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This paper proposes a new way to construct uncertainty sets for robust optimization.

Our approach uses the available historical data for the uncertain parameters and is based

on goodness-of-fit statistics. It guarantees that the probability that the uncertain constraint

holds is at least the prescribed value. Compared to existing safe approximation methods

for chance constraints, our approach directly uses the historical-data information and leads

to tighter uncertainty sets and therefore to better objective values. This improvement is

significant especially when the number of uncertain parameters is low. Other advantages of

our approach are that it can handle joint chance constraints easily, it can deal with uncertain

parameters that are dependent, and it can be extended to nonlinear inequalities. Several

numerical examples illustrate the validity of our approach.
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JEL classification: C44, C61, C63

1. Introduction

The objective of robust optimization (RO) is to find solutions that are immune to the

uncertainty of the parameters in a mathematical optimization problem. It requires that

the constraints of a given problem should be satisfied for all realizations of the uncertain

parameters in a so-called uncertainty set. The robust version of a mathematical optimization

problem is generally referred to as the robust counterpart (RC) problem. RO is popular

because of the tractability of the RC for many classes of uncertainty sets. For example, the

RC of an uncertain linear optimization problem with data varying in a polyhedral uncertainty

set can be reformulated as a linear optimization (LO) problem [4]. Additionally, the RC of

an uncertain LO problem with an ellipsoidal uncertainty set can be reformulated as a second-

order cone problem (SOCP) that can be solved efficiently by existing solvers. The choice
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of the uncertainty set is important for two reasons. First, it plays a critical role in the

tractability of the RC problem. Second, it should represent the actual uncertainty set in a

meaningful way.

One way to define uncertainty sets is by the safe approximation of the chance constraint

[18, 5, 4]. Tractable safe approximations of chance constrained programs have recently been

proposed since the original stochastic counterparts introduced by Charnes et al. [8, 9],

Miller and Wagner [16] and Prèkopa [20] are computationally intractable. The seminal work

of Shapiro and Nemirovski [18] is based on building a computationally tractable approxima-

tion of a chance constrained problem. The authors assume that the constraints are affine

and entries of the perturbation vector, so-called uncertain parameters, are independent with

known support. Later, they extend their approximation approach to the ambiguous chance

constraint, where random perturbations belong to a collection of distributions in a given con-

vex compact set. Ben-Tal et al. [4] (pp 27-60) propose safe convex approximations of scalar

chance constraints. The authors translate the existing stochastic uncertainties to “uncertain-

but-bounded” sets assuming that the uncertain parameters are mutually independent with

zero mean. The obtained approximations in [18, 4] are computationally tractable and per-

form good when the number of uncertain parameters is relatively high. In addition, Ben-Tal

and Nemirovski [5] elaborate a safe tractable approximation of the chance constrained ver-

sion of an affinely perturbed linear matrix inequality (LMI) constraint, assuming that the

primitive uncertain parameters are independent with light-tail distributions (e.g., bounded

or Gaussian). More generally, Calafiore and Campi [6] consider a ‘randomized’ approach such

that the resulting randomized solution for an uncertain constraints fails to satisfy the con-

straint for a small proportion of the perturbation sample, provided that a sufficient number

of samples is drawn.

The tractability is even more scarce for joint chance constraints, i.e., when we have a

group of randomly perturbed constraints rather than a single one. Prèkopa [20] shows that

joint chance constraints are convex only when the right-hand side coefficients are uncertain

and follow a log-concave distribution. A commonly followed approach to simplify a joint

chance constraint is to apply a Bonferroni inequality, but it is known that this approach is

over-conservative. Chen et al. [10] propose an alternative conservative approximation of a

joint chance constraints in terms of a worst-case conditional value-at-risk (CVaR) constraint.

The resulting approximation outperforms the Bonferroni approximation. Zymler et al. [23]

develop new tools and models for approximating joint chance constraints under the assump-
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tion that first- and second-order moments together with the support of the perturbation

vector are known. The authors propose an efficient sequential semidefinite programming

(SDP) algorithm to solve distributionally robust chance constraint program.

In this paper, we propose an alternative safe approximation of joint chance constraints

that does not require the assumption that certain moments are known. Moreover, it uses

the full historical-data information and is based on goodness-of-fit statistics known in the

statistics literature as φ-divergence. The new approach is appropriate when the number of

uncertain parameters is low. Numerical results show that it leads to tighter uncertainty

sets compared to the existing safe approximation methods, and therefore yields better ob-

jective values for the uncertain problem under consideration. The new approach is suitable

for dependent and independent uncertain parameters, and can be extended to nonlinear

inequalities. The disadvantage of our approach is that it requires extensive data when the

number of uncertain parameters is high.

Research that is related to φ-divergence includes the following. Klabjan et al. [15] and

Calafiore [7] use two special cases of φ-divergence to construct uncertainty regions from

historical data. The former derives the robust stochastic lot-sizing problem and uses χ2-

statistics; the latter formulates the robust portfolio selection problem and considers Kullback-

Leibler divergence. In both papers, the uncertain parameters are probability vectors, and the

goal is to find robust solutions that are feasible for all allowable distributions of the uncertain

parameters with bounded support. Ben-Tal et al. [3] take up the topic under the more

general title of φ-divergence and focus on robust optimization problems with uncertainty

regions defined by φ-divergence distance measures. They provide tractable formulations

of robust optimization problems for φ-divergence-based uncertainty regions. Their results

show that uncertainty sets based on φ-divergence are good alternatives for the uncertainty

sets such as ellipsoidal, box, and their variations that are well studied in the literature. In

this paper, we go one step further and use φ-divergence-based uncertainty sets not only for

uncertain probability vectors but also for general uncertain parameters.

The remainder of the paper is organized as follows. In §2, we give an introduction to

φ-divergence and confidence sets. In §3, we discuss the new safe approximation method.

Then, in §4, we present the results of several numerical experiments. Finally, we provide

concluding remarks in §5.
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2. Introduction to φ-Divergence and Confidence Sets

for Probability Vectors

In this section we define φ-divergence and some of the properties taken from [3, 19, 14] that

are used in later sections.

2.1 Confidence Sets Based on φ-Divergence

The φ-divergence (“distance”) between two vectors p = (p1, ..., pm) ≥ 0 and q = (q1, ..., qm) ≥
0 in Rm is defined by

Iφ (p, q) :=
m∑
i=1

qiφ

(
pi
qi

)
, (1)

where φ (t) is convex for t ≥ 0, φ (1) = 0, φ (a/0) := a lim
t→∞

φ(t)/t for a > 0, and φ (0/0) = 0.

We consider p in (1) to be the unknown true probability vector of an uncertain parameter

ζ ∈ R`. Given N historical observations on ζ, the support of ζ is divided into m cells such

that the number of observations oi in cell i ∈ {1, . . . ,m} is at least five:

m∑
i=1

oi = N such that oi ≥ 5,∀i ∈ {1, . . . ,m}.

Then, the historical data on ζ are translated into frequencies q = (q1, ..., qm) such that

eT q = 1, where e is the all-one vector and qi is the observed frequency of cell i ∈ {1, . . . ,m}
given by

qi =
oi
N
.

We construct a confidence set for p using the empirical estimate q and goodness-of-fit. A

general goodness of fit test, based on φ-divergence, is used. If we assume that φ is twice

continuously differentiable in the neighborhood of 1 and φ
′′
(1) > 0, then the test statistic

2N

φ′′(1)
Iφ (p, q)

asymptotically follows a χ2
m−1-distribution with (m− 1) degrees of freedom. Using this test

statistic, an approximate (1− α)-confidence set for p is{
p ∈ Rm : p ≥ 0, pT e = 1, Iφ (p, q) ≤ ρ

}
, (2)
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where

ρ :=
φ
′′
(1)

2N
χ2
m−1,1−α. (3)

Different choices of φ(.) have been studied in the literature. See [19, 14, 3, 13] for an overview;

Table 1 taken from [3] presents the most common choices of φ(.) together with the conjugate

function that is defined as follows:

φ∗ (s) := sup
t≥0
{st− φ (t)} .

In this paper, we work with φ-divergence distances for which the closed-form conjugates are

available; see Table 1.

Table 1: φ-Divergence Examples
Divergence φ(t), t > 0 Iφ(p, q) φ∗(s)

Kullback-Leibler t log t
∑
i

pi log

(
pi
qi

)
es−1

Burg entropy − log t
∑
i

qi log

(
pi
qi

)
−1− log(−s), s ≤ 0

χ2-distance 1
t
(t− 1)2

∑
i

(pi − qi)2

pi
2− 2

√
1− s, s ≤ 1

Pearson χ2-distance (t− 1)2
∑
i

(pi − qi)2

qi

s+ s2/4, s ≥ −2
−1, s < −2

Hellinger distance (1−
√
t)2

∑
i

(
√
pi −
√
qi)

2 s
1−s , s ≤ 1

2.2 Probability Bound for Subset of Cells

Let V = {1, . . . ,m} be the set of cells and S ⊆ V , and C(S) be the uncertainty region

determined by S. In our approach, we choose S such that Prζ(ζ ∈ C(S)) ≥ β, where ζ

is the primitive uncertain parameter and β is the prescribed probability in a given chance

constraint. How we find S will be clarified in §3.2; in this subsection, we determine a

probability guarantee for a given S. To do this we calculate the minimal value of
∑

i∈S pi
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such that p is in the (1− α)-confidence set (2):

(P) γ(S, α) = min
∑
i∈S

pi (4)

s.t. Iφ(p, q) ≤ φ
′′
(1)

2N
χ2
m−1,1−α(= ρ) (5)∑

i∈V

pi = 1 (6)

p ≥ 0. (7)

Note that (P) is a convex optimization problem in p ∈ R|V | since φ-divergence functions

are convex. Constraints (5) to (7) define a (1 − α)-confidence set, and the probability that

the uncertain parameter is in the region defined by S, is at least γ(S, α) with a (1 − α)

confidence level.

The following theorem shows an alternative way of calculating γ(S, α) by using the dual

problem of (P).

Theorem 1 Suppose φ(.) is convex and α < 1, then the optimal objective value of problem

(P) is equal to the optimal objective value of the following lagrangian dual (LD) problem:

(LD) max
η≥0, λ

−ηρ− λ− η
φ∗(−λ+ 1

η

)∑
i∈S

qi + φ∗
(
−λ
η

) ∑
i∈V \S

qi


in which φ∗(s) = supt≥0 {st− φ(t)}.

Proof. See Appendix A.1. 2

The dual problem is an optimization problem with two variables (η, λ) and a simple con-

straint η ≥ 0. Furthermore, the convexity of φ∗(λ) implies that ηφ∗
(
λ
η

)
is jointly convex in

λ and η. Hence, (LD) is a convex optimization problem with only two variables that can be

solved efficiently.

Independent uncertain parameters. In some cases it may be known that the uncer-

tain parameters ζj are independent for j ∈ {1, . . . , `}. Let Vj denote the set of cells for the

jth uncertain parameter and mj = |Vj|. Since the uncertain parameters are independent, we

may have historical data for each uncertain parameter separately, and Nj denotes the sample

size of the data for the jth parameter. In addition, the probability that the jth uncertain

parameter is in cell i ∈ Vj is denoted by p
(j)
i . Similarly, q

(j)
i denotes the frequency of cell
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i ∈ Vj for the jth uncertain parameter. An aggregate cell is indexed by (i1, i2 . . . , i`), where

ij ∈ Vj for all j ∈ {1, . . . , `}. Because of the independence, the probability that the uncertain

parameters are in cell (i1, i2 . . . , i`) is equivalent to

pi1,i2...,i` =
∏̀
j=1

p
(j)
ij
,

and the frequency of cell (i1, i2 . . . , i`) is given by

qi1,i2...,i` =
∏̀
j=1

q
(j)
ij
.

All elements pi1,i2...,i` are collected in vector p ∈ Rm1m2...m` , according to the order of the

indices. Similarly, qi1,i2...,i` are collected in vector q ∈ Rm1m2...m` . Then, the following mathe-

matical optimization problem is a special case of (P), in the case of ` independent parameters:

(IP) min
∑

(i1,i2,...,i`)∈S

pi1,i2...,i`

s.t. Iφ(p, q) ≤ φ
′′
(1)

2N1N2 . . . N`

χ2
(m1−1)(m2−1)...(m`−1),1−α (8)∑

i∈Vj

p
(j)
i = 1 ∀j ∈ {1, . . . , `} (9)

pi1,i2...,i` =
∏̀
j=1

p
(j)
ij

∀ij ∈ Vj, ∀j ∈ {1, . . . , `} (10)

p
(j)
i ≥ 0 ∀i ∈ Vj, ∀j ∈ {1, . . . , `}, (11)

where (m1−1)(m2−1) . . . (m`−1) denotes the degrees of freedom when we have ` independent

parameters. It is easy to see that (IP) has highly nonlinear terms in constraint (10) and is

nonconvex. Fortunately, the following theorem relaxes the nonlinear structure of (IP) and

provides a lower bound for the objective function.

Theorem 2 Let V = V1×V2...×V`, m−1 = (m1−1)(m2−1) . . . (m`−1), N = N1N2 . . . N`,

and S ⊆ V , then (P) is a relaxation of (IP).

Proof. See Appendix A.2. 2

Note that the optimal solution p̂ of (P) does not necessarily satisfy (10) for the individual

probabilities p̂
(j)
ij

given by [p̂
(j)
ij

=
∑`

k 6=j
∑

ik∈Vk p̂i1,.,ij ,.,i` ], and hence the elements of p̂ may

not be independent. However, we are looking for a good lower-bound probability for S that
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can be computed efficiently. This is why we use (P), or equivalently (LD), that yields a

tight probability bound γ(S, α) for any given parameter structure that can be dependent

or independent. Nevertheless, working with independent uncertain parameters has some

advantages compared to the dependent case. First, we obtain tighter (1−α)-confidence sets

for p. This is because we have fewer degrees of freedom for the same number of cells, so the

ρ value gets smaller in (5). Second, the sample size becomes the product of the individual

sample sizes; see Theorem 2, and we require fewer data.

3. Safe Approximation Method

In this section, we provide our method to derive safe approximations for chance constrained

problems. We first describe the general setup of our approach and then explain the details

of each step in our algorithm. Finally, we mention possible extensions of the algorithm to

joint chance constraints and nonlinear inequalities.

3.1 General Setup

For the sake of simplicity, we explain our safe approximation method for linear optimization.

Later in §3.3.2, it is shown how the method is extended to nonlinear inequalities.

We consider the following chance constrained linear optimization problem:

(ULO) max cTx

s.t. Prζ{ζ ∈ [−1, 1]` : ak(ζ)Tx ≤ bk,∀k ∈ {1, ..., K}} ≥ β, (12)

where x ∈ Rn is a vector of decision variables, c ∈ Rn is a vector of objective coefficients,

b ∈ RK is a vector of right-hand side values, β is the given probability bound and ak(ζ) ∈ Rn

is linear in the primitive uncertain parameter ζ ∈ [−1, 1]`, i.e.,

ak (ζ) = a0
k +

∑̀
j=1

ζja
j
k ∀k ∈ {1, ..., K} , (13)

where ajk ∈ Rn, j ∈ {0, . . . , `}. We may assume w.l.o.g. that ζ ∈ [−1, 1]`, since scaling

for different intervals can be done by adjusting all the ajk. We may also assume w.lo.g that

the right-hand side vector b is certain, since the uncertain right-hand side can easily be

reformulated in RO. Moreover, we assume that the number of uncertain parameters, `, is

much smaller than n. This is motivated by the fact that in many cases a few primitive sources
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of uncertainty affect many other parameters of a given system. For example, engineering

design problems [22], portfolio optimizations problems [1, 12], etc., often have only a few

primitive uncertain parameters and regression or factor models are used to obtain (13). For

the sake of simplicity, we focus below on an individual chance constraint, so subindex k is

omitted, but in §3.3.1 we show how the method is extended to joint chance constraints.

Eventually, our objective is to find the tightest uncertainty set Z such that for any feasible

solution x ∈ Rn of

a(ζ)Tx ≤ b ∀ζ ∈ Z (14)

the chance constraint

Prζ{ζ : a (ζ)T x ≤ b} ≥ β (15)

is satisfied. Constraint (14) is called a safe approximation of chance constraint (15). Fur-

thermore, (14) is also the RC of the uncertain constraint with the uncertainty set Z.

To determine Z and the corresponding probability bound, we first divide the domain of

ζ into cells such that in each cell there are sufficient historical data. Then, using these data,

we calculate the frequency qi of each cell i ∈ V . The true probability of a cell is denoted by

pi, and the true probability vector p is in the (1 − α)-confidence set (2). Furthermore, we

denote the uncertainty region of cell i ∈ V by Ci (e.g., Ci is a cube in a three-dimensional

uncertainty space). The uncertainty region for all the cells in S ⊆ V is given by

C(S) =
⋃
i∈S

Ci.

Let Z be C(S) and x ∈ Rn be any feasible solution for the safe approximation (14). Then

from §2.2 we have

Prζ{ζ : a (ζ)T x ≤ b} ≥ γ(S, α) (16)

with confidence level (1−α), where γ(S, α) is given by (4). The aim is to find a tight S that

approximates the uncertainty region by C(S) such that γ(S, α) ≥ β, and hence (15) holds

with a (1− α) confidence level.

In the following section, we present an algorithm that finds such a tight uncertainty set

for a given probability bound β.
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3.2 Algorithm

In this section, we present an algorithm that iteratively constructs an uncertainty set Z
that satisfies the probability bound β given in (15). We illustrate our approach using the

following toy problem:

max
x≥0

{
x1 + x2 : Prζ

{
ζ ∈ [−1, 1]2 : ζ1x1 + ζ2x2 ≤ 1

}
≥ β

}
, (17)

where β is the prescribed probability, and ζ1 ∈ [−1, 1] and ζ2 ∈ [−1, 1] are the primitive

uncertain parameters that we have historical data on. Later in this section, we adopt the

general notation in §3.1, i.e., also for the toy problem, and the steps of the algorithm are

explained in detail below.

Step 0. We scale ζ to [−1, 1]`, where the uncertain parameter is equivalent to the

following vector:

a(ζ) = a0 +
∑̀
j=1

ζja
j. (18)

For the toy problem, ` is equivalent to 2, a0 = 0, and aj ∈ R2 equals the unit vector ej;

hence, a(ζ) = ζ.

Then, we calculate the frequency qi of each cell i ∈ V as described in §2.1. Figure 1 shows

the historical data on ζ for the toy problem, as well as the cells that include the data. The

size of the cells is such that each cell includes “enough” data, i.e., at least five observations

according to the rule of thumb.

Figure 1: Historical Data for ζ1 and ζ2

10



Remark 1 Cells with low frequencies can be combined to get “enough” data. Figure 1

presents the standard situation where all cells have the same geometry.

Step 1. The robust counterpart problem given by

max cTx

s.t. a(ζ)Tx ≤ b ∀ζ ∈ Z (19)

is solved, where Z equals the ball-box uncertainty set:

BBΩ :=
{
ζ ∈ R` : ||ζ||2 ≤ Ω, ||ζ||∞ ≤ 1

}
. (20)

The exact formulation of (19) for Z equals BBΩ, is equivalent to:

zj + wj = −[aj]Tx, ∀j ∈ {1, ..., `} (21)

∑̀
j=1

|zj|+ Ω

√√√√∑̀
j=1

w2
j ≤ b− [a0]Tx, (22)

where z and w are the additional variables. Note that the above formulation can easily

be reformulated as an SOCP. In Figure 2, we illustrate the uncertain constraint in the toy

problem, when x is fixed to the robust optimal solution x∗ and BB0.5 is the uncertainty set

used in the robust counterpart.

Figure 2: Uncertain Constraint and Ball-Box Uncertainty Set

Remark 2 Instead of an ellipsoidal uncertainty set, we can also use other uncertainty sets

such as the box. In §3.3.3, we discuss that in detail.
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Step 2. We calculate the set of cells

S =
{
i ∈ V : a(ci)Tx∗ ≤ b

}
, (23)

where ci = (ci1, c
i
2 . . . , c

i
`) is the center point of cell i ∈ V . If the center point of a cell satisfies

the constraint in (23) for a given x∗, then we assume that all the realizations in the associated

cell are feasible for the uncertain constraint. Conversely, if the center point of a cell does not

satisfy (23) for a given x∗, then we assume that all the realizations in this cell are infeasible

for the uncertain constraint. This assumption is referred as the center point assumption in

later sections. For the toy problem, the region determined by S is presented in Figure 3.

Figure 3: Uncertainty Region C(S)

Let I be the intersection of the support, i.e., the box [−1, 1]`, and the region determined

by the constraint [a(ζ)Tx∗ ≤ b]. Then, an important observation is that solution x∗ is also

robust to the uncertainty set I. In addition, the probability that ζ is an element of I is at

least the probability that ζ is an element of BBΩ or equivalently

Prζ{ζ ∈ I} ≥ Prζ{ζ ∈ BBΩ},

since BBΩ is a subset of I. Hence, using I instead of BBΩ provides a better probability

bound for the optimal solution x∗. To calculate the probability bound, I is approximated

by C(S).

Step 3. We calculate γ(S, α) as in (4). If γ(S, α) ≥ β then the region determined by I

is selected as the uncertainty set and the algorithm is terminated. Otherwise, we go to Step

4.

Step 4. We increase Ω by the step size ω and go to Step 1.
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Algorithm 1 (Constraint-wise algorithm)
Inputs: LO problem, set of cells V , frequency vector q, step size ω, confidence

level (1− α), probability bound β, and Ω = 0.
Outputs: Uncertainty set Z, robust optimal solution x∗, and radius Ω.
Step 1: Solve the robust counterpart of the given problem according to the uncer-

tainty set BBΩ and find the optimal solution x∗.
Step 2: Calculate S = {i ∈ V : a(ci)Tx∗ ≤ b}.
Step 3: Calculate γ(S, α)

if γ(S, α) ≥ β then Z = {ζ ∈ [−1, 1]` : a(ζ)Tx∗ ≤ b}
and terminate the algorithm

else go to Step 4.
Step 4: Set Ω = Ω + ω and go to Step 1.

Remark 3 Notice that γ(S, α) is not necessarily increasing in Ω.

Complexity. In an `-dimensional uncertainty space, Ω can be at most
√
` since BBΩ is

equivalent to the support, [−1, 1]`, when Ω is at least
√
`. Hence, Ω is changed in at most

O(ω−1
√
`) iterations of the algorithm.

3.3 Extensions

3.3.1 Safe Approximation of Joint Chance Constraint

Our approach can also be used to approximate a joint chance constraint:

Prζ

{
ζ : ak (ζ)T x ≤ bk ∀k ∈ {1, . . . , K}

}
≥ β, (24)

where x ∈ Rn and k denotes the constraint index. The only difference is that we work with

multiple constraints rather than a single one. We can use the same algorithm for the joint

version by applying the following slight change in Step 2 of Algorithm 1:

Step 2′ : Calculate S := {i ∈ V : ak(c
i)Tx∗ ≤ bk ∀k ∈ {1, ..., K}} . (25)

Note that C(S) now coincides with the region determined by all K constraints and the

probability γ(S, α) calculated by the algorithm is a joint probability bound satisfied by the

approximation of the given joint chance constraint. In Figure 4, we illustrate a C(S) that is

determined by multiple constraints including nonlinear ones.

Remark 4 If we have separate chance constraints rather than a joint one, then in this case

the uncertainty set of each constraint must be considered separately. Our approach can also
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be adapted to this case, however we do not consider that in the context of this paper. We see

the joint chance constraint as a practically and theoretically more interesting topic to look

at.

Remark 5 Applying the Bonferroni approach to a joint chance constraint, is known to be

too pessimistic.

3.3.2 Extension to Nonlinear Inequalities

Our approach can be extended to nonlinear inequalities. We can focus w.l.o.g. on a sin-

gle nonlinear constraint, and the robust counterpart of the uncertain constraint with the

uncertainty set Z is given by

f(a(ζ), x) ≤ b ∀ζ ∈ Z, (26)

where function f(a(ζ), x) denotes the uncertain nonlinear left-hand side of the constraint.

Nonlinearity may be in terms of the decision variables x ∈ Rn and/or the uncertain parame-

ters ζ ∈ R`. We have no assumption on the decision variables x as long as (26) is tractable;

the tractable formulations of such problems are studied in [2], but we assume f is convex in

the uncertain parameters ζ for any x. If this assumption holds, then only Step 2 of Algorithm

1 changes slightly as follows:

Step 2′′ : Calculate S := {i ∈ V : f(a(ci), x∗) ≤ b}, (27)

where x∗ is the optimal solution of the robust counterpart problem with constraint (26).

Note that the algorithm can be extended to joint nonlinear constraints with the following

change:

Step 2′′′ : Calculate S := {i ∈ V : fk(ak(c
i), x∗) ≤ bk ∀k ∈ {1, ..., K}},

where k denotes the constraint index. In Figure 4, we illustrate an iteration of the algorithm

for a problem that has one linear and two nonlinear constraints in a two-dimensional uncer-

tainty space. Note that the dark region denotes C(S) and the linear constraint is presented

by the dashed line.

Remark 6 In Figure 4, the linear uncertain constraint is not tangent to the ellipsoidal un-

certainty set BB0.5 for the robust optimal solution. This is because the associated constraint

in the RC is not binding at optimality.
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Figure 4: Iteration with Nonlinear Constraints

3.3.3 Extension to Box Uncertainty Set

So far, we have constructed a tight uncertainty set for a given uncertain optimization problem

by using ellipsoids. In this subsection, we discuss how we can apply the same method starting

from an uncertainty set different than the ellipsoid.

To begin with, we want the tractability of the RC to be as good as that with the ellipsoid.

This is why we consider the box uncertainty set as a good choice, and in the sequel of this

section we consider

BoxΩ :=
{
ζ ∈ R` : ||ζ||∞ ≤ Ω

}
as the starting uncertainty set at each iteration of our approach. The RC is no longer an

SOCP given by constraints (21) and (22) in Algorithm 1, but it is equivalent to

(a0)Tx+ Ω
∑̀
j=1

∣∣(aj)Tx∣∣ ≤ b, (28)

that can easily be reformulated as a LO problem. Hence Step 1 of Algorithm 1 changes

slightly as follows:

Step 1′ : Solve the RC with constraint (28) for given Ω and find the optimal x∗.

The numerical results in §4 show that using the box or the ellipsoid yields similar results

in the safe approximation method. However, we have the impression that, especially for

joint constraints, the ellipsoidal uncertainty set has more flexibility than the box in finding

the final tight uncertainty set. This is because of the special geometry of the ellipsoid that

avoids that the worst case realizations of the uncertain parameters are in the corners of the

box.
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4. Experimental Results

In this section, we provide the results of the experiments we have conducted for the algorithm

presented in §3.2 and its extension in §3.3. All computations are done on a 32-bit Windows

machine equipped with a 2.66 GHz Intel Core 2 Quad processor with 3.2 GB of RAM. To

solve the mathematical programs, we have used KNITRO 7.0 embedded in MATLAB 2011b.

We have conducted four different experiments. In the first experiment, we solve a simple

uncertain linear optimization problem with a single constraint. The performance of our

algorithm is compared with the approximation of the chance constraint presented in [4]. The

optimal objective value is considered as the main performance measure in this experiment.

In the second experiment, we apply our algorithm to a multi-period work scheduling (MWS)

problem, and the aim is to find the uncertainty region that satisfies a given probability

bound for the joint constraints. In this experiment, we also consider the extension presented

in §3.3.3. We report the specifications of the uncertainty region found by the algorithm

and the optimal objective value of the related robust counterpart problem. In the third

experiment, we focus on a robust response model of a cross-docking distribution center in

China. The main difference of this experiment from the second one is that the related robust

counterpart is a nonlinear optimization problem (NLP). Furthermore, we have also used

dependent data in this experiment. Finally, in the last experiment, we apply our approach

to another real-life problem originated by the need of a Dutch based electronics company.

The related problem, TV tube problem, has six uncertain parameters and many uncertain

constraints. Numerical results show that our approach provides significant improvements to

the nominal case of the associated problem.

4.1 Illustrative Example

Similar to the example in §3.2, we focus on a simple linear uncertain optimization problem

with an individual chance constraint. The problem is as follows:

(M) max x1 + x2

s.t. Prζ{ζ ∈ [−1, 1]2 : (1 + ζ1)x1 + (1 + ζ2)x2 ≤ 10} ≥ β (29)

x1, x2 ≥ 0,

where ζ1 ∈ [−1, 1] and ζ2 ∈ [−1, 1] are the independent uncertain parameters, and β is the

prescribed probability bound. In addition, we have historical data for both of the uncertain
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parameters separately, and each data set has a sample size of 100. To obtain the frequencies,

we divide the domain of each parameter into ten equal intervals of size 0.2 such that we

have enough data points in each interval. The frequencies of the parameters according to

the given data are presented in Table 2.

Table 2: Frequencies of ζ1 and ζ2
ζ1, ζ2 [-1 -0.8] [-0.8 -0.6] [-0.6 -0.4] [-0.4 -0.2] [-0.2 0] [0 0.2] [0.2 0.4] [0.4 0.6] [0.6 0.8] [0.8 1]

freq.(ζ1) 0.05 0.05 0.1 0.1 0.15 0.15 0.15 0.15 0.05 0.05
freq.(ζ2) 0.025 0.075 0.2 0.15 0.05 0.125 0.175 0.1 0.075 0.025

The joint uncertainty set of ζ1 and ζ2 has 100 (10 × 10) cells and the frequency of a cell is

found by multiplying the frequencies of the associated intervals for ζ1 and ζ2. Note that this

may be done since ζ1 and ζ2 are independent.

The aim of the experiment is to compare the optimal objective values of our safe ap-

proximation method to those provided by the safe approximation of the chance constraint

(ACC) presented in §2 of [4]. The individual chance constraint (29) is approximated by both

approaches for different values of the probability bound β and numerical results are listed in

Table 3.

Table 3: Results for Example 4.1
β γ(S, α) Ω BBΩ |V | − |S| Obj. Ωacc Objacc. %Improv.

Nom. 0.5 0 0 45 10 - - -
0.6 0.6 0.15 0.03 36 9.04 1.35 5.11 80.8
0.7 0.7 0.29 0.15 28 8.29 >1.41 5 65.9
0.8 0.87 0.57 0.35 15 7.12 >1.41 5 42.5
0.9 0.92 0.71 0.64 10 6.65 >1.41 5 33.1
0.91 0.92 0.71 0.64 10 6.65 >1.41 5 33.1
0.92 0.92 0.71 0.64 10 6.65 >1.41 5 33.1
0.93 0.96 0.85 0.72 6 6.24 >1.41 5 24.9
0.94 0.96 0.85 0.72 6 6.24 >1.41 5 24.9
0.95 0.96 0.85 0.72 6 6.24 >1.41 5 24.9
0.96 0.976 0.99 0.89 3 5.88 >1.41 5 17.6
0.97 0.976 0.99 0.89 3 5.88 >1.41 5 17.6
0.98 0.984 1.14 0.95 1 5.53 >1.41 5 10.7
0.99 1 1.28 1 0 5 >1.41 5 0
FRC 1 >1.41∗ 1 0 5 - - -

∗
√

2 ≈ 1.41

In this experiment, we have used Algorithm 1 for the case of independent uncertain
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parameters. We use χ2-distance as the φ-divergence function when α = 0.001; see sub-

problem (P) in §2.2. The first column in Table 3 presents the probability bounds β and

the second column gives the bound satisfied by the algorithm, where γ(S, α) represents the

optimal objective value of subproblem (P), or equivalently (LD). The third column presents

the radius of the minimal ball in the tight uncertainty region calculated by the algorithm.

The fourth column gives the probability bound provided by the algorithm, if we would have

used the ball-box as the final uncertainty set. The fifth column gives the number of cells

removed from the uncertainty space to obtain S, and the sixth column presents the optimal

objective value provided by our algorithm. The seventh column corresponds to the radius of

the ball, which is equivalent to
√

2| ln(1− β)| by ACC [4], and the eighth column lists the

associated optimal objective value. Finally, the ninth column gives the percentage of im-

provement in the optimal objective value of ACC when our algorithm is used, or equivalently

((Obj−Objacc)/Objacc)×100. ACC yields the same optimal solution when Ω is higher than
√

2 since the ball becomes larger than the box uncertainty set in the two-dimensional space.

Hence, the uncertainty set BBΩ in (20) coincides with [−1, 1]2 that results in the worst-case

objective value of 5 for (M).

The first row in Table 3 is the nominal problem. We provide the tightest uncertainty

set and the probability bound satisfied by the nominal solution. The last row corresponds

to the worst-case solution with respect to the full space of uncertainty (FRC). The results

in Table 3 reveal that our approach outperforms ACC with respect to the optimal objective

value for the given probability bounds. For instance, when the probability bound is 0.8,

the improvement in the objective value is 42.5%. Even for high probability bounds such

as 0.97 our algorithm yields a 17.6% improvement in the objective. It is clear that both

the improvement in the objective value and the number of cells removed from the initial

uncertainty set increase as the probability bound β decreases. Furthermore, if we compare

the values in the second and the fourth columns, it is easy to see that the final uncertainty set

Z yields significantly better probability bounds then the starting ball-box uncertainty set,

BBΩ, especially when Ω is low. As a concluding remark, we have also conducted the same

experiment when different φ-divergence functions such as Hellinger and Kullback-Leibler

distances are used in subproblem (P); see numerical results in Appendix B.1.
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4.2 Multi-Period Work Scheduling Problem

In this experiment, we solve a modified version of multi-period work scheduling (MWS)

problem. MWS is a linear optimization problem used to schedule employees for a multi-

period time horizon where the demand changes over time.

Computer Service Store. CLS is a computer service store that requires the following

skilled-repair times in the next five months: 3000, 3500, 4000, 4500, and 5500. The repair

work is done by skilled technicians and these technicians can each work up to 160 hours

per month. Furthermore, the technicians may train apprentices to meet future demand. It

takes an average of 50 hours to train an apprentice, and new technicians start serving CLS

in the month following their training session. In addition, the training sessions have 100%

efficiency, so an apprentice always becomes a technician at the end of the training period.

The hiring of technicians is done only in the first period and the start-up cost of hiring a

technician is $8000. In addition, each technician is paid $2000 and each apprentice costs

$1000 per month. On the other hand, 5% of the technicians quit at the end of each month.

Finally, the objective of CLS is to minimize the total labor cost incurred to meet the demand

in the next five months. The mathematical model of this problem is presented below:

(NMWS) min
5∑
i=1

1000xi +
5∑
i=1

2000yi + 8000y1

s.t. 160yi − 50xi ≥ di i ∈ {1, . . . , 5} (30)

0.95yi + xi = yi+1 i ∈ {1, . . . , 4} (31)

xi, yi ≥ 0 i ∈ {1, . . . , 5} , (32)

where yi represents the number of technicians, xi corresponds to the number of apprentices

in training, and di is the repair time demanded in period i ∈ {1, . . . , 5}. In practice, the

average working and training hours usually deviate from the estimated values because of

overtime, illness, vacations, and other factors. We have historical data for 120 months giving

the average working and training hours spent per technician each month. These data are

used to derive the frequencies in Table 4.

Note that the working hours range from 120 to 200, so the mean is 160 and the half-

length of the data range is 40. Similarly, for the training hours the mean is 50 and the

half-length of the data range is 20. Using this information from the historical data, we
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Table 4: Frequencies for Working (W.H.) and Training (T.H.) Hours

ζ1, ζ2 [-1 -0.8] [-0.8 -0.6] [-0.6 -0.4] [-0.4 -0.2] [-0.2 0] [0 0.2] [0.2 0.4] [0.4 0.6] [0.6 0.8] [0.8 1]
W.H. [120 128] [128 136] [136 144] [144 152] [152 160] [160 168] [168 176] [176 184] [184 192] [192 200]

freq.(ζ1) 0.02 0.04 0.1 0.1 0.2 0.3 0.1 0.1 0.02 0.02
T.H. [30 34] [34 38] [38 42] [42 46] [46 50] [50 54] [54 58] [58 62] [62 66] [66 70]

freq.(ζ2) 0.015 0.07 0.1 0.15 0.15 0.17 0.15 0.11 0.07 0.015

introduce uncertainty to constraint (30) as follows:

min
5∑
i=1

1000xi +
5∑
i=1

2000yi + 8000y1

s.t. Prζ{ζ ∈ [−1, 1]2 : (160 + 40ζ1) yi − (50 + 20ζ2)xi ≥ di,∀i ∈ {1, . . . , 5}} ≥ β (33)

(31), (32),

where ζ1 ∈ [−1, 1] and ζ2 ∈ [−1, 1] are the uncertain parameters, and β is the prescribed

probability bound. The frequencies of the working and training hours are scaled into the

frequencies of ζ1 and ζ2 in Table 4. Furthermore, the uncertain parameters are independent;

therefore, the joint frequencies can be derived similarly to the first experiment. The joint

uncertainty region is again divided into 100 (10 × 10) cells. Eventually, using our safe

approximation method, we find the tightest uncertainty set Z such that for any feasible

solution (x, y) of the RC:

(160 + 40ζ1) yi − (50 + 20ζ2)xi ≥ di, ∀i ∈ {1, . . . , 5} ,∀ζ ∈ Z, (34)

the joint chance constraint (33) is satisfied for the given probability bound β. In this ex-

periment we use the extension in §3.3.1, i.e., the safe approximation of the joint chance

constraint. The results are reported in Table 5.

The meanings of the columns in Table 5 are the same as for the first experiment. Note that

the optimal objective values for the nominal problem (NMWS) and the robust counterpart

for the full space of uncertainty (FRC) are 448105 and 621356, respectively (see the first

and last row of Table 5). The results show that when the probability bound is as low as

0.6, the optimal objective value calculated by the algorithm is 3% higher than that of the

nominal solution. Moreover, with respect to the nominal solution, we see a 14% increase in

the immunity to uncertainty in constraint (33), which is a considerable improvement for a

3% sacrifice in terms of the objective value. For the higher probability bounds of 0.92 and

0.94, the improvement in the optimal objective value of FRC is 12% and 11%, respectively.
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Table 5: Results for CLS Example
β γ(S, α∗) Ω BBΩ |V | − |S| Obj.

Nom. 0.49 0 0 50 448105
0.6 0.63 0.12 0∗∗ 44 462691
0.65 0.66 0.14 0∗∗ 43 465214
0.7 0.75 0.3 0.12 35 486434
0.75 0.77 0.32 0.12 34 489222
0.8 0.8 0.38 0.33 31 497782
0.85 0.86 0.5 0.38 25 515830
0.9 0.9 0.56 0.55 22 525351
0.91 0.91 0.58 0.55 21 528603
0.92 0.94 0.7 0.66 15 548988
0.93 0.94 0.7 0.66 15 548987
0.94 0.94 0.72 0.8 14 552538
0.95 0.95 0.74 0.8 13 556134
0.96 0.96 0.78 0.85 11 563468
0.97 0.98 0.9 0.9 5 586672
0.98 0.98 0.94 0.93 3 594834
0.99 0.99 0.98 0.95 1 603225
FRC 1 >1.41∗∗∗ 1 0 621356

∗ α = 0.001, ∗∗ 1.9×10−8 ≈ 0, ∗∗∗
√

2 ≈ 1.41

Furthermore, for the probability bound of 0.98, the algorithm improves the objective value

of FRC by 4% and the solution is robust to at least 98.3% of the uncertainty. It is clear that

when the probability bound β increases, we remove fewer cells from the initial uncertainty

region and the radius Ω of BBΩ gets larger. Ultimately, the decision maker must make the

decision by looking at the results in Table 5 and choosing the best option for CLS.

Later in this example, we consider the extension in §3.3.3, i.e., using the box instead

of the ellipsoid as the starting uncertainty set of our algorithm. Note that we apply this

extension to the same problem. In addition, we test the new approach for the same data

set and when the inputs of the algorithm such as the number of cells and step size ω are

held constant. The numerical results are presented in Table 6. The symbol (∗) denotes an

instance where using the box yields a better optimal objective value than using the ellipsoid

for a given probability bound β.

The numerical results reveal that using the box or the ellipsoid as the starting uncer-

tainty set yields similar optimal objective values, e.g, the highest difference between optimal

objective values of two approaches is around 1%. Nevertheless, using the ellipsoid is more
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Table 6: Results for CLS Example (Box)
β γ(S, α∗) Ω |V | − |S| Obj.

Nom. 0.49 0 50 448105
0.6 0.63 0.1 44 461039(∗)
0.65 0.66 0.12 43 463715(∗)
0.7 0.78 0.3 33 489236
0.75 0.78 0.3 33 489236
0.8 0.80 0.34 31 495286(∗)
0.85 0.90 0.5 22 521022
0.9 0.90 0.5 22 521022
0.91 0.91 0.52 21 524423(∗)
0.92 0.96 0.7 11 557107
0.93 0.96 0.7 11 557107
0.94 0.96 0.7 11 557107
0.95 0.96 0.7 11 557107
0.96 0.96 0.7 11 557107(∗)
0.97 1 0.9 0 598402
0.98 1 0.9 0 598402
0.99 1 0.9 0 598402(∗)
FRC 1 >1.41∗∗ 0 621356

∗ α = 0.001, ∗∗
√

2 ≈ 1.41

flexible in finding the final tight uncertainty sets for the CLS problem. For instance, if the

probability bound is in between 0.92 and 0.96 or higher than 0.96, then the safe approxi-

mation method using the box finds only one uncertainty set for each of the cases; whereas,

the results in Table 5 show that the safe approximation method using the ellipsoid finds a

unique tight uncertainty set for each of the probability bounds (except 0.92 and 0.93).

4.3 Optimization of Cross-Docking Distribution Center

Our method can also be applied to the area of robust optimization via (computer) exper-

iments. For a detailed treatment, see [17]. The problem is to find settings for a number

of design variables (x ∈ Rn) such that a given objective is optimized and the performance

constraints are met with a prescribed probability. One has to work with probabilities since

uncontrollable noise factors (ζ ∈ Rm) influence the performance. Using (computer) experi-

ments in which both the design variables and the noise factors are varied, response functions

(or metamodels), ŷi(x, ζ), can be developed. The constraint now becomes

Prζ{ζ ∈ [−1, 1]2 : ŷi(x, ζ) ≤ θi, ∀i} ≥ β.
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One commonly followed approach is to replace each constraint by

Eζ [ŷi(x, ζ)] + κ
√

Vζ [ŷi(x, ζ)] ≤ θi,

where κ is such that Pr(X ≤ κ) ≥ β, where X is a standard normally distributed variable.

For a recent real-life application see [22].

A disadvantage of this approach is that one has to assume that ζ is normally distributed

with a known mean and variance. Second, one has to assume that ŷi(x, ζ) is normally dis-

tributed, which is probably not the case when ŷi(x, ζ) is nonlinear in ζ. Moreover, to guar-

antee the joint probability constraint, one has to apply Bonferroni to get probability bounds

for each constraint separately. The resulting constraints are conservative. Our method offers

an alternative way to deal with the uncertain noise factors. It does not require a normality

assumption and does not use Bonferroni. Moreover, our method explicitly uses historical

observations of ζ. Observe that the number of noise factors in practice is often low (usually

up to 5), which is ideal for our approach.

In this example we focus on the robust response model of a cross-docking distribution

center (CDDC); see [21]. The associated research is motivated by the desire of a third-

party logistics (TPL) company to improve its supply chain management. As background

information, TPL distributes units from part suppliers (PSs) to an assembly plant (AP)

that manufactures automobiles. There are five decision factors (DFs) and two environmental

factors (EFs) affecting the system. The EFs are primitive sources of the uncertainty; they

are the quantity variability and the suppliers’ production interruption probability. The DFs

are the number of receiving doors, shipping doors, forklifts, conveyors, and threshold parts;

these factors are under the control of the users. Note that the DFs are denoted by the coded

variables xi ∈ [−1, 1], i ∈ {1, . . . , 5}; the EFs are denoted by ζj ∈ [−1, 1] where j ∈ {1, 2}.
Because of an estimated demand growth rate of 10% to 15%, a new AP will be established.

When the two APs operate simultaneously, the CDDC will not be able to maintain a steady

distribution to the APs. Therefore, the CDDC’s internal operations must be optimized to

satisfy the AP demand under supply uncertainty. Based on simulation results, [21] derives

response functions of the performance measures to be used in the mathematical optimization

problem. These measures are the dwelling time (DT) in the temporary storage area, the total

throughput (TT) of the CDDC, and the quantities that exceed the threshold time (ET) in
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the temporary storage area. We focus on the following chance constrained problem:

(CTPL) max Eζ [TT (x, ζ)]

s.t. Prζ{ζ ∈ [−1, 1]2 : ŷDT (x, ζ) ≤ 20, ŷET (x, ζ) ≤ 40000} ≥ β (35)

− 1 ≤ xi ≤ 1 ∀i ∈ {1, . . . , 5}, (36)

where ŷDT and ŷET are the response functions of DT and ET, respectively, and Z is the

uncertainty set. The response functions are polynomials in xi but linear in terms of the

uncertain parameters ζi. For complete formulas of the response functions see Appendix

B.2.1. The objective of (CTPL) is to minimize the expected TT denoted by Eζ [TT (x, ζ)],

and (CTPL) is an NLP since the response functions are nonlinear in x. We apply our safe

approximation method to find an uncertainty set Z such that for any feasible solution x ∈ R5

of the RC:

ŷDT (x, ζ) ≤ 20, ∀ζ ∈ Z (37)

ŷET (x, ζ) ≤ 40000, ∀ζ ∈ Z, (38)

the joint chance constraint (35) is satisfied for the given probability bound β.

Similarly to the earlier experiments, the uncertainty space is divided into 100 (10 × 10)

cells. Furthermore, the uncertain parameters ζ1 and ζ2 are assumed to be independent and

normally distributed in [21]. These assumptions are not essential for our approach, but we

have used them for the sake of comparison. Thus, random data for ζ1 and ζ2 are obtained

from N(20, 5) and N(0.02, 0.01) with a sample size of 1000, respectively, and scaled to the

interval [−1, 1]. Table 7 presents the results of the experiment.

The optimal objective value of the nominal problem is 496597. Moreover, the probability

bound satisfied by this solution is 0.49. In other words, the joint uncertain constraint will

not be satisfied with 51% probability, when x is fixed to the nominal solution in (35).

The target expected total throughput (TT) of the TPL Company is 480000 [21]. Our

results in Table 7 show that this target can be satisfied for a probability bound as high as

0.81. In addition, the immunity to 81% of the uncertainty is significantly better than that

provided by the nominal solution. Between the nominal solution and the solution satisfying

a bound of 0.8, the optimal objective value decreases by 3%, while there is a 32% increase in

the immunity to uncertainty. On the other hand, for probability bounds above 0.9, we can

no longer satisfy the target. For instance, our optimal solution can not satisfy 5% of 480000,

when the prescribed probability is 0.99.
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Table 7: Results for CDDC Example
β γ(S, α∗) Ω BBΩ |V | − |S| Obj.

Nom. 0.49 0 0 50 496597
0.6 0.62 0.1 0∗∗ 44 491096
0.7 0.72 0.18 0.21 40 486534
0.8 0.81 0.27 0.21 36 481507
0.9 0.9 0.44 0.61 31 472870
0.91 0.92 0.46 0.61 29 471925
0.92 0.92 0.46 0.61 29 471925
0.93 0.94 0.51 0.74 23 469386
0.94 0.94 0.51 0.74 23 469386
0.95 0.95 0.56 0.74 20 467129
0.96 0.96 0.62 0.83 18 464540
0.97 0.97 0.66 0.83 15 462884
0.975 0.98 0.71 0.9 12 460890
0.98 0.98 0.76 0.91 10 458977
0.99 0.99 0.86 0.94 6 455381
FRC 1 >1.41∗∗∗ 1 0 445172

∗ α = 0.001, ∗∗ 2× 10−8 ≈ 0, ∗∗∗
√

2 ≈ 1.41

The trade-off between the probability guarantee and the optimal objective value is clear

in the reported results. Using the solutions in Table 7, the decision maker can select the best

strategy for the new distribution system. This could involve accepting a small reduction

from the expected target for the sake of a higher probability guarantee, or satisfying the

target with a lower guarantee.

Dependent Data. Later in this example, we use the dependent data that is presented in

Table 13; see Appendix B.2.2. The data is obtained using a bivariate normal distribution by

post-processing the “tail” cells that have less observations. The values in Table 13 correspond

to the number of observations in the associated cells and the sample size is 3033, hence the

frequency of a cell can be calculated by dividing the number of observations in the associated

cell to the sample size. The total number of cells is again 100.

According to the given data, we apply our safe approximation method to the CDDC

problem and the numerical results are reported in Table 8. The uncertainty sets that are

reported in Table 8 are larger than the ones provided in Table 7. This is because of three

reasons: First is the data structure, e.g., extensive data locate on the corners of the uncer-

tainty region, namely, the top-left and the bottom-right corners in Table 13. Second, the

ρ value in constraint (5) increases, since the degrees of freedom increases. Note that the
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Table 8: Results for Dependent Data
β γ(S, α∗) Ω BBΩ |V | − |S| Obj.

Nom. 0.36 0 0 50 496597
0.6 0.62 0.24 0.06 37 483161
0.7 0.71 0.45 0.26 30 472397
0.8 0.81 0.51 0.36 23 469387
0.9 0.90 0.71 0.52 12 460890
0.91 0.91 0.75 0.53 11 459354
0.92 0.93 0.81 0.57 8 457143
0.93 0.94 0.86 0.57 6 455382
0.94 0.95 0.99 0.74 3 451126
0.95 0.95 1.04 0.8 1 449603
0.96 1 1.09 0.81 0 448139
0.97 1 1.09 0.81 0 448139
0.98 1 1.09 0.81 0 448139
0.99 1 1.09 0.81 0 448139
FRC 1 >1.41∗∗ 1 0 445172

∗ α = 0.001, ∗∗
√

2 ≈ 1.41

degrees of freedom is 99 for the dependent case; whereas it is 81 for the independent case.

Third, the sample size of the dependent data is smaller than that of the independent data.

As a result, to satisfy the same probability guarantees we require larger uncertainty sets.

Note that a larger uncertainty sets implies a conservative RC and this is why the optimal

objective values in Table 8 are lower than the ones in Table 7. Nevertheless, we still have

significant improvements to the nominal solution. For instance, the solution satisfying a

bound of 0.6 has 26% higher immunity to uncertainty than that of the nominal solution and

it is a considerable improvement for a 2.7% loss in the optimal objective value. For proba-

bility bounds that are higher than 0.95, the safe approximation method finds the same tight

uncertainty set yielding the probability bound of one (using the discretization and the center

point assumption of the safe approximation method). Furthermore, the optimal objective

value of the RC with BB1.09 is 0.6% higher than the worst-case optimal 445172 given by

FRC.

To conclude, it is clear that using the safe approximation method yields significant im-

provements to the immunity to uncertainty, provided by the nominal solution, for relatively

small losses in terms of the optimal objective value.
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4.4 Optimizing Color Picture Tube

In the manufacturing process of a standard television, the color picture tube is assembled to

the other components using a manufacturing oven. The oven temperature causes thermal

stresses on different points of the tube and if the temperature is too high, it will scrap the

tube due to implosions. Figure 5 taken from [11] gives an example of a temperature profile

on a tube.

Figure 5: Temperature Profile

To minimize the cost and hence the number of scraps, the manufacturer would like to

make an optimal temperature profile such that the temperatures are in the specified range,

the temperature differences between near locations are not too high and the maximal stress

for the TV tube is minimal. Den Hertog and Stehouwer [11] formulated the associated

problem as follows:

min smax

s.t. ak + bTk x− smax ≤ 0 ∀k ∈ {1, . . . , K} (39)

−4Tmax ≤ Ax ≤ 4Tmax (40)

l ≤ x ≤ u, (41)

where smax ∈ R is the maximal stress, ak + bTk x ∈ R is the stress at location k, i.e., linear in

x, and x ∈ Rn represents the vector of temperatures. The vectors l ∈ Rn and u ∈ Rn are the

lower and upper bounds of the decision variables, respectively. The parameter 4Tmax ∈ Rd

represents the maximal allowed temperature on d location combinations. A ∈ Rd×n coincides

with the coefficients in the linear constraints that enforce the specified temperatures do not
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differ more than 4Tmax. There are 20 temperature points on the TV tube and hence n = 20;

see Figure 5. Furthermore, these temperatures result in 216 thermal stresses on different

parts of the tube so K = 216. The response functions of the thermal stresses, ak + bTk x,

are derived by using FEM simulator and regression in [11]. In this example, we use the

same response functions, but the decision variable xi is replaced by xi(1 + ζj), where ζj is

the multiplicative uncertain parameter, i.e., commonly referred as the implementation error

(e.g., ζj = 0.2 means 20% implementation error in xi).

According to the proximity of the temperature points, we form the following six sub-

groups:

j 1 2 3 4 5 6
T (j) {1} {2,5,10} {3,6,7,8} {4,9,14} {11,12,13} {15,16,17,18,19,20}

T (j) denotes the set of indices of the decision variable(s) that are assumed to be affected

by the same uncertain parameter ζj. This is a valid assumption since closer points in the

TV tube have similar temperatures in practice. Eventually, using the safe approximation

method, our objective is to find the tightest uncertainty set Z for the RC:

min smax

s.t. ak +
6∑
j=1

∑
i∈T (j)

bikxi(1 + ζj)− smax ≤ 0 ∀k ∈ {1, . . . , K}, ∀ζ ∈ Z (42)

(40), (41),

such that the joint chance constraint:

Prζ
{
ζ ∈ [−1, 1]6 : ak +

6∑
j=1

∑
i∈T (j)

bikxi(1 + ζj) ≤ smax, ∀k ∈ {1, . . . , K}
}
≥ β (43)

is satisfied for any feasible RC solution (x, smax), where β is the given probability bound.

The RC problem has 21 decision variables including smax, six primitive uncertain parameters,

216 linear uncertain constraints (i.e., given by constraint (42)) and 56 linear constraints (i.e.,

given by constraints (40) and (41)).

Data. The data for implementation errors are invented by us and the data range is

divided to five equal intervals. The frequencies of the associated intervals are shown in Table

14 and 15; see Appendix B.3, we have the same frequencies in two different data ranges

that are: [-.1, .1] and [-.2, .2]. These ranges correspond to 10% and 20% implementation

errors, respectively. In addition, we assume the uncertain parameters are independent and
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hence the frequency of a cell may be found by multiplying the frequencies of the associated

intervals for (ζ1, ζ2, ζ3, ζ4, ζ5, ζ6). The total number of cells in the joint uncertainty space is

15625 (56).

The numerical results are shown in Table 9 and Table 10. In both tables, it is easy to see

Table 9: TV Tube Example (10% Imp. Err.)
β γ(S, α∗) Ω |V | − |S| Obj.

Nom 0∗∗ 0 15625 14.14
0.3 0.3 0.56 12642 14.4
0.35 0.35 0.6 11967 14.42
0.4 0.41 0.64 11245 14.44
0.45 0.46 0.68 10447 14.45
0.5 0.53 0.72 9547 14.47
0.6 0.63 0.78 8031 14.5
0.7 0.71 0.84 6753 14.52
0.75 0.76 0.88 5938 14.54
0.8 0.82 0.94 4772 14.56
0.85 0.85 0.98 4046 14.58
0.9 0.91 1.06 2833 14.61
0.92 0.93 1.1 2321 14.63
0.95 0.95 1.16 1648 14.65
0.96 0.97 1.2 1300 14.67
0.97 0.97 1.22 1140 14.68
0.98 0.98 1.28 736 14.7
0.99 0.99 1.34 455 14.73
FRC 1 >2.45∗∗∗ 0 14.91

∗ α = 0.001, ∗∗ 2×10−8 ≈ 0, ∗∗∗
√

6 ≈ 2.45

that the nominal solution is not immune to the implementation errors. To be more precise, if

the decision variables (x, smax) are fixed to the nominal solution in the joint chance constraint

(43), then the left-hand side probability is almost zero (i.e., 2× 10−8). This means that the

ζ values that are feasible for the joint constraint, are realized with almost zero probability.

This is why implementing the nominal solution can be a risky decision in practice, but using

the safe approximation method we can find significantly better solutions.

Numerical results in Table 9 show: Between the nominal solution and the solution sat-

isfying a bound of 0.3, the optimal objective value increases by 1.8%, while there is a 30%

increase in the immunity to uncertainty. In addition, the solution satisfying a bound of 0.85

has an optimal objective value that is 3% higher than that of the nominal solution. These
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are significant improvements in the immunity to uncertainty for the losses in the optimal

objective value.

Table 10: TV Tube Example (20% Imp. Err.)
β γ(S, α∗) Ω |V | − |S| Obj.

Nom. 0∗∗ 0 15625 14.14
0.3 0.31 0.56 12626 14.64
0.35 0.37 0.6 11857 14.67
0.4 0.43 0.64 11015 14.7
0.45 0.46 0.66 10593 14.72
0.5 0.53 0.7 9680 14.75
0.6 0.63 0.76 8078 14.8
0.7 0.71 0.82 6640 14.85
0.75 0.75 0.86 5906 14.87
0.8 0.82 0.92 4594 14.92
0.85 0.86 0.96 3776 14.95
0.9 0.9 1.02 2827 14.99
0.92 0.92 1.06 2286 15.02
0.95 0.95 1.14 1463 15.07
0.96 0.97 1.18 1114 15.1
0.97 0.97 1.2 950 15.11
0.98 0.98 1.24 676 15.13
0.99 0.99 1.3 372 15.17
FRC 1 > 2.45∗∗∗ 0 15.44

∗ α = 0.001, ∗∗ 2×10−8 ≈ 0, ∗∗∗
√

6 ≈ 2.45

Note that when we increase the implementation errors from %10 to %20, then the variance

from the nominal case increases and we require larger tight uncertainty sets to satisfy the

same probability bounds. This is why the number of cells removed from the full space of

uncertainty is fewer when the implementation errors are higher; see the fourth columns of

Table 9 and 10. A larger tight uncertainty set implies a more restrictive RC and hence the

optimal objective values shown in Table 10 are on average 2.2% higher than those provided

in Table 9. The lowest difference between two optimal objectives, i.e., 1.7%, is obtained at

0.3 probability bound, and the highest, i.e., 2.9%, is obtained at 0.99, and there is a gradual

increase in between.
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5. Conclusions

In this paper, we have proposed new safe approximations for joint chance constraints. Us-

ing historical data and goodness-of-fit statistics based on φ-divergence, we constructed the

uncertainty sets that are used in safe approximations. The numerical results show that our

approach yields tighter uncertainty sets, and therefore better objective values than the ex-

isting method, for the same probability guarantees, especially when the number of uncertain

parameters is low. In addition, we do not impose the assumptions that the uncertain param-

eters are independent or certain moments are known. Last but not least, the new approach

can also handle nonlinear inequalities.

It is important to observe that the computational performance of our approach is highly

dependent on the number of uncertain parameters. Furthermore, we may require many

data points, especially when the uncertain parameters are dependent and the number of

uncertain parameters is high, and this data requirement may be hard to manage in practice.

In future research, we will investigate the improvement of our approach in such situations.

The extension of our approach to simulation based optimization and nonlinear problems will

also be further analyzed in future research.
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Appendix

A. Proofs of Theorems

A.1 Proof of Theorem 1

The objective function of (P) can be rewritten as
∑
i∈V

aipi, where

ai =

{
1, i ∈ S
0, otherwise.

Then we can derive the Lagrangian function as follows:

L(p, η, λ) =
∑
i∈V

aipi + λ

(∑
i∈V

pi − 1

)
+ η (Iφ(p, q)− ρ)

= −ηρ− λ+
∑
i∈V

[(λ+ ai)pi] + ηIφ(p, q).

The corresponding Lagrangian objective function is as follows:

g(λ, η) = min
p≥0

L(p, η, λ)

= −ηρ− λ+ min
p≥0

{∑
i∈V

[
(λ+ ai)pi + ηqiφ

(
pi
qi

)]}

= −ηρ− λ+ min
p≥0

{∑
i∈V

−ηqi
[
−(λ+ ai)

η

pi
qi
− φ

(
pi
qi

)]}
.

In the last term of the above formulation we have used (1). Then the Lagrangian objective

is equivalent to the following:

g(λ, η) = −ηρ− λ−max
p≥0

{∑
i∈V

ηqi

[(
−λ− ai

η

)
pi
qi
− φ

(
pi
qi

)]}

= −ηρ− λ−
∑
i∈V

ηqi max
p≥0

{[(
−λ− ai

η

)
pi
qi
− φ

(
pi
qi

)]}
= −ηρ− λ− η

∑
i∈V

[
qiφ
∗
(
−λ+ ai

η

)]

= −ηρ− λ− η

∑
i∈S

qiφ
∗
(
−λ+ 1

η

)
+
∑
i∈V \S

qiφ
∗
(
−λ
η

) ,
where

φ∗ (s) := sup
t≥0
{st− φ (t)} .
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Finally, the Lagrangian Dual Problem is the maximization problem presented below:

(LD) max
η≥0, λ

{g(λ, η)}

= max
η≥0, λ

−ηρ− λ− η
∑
i∈S

qiφ
∗
(
−λ+ 1

η

)
+
∑
i∈V \S

qiφ
∗
(
−λ
η

) .

2

A.2 Proof of Theorem 2

Let (p̂, p̂(1), . . . , p̂(`)) be a feasible solution of (IP). If we prove that p̂ ∈ Rm1m2···m` of

(p̂, p̂(1), . . . , p̂(`)) are feasible for (P), then we can conclude that (P) is a reduced relaxation

of (IP).

To begin with, let V = V1 × V2...× V`, m− 1 = (m1 − 1)(m2 − 1) . . . (m` − 1) and N =

N1N2 . . . N`. Then, constraint (8) in (IP) coincides with constraint (5) in (P). In addition,

constraints (9) and (10) imply that the p̂ values sum up to 1. Moreover, from constraints

(10) and (11) in (IP), it is easy to verify that p̂i1,i2,...,i` ≥ 0 for all i = (i1, . . . , i`) ∈ V . As a

result, p̂ satisfy all the constraints in (P).

2

B. Data and Additional Results

B.1 Extra Results for Example 4.1

Table 11: Kullback-Leibler Distance
β γ(S, α∗) Ω BBΩ |V | − |S| Obj. Ωacc Objacc. %Improv.

Nom. 0.5 0 0 45 10 - - -
0.60 0.69 0.29 0.03 28 8.30 1.35 5.11 62
0.70 0.78 0.43 0.22 21 7.67 >1.41 5 53.4
0.80 0.86 0.57 0.35 15 7.13 >1.41 5 42.5
0.90 0.92 0.71 0.64 10 6.66 >1.41 5 33.2
0.91 0.92 0.71 0.64 10 6.66 >1.41 5 33.2
0.92 0.96 0.85 0.72 6 6.25 >1.41 5 24.9
0.93 0.96 0.85 0.72 6 6.25 >1.41 5 24.9
0.94 0.96 0.85 0.72 6 6.25 >1.41 5 24.9
0.95 0.96 0.85 0.72 6 6.25 >1.41 5 24.9
0.96 0.98 0.99 0.89 3 5.88 >1.41 5 17.6
0.97 0.98 0.99 0.89 3 5.88 >1.41 5 17.6
0.98 0.98 0.99 0.89 3 5.88 >1.41 5 17.6
0.98 0.99 1.14 0.95 1 5.54 >1.41 5 10.7
0.99 1 1.28 0.98 0 5 >1.41 5 0

1 - - - 5 - - -
∗ α=0.001
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Table 12: Hellinger Distance
β γ(S, α∗) Ω BBΩ |V | − |S| Obj. Ωacc Objacc. %Improv.

Nom. 0.5 0 0 45 10 - - -
0.60 0.66 0.29 0.03 28 8.30 1.35 5.11 62
0.70 0.75 0.43 0.22 21 7.67 >1.41 5 53.4
0.80 0.83 0.57 0.35 15 7.13 >1.41 5 42.5
0.90 0.94 0.85 0.64 6 6.25 >1.41 5 24.9
0.91 0.94 0.85 0.64 6 6.25 >1.41 5 24.9
0.92 0.94 0.85 0.64 6 6.25 >1.41 5 24.9
0.93 0.94 0.85 0.64 6 6.25 >1.41 5 24.9
0.94 0.96 0.99 0.89 3 5.88 >1.41 5 17.6
0.95 0.96 0.99 0.89 3 5.88 >1.41 5 17.6
0.96 0.96 0.99 0.89 3 5.88 >1.41 5 17.6
0.97 0.98 1.14 0.95 1 5.54 >1.41 5 10.7
0.98 0.98 1.14 0.95 1 5.54 >1.41 5 10.7
0.99 1 1.27 0.98 0 5 >1.41 5 0

1 - - - - 5 - - -
∗ α=0.001

B.2 Example 4.3

B.2.1 Response Functions

Eζ [TT (x, ζ)] =− 479700− 39819.17 ∗ x(1)− 20253.25 ∗ x(2) + 312.12 ∗ x(3)− 7339.86 ∗ x(4)− 339.78 ∗ x(5)−
7895.49 ∗ x(1) ∗ x(2)− 121.06 ∗ x(1) ∗ x(3)− 33.75 ∗ x(1) ∗ x(4) + 21.24 ∗ x(1) ∗ x(5)−
7.36 ∗ x(2) ∗ x(3) + 649.55 ∗ x(2) ∗ x(4) + 1136.31 ∗ x(2) ∗ x(5) + 788.4 ∗ x(3) ∗ x(4)+

407.64 ∗ x(3) ∗ x(5)− 1101.55 ∗ x(4) ∗ x(5) + 34063.49 ∗ x(1)2 + 17810.89 ∗ x(2)2+

108.13 ∗ x(3)2 + 10333.23 ∗ x(4)2 − 1107.72 ∗ x(5)2.

ŷDT (x, ζ) =− 8.57 + 1.2 ∗ x(1) + 2.04 ∗ x(2)− 0.17 ∗ x(3) + 0.78 ∗ x(4) + 3.30 ∗ x(5)− 0.44 ∗ x(1) ∗ x(2)+

0.29 ∗ x(1) ∗ x(3)− 0.26 ∗ x(1) ∗ x(4) + 0.33 ∗ x(1) ∗ x(5) + 0.21 ∗ x(2) ∗ x(3)− 0.45 ∗ x(2) ∗ x(4)+

0.55 ∗ x(2) ∗ x(5)− 0.061 ∗ x(3) ∗ x(4) + 0.062 ∗ x(3) ∗ x(5) + 0.35 ∗ x(4) ∗ x(5)− 0.63 ∗ x(1)2−

1.27 ∗ x(2)2 + 0.19 ∗ x(3)2 − 0.25 ∗ x(4)2 − 0.11 ∗ x(5)2+

{7.11 + 0.78 ∗ x(1) + 1.63 ∗ x(2)− 0.081 ∗ x(3) + 0.57 ∗ x(4) + 2.72 ∗ x(5)} ∗ ζ1+

{3.21 + 0.46 ∗ x(1) + 0.49 ∗ x(2)− 0.073 ∗ x(3) + 0.16 ∗ x(4) + 1.17 ∗ x(5)} ∗ ζ2 ≤ 0.

ŷET (x, ζ) =− 7517.8 + 10256.36 ∗ x(1) + 13753.61 ∗ x(2)− 300.42 ∗ x(3) + 4379.24 ∗ x(4) + 52.43 ∗ x(5)+

5415.96 ∗ x(1) ∗ x(2) + 437.38 ∗ x(1) ∗ x(3) + 214.75 ∗ x(1) ∗ x(4) + 597.11 ∗ x(1) ∗ x(5)−
97.79 ∗ x(2) ∗ x(3)− 1618.36 ∗ x(2) ∗ x(4)− 724.67 ∗ x(2) ∗ x(5)− 1639.28 ∗ x(3) ∗ x(4)−
1243.25 ∗ x(3) ∗ x(5) + 1728.59 ∗ x(4) ∗ x(5)−

1118.43 ∗ x(1)2 − 1072.35 ∗ x(2)2 + 226.71 ∗ x(3)2 − 372.2 ∗ x(4)2 + 148.92 ∗ x(5)2+

{36087.44 + 13066.74 ∗ x(1) + 17605.17 ∗ x(2)− 739.11 ∗ x(3) + 5944.33 ∗ x(4) + 446.33 ∗ x(5)} ∗ ζ1+

{−10868− 3824.22 ∗ x(1)− 5975.83 ∗ x(2) + 209.48 ∗ x(3)− 2506.4 ∗ x(4)− 579.61 ∗ x(5)} ∗ ζ2 ≤ 0.
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B.2.2 Dependent Data Set

Table 13: Dependent Data used in Example 4.3
ζ2

Cells 1 2 3 4 5 6 7 8 9 10

ζ1

1 66 30 27 23 9 5 5 5 5 5
2 53 35 38 23 8 13 5 5 5 5
3 42 28 53 35 44 28 17 6 5 5
4 32 35 44 79 81 49 26 28 9 5
5 28 23 53 85 86 70 69 31 14 13
6 15 15 41 46 83 102 83 67 23 20
7 5 6 12 36 46 75 73 51 38 30
8 5 8 5 14 30 49 65 43 38 42
9 5 5 5 7 15 20 25 34 28 56
10 5 5 5 5 5 12 15 28 15 79

(∗) N = 3033

B.3 Data Set of Example 4.4

Table 14: Data Set 1 (10% Imp. Err.)
[-.1 -.06] [-.06 -.02] [-.02 .02] [.02 .06] [.06 .1]

ζ1 0.1 0.21 0.29 0.22 0.18
ζ2 0.09 0.18 0.38 0.23 0.12
ζ3 0.13 0.23 0.3 0.17 0.17
ζ4 0.11 0.22 0.31 0.24 0.12
ζ5 0.09 0.2 0.28 0.23 0.2
ζ6 0.17 0.22 0.23 0.2 0.18
(∗) Nj = 100 ∀j ∈ {1, . . . , 6}

Table 15: Data Set 2 (20% Imp. Err.)
[-.2 -.12] [-.12 -.04] [-.04 .04] [.04 .12] [.12 .2]

ζ1 0.1 0.21 0.29 0.22 0.18
ζ2 0.09 0.18 0.38 0.23 0.12
ζ3 0.13 0.23 0.3 0.17 0.17
ζ4 0.11 0.22 0.31 0.24 0.12
ζ5 0.09 0.2 0.28 0.23 0.2
ζ6 0.17 0.22 0.23 0.2 0.18
(∗) Nj = 100 ∀j ∈ {1, . . . , 6}
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