3,770 research outputs found

    Cervical Cancer Treatment using AI

    Get PDF
    In cervical cancer treatment, radiation therapy is selected based on the degree of tumor progression, and radiation oncologists are required to delineate tumor contours. To reduce the burden on radiation oncologists, an automatic segmentation of the tumor contours would prove useful. To the best of our knowledge, automatic tumor contour segmentation has rarely been applied to cervical cancer treatment. In this study, diffusion-weighted images (DWI) of 98 patients with cervical cancer were acquired. We trained an automatic tumor contour segmentation model using 2D U-Net and 3D U-Net to investigate the possibility of applying such a model to clinical practice. A total of 98 cases were employed for the training, and they were then predicted by swapping the training and test images. To predict tumor contours, six prediction images were obtained after six training sessions for one case. The six images were then summed and binarized to output a final image through automatic contour segmentation. For the evaluation, the Dice similarity coefficient (DSC) and Hausdorff distance (HD) was applied to analyze the difference between tumor contour delineation by radiation oncologists and the output image. The DSC ranged from 0.13 to 0.93 (median 0.83, mean 0.77). The cases with DSC <0.65 included tumors with a maximum diameter < 40 mm and heterogeneous intracavitary concentration due to necrosis. The HD ranged from 2.7 to 9.6 mm (median 4.7 mm). Thus, the study confirmed that the tumor contours of cervical cancer can be automatically segmented with high accuracy

    AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks

    Get PDF
    Segmentation of axon and myelin from microscopy images of the nervous system provides useful quantitative information about the tissue microstructure, such as axon density and myelin thickness. This could be used for instance to document cell morphometry across species, or to validate novel non-invasive quantitative magnetic resonance imaging techniques. Most currently-available segmentation algorithms are based on standard image processing and usually require multiple processing steps and/or parameter tuning by the user to adapt to different modalities. Moreover, only few methods are publicly available. We introduce AxonDeepSeg, an open-source software that performs axon and myelin segmentation of microscopic images using deep learning. AxonDeepSeg features: (i) a convolutional neural network architecture; (ii) an easy training procedure to generate new models based on manually-labelled data and (iii) two ready-to-use models trained from scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results show high pixel-wise accuracy across various species: 85% on rat SEM, 81% on human SEM, 95% on mice TEM and 84% on macaque TEM. Segmentation of a full rat spinal cord slice is computed and morphological metrics are extracted and compared against the literature. AxonDeepSeg is freely available at https://github.com/neuropoly/axondeepsegComment: 14 pages, 7 figure

    Spinal cord gray matter segmentation using deep dilated convolutions

    Get PDF
    Gray matter (GM) tissue changes have been associated with a wide range of neurological disorders and was also recently found relevant as a biomarker for disability in amyotrophic lateral sclerosis. The ability to automatically segment the GM is, therefore, an important task for modern studies of the spinal cord. In this work, we devise a modern, simple and end-to-end fully automated human spinal cord gray matter segmentation method using Deep Learning, that works both on in vivo and ex vivo MRI acquisitions. We evaluate our method against six independently developed methods on a GM segmentation challenge and report state-of-the-art results in 8 out of 10 different evaluation metrics as well as major network parameter reduction when compared to the traditional medical imaging architectures such as U-Nets.Comment: 13 pages, 8 figure

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements
    • …
    corecore