstein metric). We first reformulate DRCCPs under data-driven Wasserstein ambiguity sets and a general class of constraint functions. When the feasibility set of the chance constraint program is replaced by its convex inner approximation, we present a convex reformulation of the program and show its tractability when the constraint function is affine in both the decision variable and the uncertainty. For constraint functions concave in the uncertainty, we show that a cutting-surface algorithm converges to an approximate solution of the convex inner approximation of DRCCPs. Finally, for constraint functions convex in the uncertainty, we compare the feasibility set with other sample-based approaches for chance constrained programs.Comment: A shorter version is submitted to the American Control Conference, 201

    Randomized Solutions to Convex Programs with Multiple Chance Constraints

    Full text link
    The scenario-based optimization approach (`scenario approach') provides an intuitive way of approximating the solution to chance-constrained optimization programs, based on finding the optimal solution under a finite number of sampled outcomes of the uncertainty (`scenarios'). A key merit of this approach is that it neither assumes knowledge of the uncertainty set, as it is common in robust optimization, nor of its probability distribution, as it is usually required in stochastic optimization. Moreover, the scenario approach is computationally efficient as its solution is based on a deterministic optimization program that is canonically convex, even when the original chance-constrained problem is not. Recently, researchers have obtained theoretical foundations for the scenario approach, providing a direct link between the number of scenarios and bounds on the constraint violation probability. These bounds are tight in the general case of an uncertain optimization problem with a single chance constraint. However, this paper shows that these bounds can be improved in situations where the constraints have a limited `support rank', a new concept that is introduced for the first time. This property is typically found in a large number of practical applications---most importantly, if the problem originally contains multiple chance constraints (e.g. multi-stage uncertain decision problems), or if a chance constraint belongs to a special class of constraints (e.g. linear or quadratic constraints). In these cases the quality of the scenario solution is improved while the same bound on the constraint violation probability is maintained, and also the computational complexity is reduced.Comment: This manuscript is the preprint of a paper submitted to the SIAM Journal on Optimization and it is subject to SIAM copyright. SIAM maintains the sole rights of distribution or publication of the work in all forms and media. If accepted, the copy of record will be available at http://www.siam.or

    Safe Approximations of Chance Constraints Using Historical Data

    Get PDF
    This paper proposes a new way to construct uncertainty sets for robust optimization. Our approach uses the available historical data for the uncertain parameters and is based on goodness-of-fit statistics. It guarantees that the probability that the uncertain constraint holds is at least the prescribed value. Compared to existing safe approximation methods for chance constraints, our approach directly uses the historical-data information and leads to tighter uncertainty sets and therefore to better objective values. This improvement is significant especially when the number of uncertain parameters is low. Other advantages of our approach are that it can handle joint chance constraints easily, it can deal with uncertain parameters that are dependent, and it can be extended to nonlinear inequalities. Several numerical examples illustrate the validity of our approach.robust optimization;chance constraint;phi-divergence;goodness-of-fit statistics

    Two-Stage Subspace Constrained Precoding in Massive MIMO Cellular Systems

    Full text link
    We propose a subspace constrained precoding scheme that exploits the spatial channel correlation structure in massive MIMO cellular systems to fully unleash the tremendous gain provided by massive antenna array with reduced channel state information (CSI) signaling overhead. The MIMO precoder at each base station (BS) is partitioned into an inner precoder and a Transmit (Tx) subspace control matrix. The inner precoder is adaptive to the local CSI at each BS for spatial multiplexing gain. The Tx subspace control is adaptive to the channel statistics for inter-cell interference mitigation and Quality of Service (QoS) optimization. Specifically, the Tx subspace control is formulated as a QoS optimization problem which involves an SINR chance constraint where the probability of each user's SINR not satisfying a service requirement must not exceed a given outage probability. Such chance constraint cannot be handled by the existing methods due to the two stage precoding structure. To tackle this, we propose a bi-convex approximation approach, which consists of three key ingredients: random matrix theory, chance constrained optimization and semidefinite relaxation. Then we propose an efficient algorithm to find the optimal solution of the resulting bi-convex approximation problem. Simulations show that the proposed design has significant gain over various baselines.Comment: 13 pages, accepted by IEEE Transactions on Wireless Communication

    Risk-Constrained Dynamic Programming for Optimal Mars Entry, Descent, and Landing

    Get PDF
    A chance-constrained dynamic programming algorithm was developed that is capable of making optimal sequential decisions within a user-specified risk bound. This work handles stochastic uncertainties over multiple stages in the CEMAT (Combined EDL-Mobility Analyses Tool) framework. It was demonstrated by a simulation of Mars entry, descent, and landing (EDL) using real landscape data obtained from the Mars Reconnaissance Orbiter. Although standard dynamic programming (DP) provides a general framework for optimal sequential decisionmaking under uncertainty, it typically achieves risk aversion by imposing an arbitrary penalty on failure states. Such a penalty-based approach cannot explicitly bound the probability of mission failure. A key idea behind the new approach is called risk allocation, which decomposes a joint chance constraint into a set of individual chance constraints and distributes risk over them. The joint chance constraint was reformulated into a constraint on an expectation over a sum of an indicator function, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the chance-constraint optimization problem can be turned into an unconstrained optimization over a Lagrangian, which can be solved efficiently using a standard DP approach

    Differentiation Formula for Integrals Over Sets Given by Inclusion

    Get PDF
    Formulae for differentiation with respect to the parameter of an integral over the set given by an inclusion are proposed. Such formulae are useful for solving chance constrained optimization problems. Using these formulae one can compute the gradient (or stochastic quasi-gradient) of the chance constraint and consequently apply gradient (or stochastic quasi-gradient) algorithm for the optimization

    Stochastic Nonlinear Model Predictive Control with Efficient Sample Approximation of Chance Constraints

    Full text link
    This paper presents a stochastic model predictive control approach for nonlinear systems subject to time-invariant probabilistic uncertainties in model parameters and initial conditions. The stochastic optimal control problem entails a cost function in terms of expected values and higher moments of the states, and chance constraints that ensure probabilistic constraint satisfaction. The generalized polynomial chaos framework is used to propagate the time-invariant stochastic uncertainties through the nonlinear system dynamics, and to efficiently sample from the probability densities of the states to approximate the satisfaction probability of the chance constraints. To increase computational efficiency by avoiding excessive sampling, a statistical analysis is proposed to systematically determine a-priori the least conservative constraint tightening required at a given sample size to guarantee a desired feasibility probability of the sample-approximated chance constraint optimization problem. In addition, a method is presented for sample-based approximation of the analytic gradients of the chance constraints, which increases the optimization efficiency significantly. The proposed stochastic nonlinear model predictive control approach is applicable to a broad class of nonlinear systems with the sufficient condition that each term is analytic with respect to the states, and separable with respect to the inputs, states and parameters. The closed-loop performance of the proposed approach is evaluated using the Williams-Otto reactor with seven states, and ten uncertain parameters and initial conditions. The results demonstrate the efficiency of the approach for real-time stochastic model predictive control and its capability to systematically account for probabilistic uncertainties in contrast to a nonlinear model predictive control approaches.Comment: Submitted to Journal of Process Contro
    corecore