10,723 research outputs found

    AmIE: An Ambient Intelligent Environment for Assisted Living

    Full text link
    In the modern world of technology Internet-of-things (IoT) systems strives to provide an extensive interconnected and automated solutions for almost every life aspect. This paper proposes an IoT context-aware system to present an Ambient Intelligence (AmI) environment; such as an apartment, house, or a building; to assist blind, visually-impaired, and elderly people. The proposed system aims at providing an easy-to-utilize voice-controlled system to locate, navigate and assist users indoors. The main purpose of the system is to provide indoor positioning, assisted navigation, outside weather information, room temperature, people availability, phone calls and emergency evacuation when needed. The system enhances the user's awareness of the surrounding environment by feeding them with relevant information through a wearable device to assist them. In addition, the system is voice-controlled in both English and Arabic languages and the information are displayed as audio messages in both languages. The system design, implementation, and evaluation consider the constraints in common types of premises in Kuwait and in challenges, such as the training needed by the users. This paper presents cost-effective implementation options by the adoption of a Raspberry Pi microcomputer, Bluetooth Low Energy devices and an Android smart watch.Comment: 6 pages, 8 figures, 1 tabl

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Wellness Protocol: An Integrated Framework for Ambient Assisted Living : A thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy In Electronics, Information and Communication Systems At School of Engineering and Advanced Technology, Massey University, Manawatu Campus, New Zealand

    Get PDF
    Listed in 2016 Dean's List of Exceptional ThesesSmart and intelligent homes of today and tomorrow are committed to enhancing the security, safety and comfort of the occupants. In the present scenario, most of the smart homes Protocols are limited to controlled activities environments for Ambient Assisted Living (AAL) of the elderly and the convalescents. The aim of this research is to develop a Wellness Protocol that forecasts the wellness of any individual living in the AAL environment. This is based on wireless sensors and networks that are applied to data mining and machine learning to monitor the activities of daily living. The heterogeneous sensor and actuator nodes, based on WSNs are deployed into the home environment. These nodes generate the real-time data related to the object usage and other movements inside the home, to forecast the wellness of an individual. The new Protocol has been designed and developed to be suitable especially for the smart home system. The Protocol is reliable, efficient, flexible, and economical for wireless sensor networks based AAL. According to consumer demand, the Wellness Protocol based smart home systems can be easily installed with existing households without any significant changes and with a user-friendly interface. Additionally, the Wellness Protocol has extended to designing a smart building environment for an apartment. In the endeavour of smart home design and implementation, the Wellness Protocol deals with large data handling and interference mitigation. A Wellness based smart home monitoring system is the application of automation with integral systems of accommodation facilities to boost and progress the everyday life of an occupant

    On the Integration of Adaptive and Interactive Robotic Smart Spaces

    Get PDF
    © 2015 Mauro Dragone et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)Enabling robots to seamlessly operate as part of smart spaces is an important and extended challenge for robotics R&D and a key enabler for a range of advanced robotic applications, such as AmbientAssisted Living (AAL) and home automation. The integration of these technologies is currently being pursued from two largely distinct view-points: On the one hand, people-centred initiatives focus on improving the user’s acceptance by tackling human-robot interaction (HRI) issues, often adopting a social robotic approach, and by giving to the designer and - in a limited degree – to the final user(s), control on personalization and product customisation features. On the other hand, technologically-driven initiatives are building impersonal but intelligent systems that are able to pro-actively and autonomously adapt their operations to fit changing requirements and evolving users’ needs,but which largely ignore and do not leverage human-robot interaction and may thus lead to poor user experience and user acceptance. In order to inform the development of a new generation of smart robotic spaces, this paper analyses and compares different research strands with a view to proposing possible integrated solutions with both advanced HRI and online adaptation capabilities.Peer reviewe

    Position paper on realizing smart products: challenges for Semantic Web technologies

    Get PDF
    In the rapidly developing space of novel technologies that combine sensing and semantic technologies, research on smart products has the potential of establishing a research field in itself. In this paper, we synthesize existing work in this area in order to define and characterize smart products. We then reflect on a set of challenges that semantic technologies are likely to face in this domain. Finally, in order to initiate discussion in the workshop, we sketch an initial comparison of smart products and semantic sensor networks from the perspective of knowledge technologies

    Activities recognition and worker profiling in the intelligent office environment using a fuzzy finite state machine

    Get PDF
    Analysis of the office workers’ activities of daily working in an intelligent office environment can be used to optimize energy consumption and also office workers’ comfort. To achieve this end, it is essential to recognise office workers’ activities including short breaks, meetings and non-computer activities to allow an optimum control strategy to be implemented. In this paper, fuzzy finite state machines are used to model an office worker’s behaviour. The model will incorporate sensory data collected from the environment as the input and some pre-defined fuzzy states are used to develop the model. Experimental results are presented to illustrate the effectiveness of this approach. The activity models of different individual workers as inferred from the sensory devices can be distinguished. However, further investigation is required to create a more complete model

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Non-Invasive Ambient Intelligence in Real Life: Dealing with Noisy Patterns to Help Older People

    Get PDF
    This paper aims to contribute to the field of ambient intelligence from the perspective of real environments, where noise levels in datasets are significant, by showing how machine learning techniques can contribute to the knowledge creation, by promoting software sensors. The created knowledge can be actionable to develop features helping to deal with problems related to minimally labelled datasets. A case study is presented and analysed, looking to infer high-level rules, which can help to anticipate abnormal activities, and potential benefits of the integration of these technologies are discussed in this context. The contribution also aims to analyse the usage of the models for the transfer of knowledge when different sensors with different settings contribute to the noise levels. Finally, based on the authors’ experience, a framework proposal for creating valuable and aggregated knowledge is depicted.This research was partially funded by Fundación Tecnalia Research & Innovation, and J.O.-M. also wants to recognise the support obtained from the EU RFCS program through project number 793505 ‘4.0 Lean system integrating workers and processes (WISEST)’ and from the grant PRX18/00036 given by the Spanish Secretaría de Estado de Universidades, Investigación, Desarrollo e Innovación del Ministerio de Ciencia, Innovación y Universidades

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work
    corecore