226 research outputs found

    Cryptanalysis and improvement of certificateless aggregate signature with conditional privacy-preserving for vehicular sensor networks

    Get PDF
    Secure aggregate signature schemes have attracted more concern due to their wide application in resource constrained environment. Recently, Horng et al. [S. J. Horng et al., An efficient certificateless aggregate signature with conditional privacy-preserving for vehicular sensor networks, Information Sciences 317 (2015) 48-66] proposed an efficient certificateless aggregate signature with conditional privacy-preserving for vehicular sensor networks. They claimed that their scheme was provably secure against existential forgery on adaptively chosen message attack in the random oracle model. In this paper, we show that their scheme is insecure against a malicious-but-passive KGC under existing security model. Further, we propose an improved certificateless aggregate signature

    On the security of a certificateless aggregate signature scheme

    Get PDF
    Aggregate signature can combinensignatures on nmessages fromnusers into a single short signature, and the resulting signature can convince the verifier that thenusers indeed signed the ncorresponding messages. This feature makes aggregate signature very useful especially in environments with low bandwidth communication, low storage and low computability since it greatly reduces the total signature length and verification cost. Recently, Xiong et al. presented an efficient certificateless aggregate signature scheme. They proved that their scheme is secure in a strengthened security model, where the ā€œmalicious-but-passiveā€ KGC attack was considered. In this paper, we show that Xiong et al.ā€™s certificateless aggregate signature scheme is not secure even in a weaker security model called ā€œhonest-but-curiousā€ KGC attack model

    A note on ā€˜An efficient certificateless aggregate signature with constant pairing computationsā€™

    Get PDF
    Recently, Xiong et al. [H. Xiong, Z. Guan, Z. Chen, F. Li, An efficient certificateless aggregate signature with constant pairing computations, Information Science, 219, pp. 225ā€“235, 2013] proposed an efficient certificateless signature (CLS) scheme and used it to construct a certificateless aggregate signature (CLAS) scheme with constant pairing computations. They also demonstrated that both of the two schemes are provably secure in the random oracle model under the computational Diffie-Hellman assumption. Unfortunately, by giving concrete attacks, we point out that Xiong et al.ā€™s schemes are not secure in their security model

    Practical Certificateless Aggregate Signatures From Bilinear Maps

    Get PDF
    Aggregate signature is a digital signature with a striking property that anyone can aggregate n individual signatures on n different messages which are signed by n distinct signers, into a single compact signature to reduce computational and storage costs. In this work, two practical certificateless aggregate signature schemes are proposed from bilinear maps. The first scheme CAS-1 reduces the costs of communication and signer-side computation but trades off the storage, while CAS-2 minimizes the storage but sacrifices the communication costs. One can choose either of the schemes by consideration of the application requirement. Compare with ID-based schemes, our schemes do not entail public key certificates as well and achieve the trust level 3, which imply the frauds of the authority are detectable. Both of the schemes are proven secure in the random oracle model by assuming the intractability of the computational Diffie-Hellman problem over the groups with bilinear maps, where the forking lemma technique is avoided

    Cryptanalysis of a certificateless aggregate signature scheme

    Get PDF
    Recently, Nie et al. proposed a certificateless aggregate signature scheme. In the standard security model considered in certificateless cryptography, we are dealing with two types of adversaries. In this paper, we show that Nie et al.\u27s scheme is insecure against the adversary of the first type. In other words, although they claimed that their proposed scheme is existentially unforgeable against adaptive chosen message attack considering the adversaries in certificateless settings, we prove that such a forgery can be done

    On security of a Certificateless Aggregate Signature Scheme

    Get PDF
    Aggregate signatures are useful in special areas where the signatures on many different messages generated by many different users need to be compressed. Recently, Xiong et al. proposed a certificateless aggregate signature scheme provably secure in the random oracle model under the Computational Diffie-Hellman assumption. Unfortunately, by giving concrete attacks, we indicate that Xiong et al. aggregate signature scheme does not meet the basic requirement of unforgeability

    Certicateless Aggregate Short Signature Scheme

    Get PDF
    An aggregate signature scheme is the aggregation of multiple signatures into a single compact signature of short string that can convince to any arbitrary verifier participating in the scheme. The aggregate signature scheme is very useful for real-world cryptographic applications such as secure routing, database outsourcing, etc. where the signatures on several distinct messages generated by many distinct users requires to be compact. In this paper, we presented an aggregate signature scheme using Certificateless Public Key Cryptography(CL-PKC). The scheme is provably secure with strongest security and shortest length. We have proven the scheme is existentially unforgeable under adaptive chosen message attack, assuming the hardness of computational Diffie-Hellman(CDH) Problem

    Aggregatable Certificateless Designated Verifier Signature

    Get PDF
    In recent years, the Internet of Things (IoT) devices have become increasingly deployed in many industries and generated a large amount of data that needs to be processed in a timely and efficient manner. Using aggregate signatures, it provides a secure and efficient way to handle large numbers of digital signatures with the same message. Recently, the privacy issue has been concerned about the topic of data sharing on the cloud. To provide the integrity, authenticity, authority, and privacy on the data sharing in the cloud storage, the notion of an aggregatable certificateless designated verifier signature scheme (ACLDVS) was proposed. ACLDVS also is a perfect tool to enable efficient privacy-preserving authentication systems for IoT and or the vehicular ad hoc networks (VANET). Our concrete scheme was proved to be secured underling of the Computational Diffie-Hellman assumption. Compared to other related schemes, our scheme is efficient, and the signature size is considerably short
    • ā€¦
    corecore