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Abstract. An aggregate signature scheme is the aggregation of multiple signatures
into a single compact signature of short string that can convince to any arbitrary
verifier participating in the scheme. The aggregate signature scheme is very useful for
real-world cryptographic applications such as secure routing, database outsourcing etc
where the signatures on several distinct messages generated by many distinct users
requires to be compact. In this paper, we presented an aggregate signature scheme
using Certificateless Public Key Cryptography(CL-PKC). The scheme is provably
secure with strongest security and shortest length. We have proven the scheme is ex-
istentially unforgeable under adaptive chosen message attack, assuming the hardness
of computational Diffie-Hellman(CDH) Problem.
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1 Introduction

In conventional public key cryptography (PKC), there exist two keys public and private
for each user. Public key is publicly known to everyone, whereas a private key is to be kept
secret. In order to combine the user’s identity and public key, the conventional PKC involves
public key infrastructure (PKI) where a trusted third party known as certificate authorities
(CA) issues certificate to combine the two parameters user’s identity and the corresponding
public key. In this cryptosystem, prior to using the public key of the user, the participant
must verify the certificate of the corresponding user. Significantly, this results huge storage
space and computing cost for managing the certificates.

In order to simplify the certificate management process of PKI, Shmir [1] introduced
identity-based public key cryptography(ID-PKC) in 1984 where the user’s public key is taken
as his unique identity such as telephone number, IP address or mail address etc. However,
in order to generate the private key of the user, a private Key Generator (PKG) is involved
in the system. The private key of the user is combined with his own public key and PKG is
the owner of master secret. Therefore ID-PKC faces the key-escrow problem. Consequently,
to resolve this problem, Al-Riyami and Paterson [3] introduced a novel paradigm known as
certificateless public key cryptography (CL-PKC). CL-PKC also involves Key Generation
Center (KGC) to construct the private key of the user as in ID-PKC. But the KGC does not
allow to access the complete private key of the user. So the user generates his full private
key by choosing a secret information and combines with the partial private key constructed
by the KGC. The corresponding public key of the user is computed by using the system
parameters published by KGC and the user’s secret information chosen by himself.

Authentication is a very important security goal for many cryptographic applications. In
order to improve the performance of structuring blocks, authentication is very crucial which
is achieved by digital signature. For constrained low processor devices such as cell phone,
PDA, tablet, RFID chips, sensors time complexity, communication overhead and storage
space are very crucial. In all these cases, battery life is frequently more of a restricting
bottleneck than the processor speed. The communication overhead of a single bit of data,
consumption of power is more than the execution of 32-bit basic arithmetic instructions [2].
Therefore, it is the greatest challenge to the research community to limit the communication
requirement constructing a short size of signatures. The solution to serve this purpose, is to
develop an aggregate signature. In an aggregate signature, a multiple number of signatures
generated by multiple user on multiple documents can be compressed into a single signature.



This is very useful for many real-world cryptographic applications such as to develop a secure
routing protocol, construct a combined aggregate certificate, etc. In PKI of depth n, the chain
of certificate consists of n signature issued by n different CAs with n public keys. The series
of certificates are compressed to an aggregate certificate.

In a secure routing protocol such as Boarder Gateway Protocol where, the segment
of paths in the network are being signed by each individual router and the collection of
signatures for all the paths are to be forwarded to the next router. This results in raising of
communication overhead, which can be reduced by using aggregate signatures. Apart from
the compression, aggregate signature can be applied in the dynamic content distribution [4]
and database out-souring [5].

1.1 Motivation and Contribution

One of the most important and well-known cryptographic primitive in public key cryptog-
raphy is digital signature that provides the security goals authenticity, integrity and non-
repudiation. In real-word cryptographic application, it is required to achieve these security
goals. Further for low processor constrained devices such as cell phones, PDA, smart card,
etc, it is desirable to construct an efficient signature scheme of short size with high level
of security. It is a challenging task for the research community to develop such signature
schemes. In many applications such as wireless sensor network, RFID, etc, the communica-
tion overhead or bandwidth is very low, have lower storage space and computability. In such
environments, the conventional signature is not suited to implement. It needs to construct a
signature that can be implemented in such constraint situations. Therefore, aggregate signa-
ture is most suitable to implement on such constraint scenarios. Aggregate signature has two
characteristics. These allow to integrate multiple signatures signed by multiple signers into
a single signature. That results to reduce the length in size. Further the computational cost
for the aggregate signature is less than that the computational cost of individual verifier.
Due to these two most important characteristics, it is suitable for many applications.

In this paper, we have presented the formal adversary model and analyzed the security
of CL-AS scheme. We investigate the scheme proposed by Choi et al. [20] and construct a
provably secure CL-ASS scheme in random oracle model. Security of the scheme relies on
computational Diffie-Hellman problem over groups with bilinear maps. We have proven, the
scheme is secure against existentially unforgeable under adaptive chosen message attack.

1.2 Related Work

The notion of aggregate signature was first introduced by Boneh, Gentry, Lynn and Shacham [21].
Subsequently, Lysyanskaya et al. [22] presented a certified trapdoor permutation to release
an aggregate signature under the weaker assumption of security model. However, the method
requires sequential aggregation. Cheon et al.[25] introduced the first Identity-based aggre-
gate signature (IDAS) scheme. Subsequently Cheng et al. [8], Xu et al. [9] and Gentry and
Ramzan [10] proposed improved IDAS scheme. Later on Gentry and Ramzan [10] presented
IDAS scheme based on bilinear pairing. The notion of security of certificateless encryption
scheme was first introduced by Al-Riyami and Paterson [3] and defines a formal security
proof. The adversary model of certificateless signature scheme(CLS) was given by Huang et
al. [11] and proposed a provable secure CLS. Subsequently a generic construction of CLS
was proposed by Yumand Lee [12]. Afterward, Hu et al. [13] proved that the scheme is
not secure under the adversary model and proposed an improved CLS scheme. Huang et
al. [14] re-framed the adversary models of certificateless signatures and presented two novel
constructions of the scheme. Choi et al. [15] proposed two efficient CLS schemes and have
proven the security under weak security model [14]. A short CLS scheme has been proposed
by Du and Wen. However, the proof of security is not correct. Later on an aggregate signa-
ture scheme was proposed in certificateless public key setting [16]. The author claimed, their
proposed scheme is secure under the security model. However the security model was wrong.
Also the computational time and cost is more due to pairing operation in the verification
process.

The remaining sections of the paper is organized as, we introduce the mathematical as-
sumptions in section-2. We presented the framework of CL-AS scheme in section-3. Section-4
defines the adversary model. The scheme is proposed in section-5. Section-5 presents the
proof of correctness and security of the proposed scheme. Finally, we conclude in section-7.



2 Preliminaries

2.1 Bilinear Pairings

Let G1 be a cyclic additive group of prime order q and G2 be a cyclic multiplicative group of
the same prime order q. Let ê be a bilinear map which is non-degenerated and computable
called admissible bilinear map ê : G1 ×G1 → G2 if it satisfies the following properties:

– Bilinearity: Let a, b ∈ Z∗
q and P,Q ∈ G1

1. ê(aP, bQ) = ê(P,Q)ab for all a, b ∈ Z∗
q

2. ê(P +Q,R) = ê(P,R)ê(Q,R), for P,Q,R ∈ G1.

– Non-degenerate: There exists P ∈ G1 such that ê(P, P ) ̸= 1G2

– Computable: There exist an efficient algorithm to compute ê(P,Q) or all P,Q ∈ G1.

2.2 Computational Assumptions

In this section, we outline the mathematical hard problems on which the scheme relies.

Definition 1. Computational Diffie-Hellman(CDH)Problem:Let G be an additive
cyclic group with generator P . Given P, aP, bP ∈ G, for any random numbers a, b ∈ Z∗

q ,
compute abP .

There is an probabilistic polynomial time(PPT) solvable algorithm A has negligible advan-
tage ϵ in solving CDH problem in G if the Pr[A(P, aP, bP ) = abP ] ≤ ϵ, where ϵ is a small
positive integer and the probability is over the selection of P ∈ G, random numbers a, bZ∗

q

and the security parameter 1µ. This can be formally presented by the following definition.

Definition 2. Computational Diffie-Hellman(CDH)Assumption: The assumption (t, ϵ)-
CDH holds in G if there does not exist any PPT algorithm with running time t has advantage
ϵ in solving CDH problem.

Table 1. Notations used and meanings

Notation Meaning

CL-AS: Certificateless Aggregate Signature
CL-ASS: Certificateless Aggregate Short Signature
AI/AII : Type-I and II adversary
IDi: Identity of any arbitrary user
xi: Secret value chosen by the user with identity IDi

<Di, D
′
i>: Partial private key of the user with identity IDi

pki: Public key of the user with identity IDi

µ: A security parameter
Zq: Set of elements {0, 1 . . . q − 1} of an additive group and Z∗

q= Zq�0
mi: An arbitrary message belongs to the message space M
H0, H

′
0, H1, H2, H

′
2 and H3: Cryptographic hash functions

⊥: Null value.

3 Certificateless Aggregate Signature Scheme

In this section, we define the components of Certificateless Aggregate Signature(CL-AS)
Scheme.



3.1 Framework

A CL-AS scheme is composed of six polynomial time algorithms. This is associated with a
KGC and a set of n users U1 . . .Un known as aggregating set U participating in the scheme.

– Setup: (s, params) ← Setup(1µ). This algorithm is run by KGC. It takes a security
parameter µ as input and generates master secret key s and system parameters params.

– Partial-Private-Key: Di ← Partial− Private− Key(IDi, s, params). This algo-
rithm is also run by KGC to generate partial private key of the participating user.
It takes the user’s identity IDi, master secret key s and system parameters params as
input and returns the partial private key Di of the corresponding user.

– User-KeyGen:xi ← User− KeyGen(IDi), pki ← User− KeyGen(IDi, xi). This algorithm
is performed by the user. It takes the user’s identity IDi as input, picks a random xi ∈ Z∗

q

and returns the secret value xi and public key pki = xiP of the corresponding user.
– Sign: σi ← Sign(△, IDixi, Di, pki,mi). This algorithm is run by any arbitrary user Ui

from the aggregating set U as signer. He chooses some state information △ from public
system parameters. The input of the algorithm are the state information △, the message
mi ∈M on which the signature is to be generated, signer’s identity IDi, public key pki
and the signing key (xi, Di).

– Aggregate: σ ← Aggregate(△, σi, IDi, pki) for all 1 ≤ i ≤ n. The algorithm compressed
the signatures σ1 . . . σn generated by the corresponding users U1 . . .Un from the aggre-
gating set U. It takes σi, messages mi, the state information △ and public key pki (for
all 1 ≤ i ≤ n) as input. It returns the aggregate signature σ.

– Verify: “TRUE/FALSE” ← V erify(△, σ, IDi, pki). This algorithm is use to verify the
correctness of the aggregate signature. It takes the state information △, identities
ID1 . . . IDn from the aggregating set U of n the users U1 . . .Un, public key pk1 . . . pkn
of the corresponding user, aggregate signature σ generated on the messages m1 . . .mn

as input. It pass through the verification equation. If it holds returns “TRUE”, otherwise
“FALSE”.

4 Adversary Model and Security

Following are the two type of adversaries are involved.

– Type-I adversary (AI): The adversary behaves as a common dishonest user in the model.
It does not have access of the master secret key of KGC and has the capability to replace
a value of his choice with the public key.

– Type-II adversary (AII): The adversary behaves as honest user but is inquisitive to
generates the user’s partial private key and is allowed to access master secret key, but
is not capable replace public key of the targeted user.

Security of CLS scheme is defined through two games between the adversary AI/AII and
challenger C. The two games are defined as:

Game-I
Setup: C performs the Setup algorithm taking the security parameter µ as input, generates
the system parameter and master secret key as output. C provides the system parameter to
AI and keeps secret the master key.

Attack
The adversary AI submits polynomially bounded number of queries to the following oracles
in an adaptive manner.

– Partial-Private-Key queries PPK(IDi): AI submits the request for partial private
key for any arbitrary user IDi. C obtains the partial private key Di for the corresponding
user as output.

– Public-Key queries PK(IDi): AI can submit the request of public key for any arbi-
trary user IDi. C returns pki for the corresponding user as output.

– Secret-Value queries SV(IDi): AI can submit the request of secret value xi for the
user IDi. C returns the output the secret value xi.



– Replace-Public-Key queries RPK(IDi, pk
′

i): AI submits the replacement queries

choosing a new public key pk
′

i. Subsequently AI sets the new public key pk
′

i and C
keeps the record of all replacements.

– CL-Sign queries SGN (△i,mi, IDi, pki): AI can submit a request of signature of the
user’s identity IDi with the state information △i, message mi and public key pki. After
submitting the query SGN (△i,mi, IDi, pki), C returns a valid signature σi.

Forgery: AI obtains an aggregating set of n user U∗ = {U∗
1 . . .U∗

n} with identities
from the aggregating set X∗

ID = {ID∗
1 . . . ID

∗
n}, corresponding public key set X∗

pk =
{pk∗1 . . . pk∗n} the set of n messages X∗

m = {m∗
1 . . .m

∗
n} along with a state information

△∗, the aggregate signature σ∗. The adversary AI successes or wins the Game-I if and
only if the following holds:

• The signature generated is a valid aggregate signature σ∗ on messages X∗
m = {m∗

1 . . .m
∗
n}

along with a state information △∗ of the identities X∗
ID = {ID∗

1 . . . ID
∗
n} and the

corresponding public key set X∗
pk = {pk∗1 . . . pk∗n}.

• The identity ID∗
i ∈ X∗

ID of any arbitrary user has been queried to PPK(IDi) and
the same SGN (△∗

i ,m
∗
i , ID

∗
i , pk

∗
i ) has not been submitted before.

Game-II

Setup: The algorithm is run by the challenger C. It takes as input the security param-
eter µ, returns the system parameter params and master secret key s. C provides the two
parameters params and s to AII .
Attack The adversary AII submits polynomially bounded number of queries to the follow-
ing oracles in an adaptive manner.

– Public-Key queries PK(IDi): AII can submit the request of public key for any arbi-
trary user IDi. C returns pki for the corresponding user as output.

– Secret-Value queries SV(IDi): AI can submit the request of secret value xi for the
user IDi. C returns as output the secret value xi.

– CL-Sign queries SGN (△i,mi, IDi, pki): AII can submit a request of signature of the
user’s identity IDi with the state information △i, on message mi. After submitting the
query SGN (△i,mi, IDi, pki), C returns a valid signature σi on message mi with state
information △i of the corresponding user with identity IDi and public key pki.

Forgery: AI obtains an aggregating set of n user U∗ = {U∗
1 . . .U∗

n} with identities
the set X∗

ID = {ID∗
1 . . . ID

∗
n} and corresponding public keys from the set X∗

pk =
{pk∗1 . . . pk∗n}, the set of n messages X∗

m = {m∗
1 . . .m

∗
n} along with a state information

△∗ and the aggregate signature σ∗. The adversary AI successes or wins the Game-II if
and only if the following holds:
• The signature generated is a valid aggregate signature σ∗ on messages from X∗

m =
{m∗

1 . . .m
∗
n} along with a state information△∗ of the identities X∗

ID = {ID∗
1 . . . ID

∗
n}

and the corresponding public key set X∗
pk = {pk∗1 . . . pk∗n}.

• The identity ID∗
i ∈ X∗

ID of any arbitrary user has been queried to PPK(IDi) queries
and the same SGN (△∗

i ,m
∗
i , ID

∗
i , pk

∗
i ) has not been submitted before.

Definition 3. A CL-AS signature scheme is said to be existentially unforgeable against
adaptive chosen message attacks, if the probability of success of polynomially bound attackers
AI and AII in the above two games are negligible.

5 Certificateless Aggregate Short Signature(CL-ASS) Scheme

The scheme consists of the following six algorithms.

– Setup: This algorithm is run by KGC. Follows the steps
1. It takes a security parameter µ, chooses an cyclic additive group G1 of prime order
q has generator P , a cyclic multiplicative group G2 of same order q and admissible
bilinear map e : G1 ×G1 → G2.

2. Picks a random scalar s ∈ Z∗
q and computes Ppub = sP .



3. Considers three cryptographic hash functions H0,H
′

0,H1 : {0, 1}∗ → G1, H2,H
′

2 :
{0, 1}∗ → Z∗

q .

– Partial-Private-Key-Extract: The algorithm takes params, master secret key s and
user’s identity IDi ∈ {0, 1}∗. It performs the following computations and generates the
partial private key of the corresponding user.

1. Qi = H0(IDi), Q
′

i = H
′

0(IDi)

2. Di = s ·Qi, D
′

i = s ·Q′

i

– Set-Secret-Value: The algorithm is used to set a secret value of an arbitrary user
taking the security parameter µ, picks a random scalar xi ∈ Z∗

q as input and returns xi
as secret value of the corresponding user.

– Set-Public-Key: This algorithm takes the user’s secret values xi and computes the
public key of the corresponding user IDi as pki = xi · P .

– Sign: This algorithm generates the signature on any arbitrary messagemi ∈M. It takes
the signing key (xi, <Di, D

′

i>) (of the signer with identity IDi) and the public key pki
and perform the following computation choosing the state information △(It can take
some elements from the public system parameter)

1. W = H1(△), Ti = H2(mi∥pki∥ △ ∥IDi)

2. hi = H3(mi∥pki∥IDi)

3. h
′

i = H
′

3(mi∥pki∥IDi)

4. Vi = xiTi + hiDi + h
′

iD
′

i + xiW

– Aggregate: This algorithm is performed by any of the user who can aggregate a collection
of individual signature that use some state information △. Let U = {U1 . . .Un} be an
aggregate set with the corresponding identities IDi, ID2 . . . IDn and the corresponding
public keys are pk1, pk2 . . . pkn. The message signature pairs are (mi, σi) for 1 ≤ i ≤ n.
The algorithm aggregates and generates the aggregate signature as σ =

∑n
i=1 σi.

– Aggregate-Verify: The aggregate signature σ signed by n users U1, U2 . . . Un with iden-
tities ID1, ID2 . . . IDn is verified. The verifier takes the corresponding user’s identities
ID1, ID2 . . . IDn and the public keys pk1, pk2 . . . pkn on messagesm1,m2 . . .mn with the
same state of information △ as input and computes the following for all i, 1 ≤ i ≤ n.
1. W = H1(△), Qi = H0(IDi), Q

′

i = H
′

0(IDi).

2. Ti = H2(mi∥pki∥ △ ∥IDi)

3. hi = H3(mi∥pki∥IDi)

4. h
′

i = H
′

3(mi∥pki∥IDi)

After the above computations, the verifier checks the validity of signature with the
following equation.

e(σ, P ) =
n∏

i= 1

e(Ti, pki)e

( n∑
i=1

hiQi + h
′

iQ
′

i, Ppub

)
e

(
W,

n∑
i=1

pki

)
(1)

The aggregate signature is accepted if and only if the equation holds and returns ⊥.

6 Analysis of the Scheme

This section analyzes the consistency and performance. Also presented the security of the
proposed scheme.

6.1 Consistency

e(σ, P ) = e(
∑n
i=1 Vi, P ) = e(

∑n
i=1(xiTi + hiDi + h

′

iD
′

i + xiW ), P )

= e(
∑n
i=1 xiTi, P )e(

∑n
i=1(hisQi + h

′

isQ
′

i), P )e(
∑n
i=1 xiW,P )

=
∏n
i=1 e(Ti, xiP )

∏n
i=1 e((hiQi + h

′

iQ
′

i), sP )
∏n
i=1 e(W,xiP )

=
∏n
i=1 e(Ti, pki)

∏n
i=1 e((hiQi + h

′

iQ
′

i), Ppub)
∏n
i=1 e(W,pki)

=
∏n
i=1 e(Ti, pki)e(

∑n
i=1(hiQi + h

′

iQ
′

i), Ppub)e(W,
∑n
i=1 pki)



6.2 Security

In this section, we have proven the security of the proposed scheme with the assumption of
CDH problem is hard i.e computationally infeasible to solve.

Theorem 1. In the random oracle model, if the adversary AII of Type-I has a non-
negligible advantage ϵ against the EUF-CMA security of the proposed scheme in duration
of time t for a security parameter µ, and performing at most qH0 , qH′

0
queries to oracles

H0, qH1 queries to H1 oracle, qH2 queries to H2 oracle, qH3 , qH′
3
queries to oracles H3,

qppk to partial private key oracle, qpk queries to public key oracle and qs signing queries to
signing oracle, then there exists an algorithm B that can solve CDH problem in G1 with time
t+O(qH0 + qH1 + qH2 + qH3 + qppk + qpk + qs)TG1 with probability ϵ∗ ≥ ϵ

(qH0+n)
, where TG1

is the computational time for scalar multiplication in G1 and n is the size of the aggregating
set.

Proof. Let us assume that, there exists a super Type-I adversary AI which has an advantage
in attacking the proposed CL-ASS scheme. Let us construct an algorithm B that applies AI
to solve CDH problem i.e the algorithm takes the CDH instance (P, aP, bP ) for randomly
picking the scalar a, b ∈ Z∗

q and P be an element in G1. The goal of AI is to compute abP .
B runs AI as subroutine and simulates the adversary model defined in Game-I. B initializes
Ppub = aP , where a is the master secret key and B does not know the value of a and
provides the system parameters to AI . B maintains lists L0, L1, L2 and L3 to simulate the
hash oracles H0,H1,H2 and H3 respectively. Further to store all answers for partial private
key, public key and signing queries B maintains the lists. AI performs the following queries
adaptively.

– H0,H
′

0 queries: Assume that, AI submits at most qH0 queries to the hash oracle H0H
′

0.
The list LH0

stores the tuples (IDi, Qi, Q
′

i, αi, βi, bi). At the beginning of the simulation,

list is empty. B selects j ∈ [1, qH0 ] at random. When AI submits H0 and H
′

0 query on
any arbitrary IDi for 1 ≤ i ≤ qH0 , it returns the same answers from LH0 , if the request
has been asked before.
Otherwise, B picks two random αi, βi ∈ Z∗

q and flips a coin bi = [0, 1] that yields 0

with probability ξ and 1 with probability 1 − ξ. If bi = 0, then B sets Qi = bP,Q
′

i =

αi(βiP − bP ) and adds <IDi, Qi, Q
′

i, αi, βi, bi> to the list LH0 .

Otherwise B picks γi, γ
′

i ∈ Z∗
q at random, returns Qi = γiP,Q

′
= γ

′

iP and adds

<IDi, Qi, Q
′

i, γi, γ
′

i , bi> to LH0 .
– H1 queries:B maintains a list as LH1 which is null at the beginning of the simulation.

It keeps the tuples <△i,Wi, θi>. When AI submits the query H1(△i). This returns
the same answer from the list LH1 if it has been requested before. Otherwise B picks a
random θi ∈ Z∗

q , returns Wi = θiP , adds <△i,Wi, θi> and returns Wi as answer.
– H2 queries: B maintains a list as LH2 . At the beginning of the simulation, the list

is empty. It keeps all the tuples <mi, pki, IDi,△i, ψi, Ti>. AI submits a query on
(mi∥pki∥ △i ∥IDi), if the list LH2 contains the tuples <mi, pki, IDi,△i, ψi, Ti>, B re-
turns Ti(= ψiP ). Otherwise B picks a random ψi ∈ Z∗

q and returns Ti = ψiP and add
<mi, pki, IDi,△i, ψi, Ti> to LH2 .

– H3,H
′

3 queries: B submits this query on (mi∥pki∥IDi. It maintains a list LH3
. At the

beginning of the simulation, the list is empty. It keeps the tuples <mi, pki, IDi, hi, h
′

i>. If

this list contains this entry, it returns (hi, h
′

i) as answer. Otherwise B chooses hi, h
′

i ∈ Z∗
q

at random, returns (hi, h
′

i) and <mi, pki, IDi, hi, h
′

i> to LH3 .
– Partial-Private-Key queries: AI submits a query on IDi to oracle PPK(IDi). B

searches the entry <IDi, Qi, Q
′

i, θi, θ
′

i> in the list LH0 . It returns the same answer from
the list LH0 if the request has been submitted before. Otherwise it performs the following
steps:

1. If bi = 0 abort the simulation.
2. Otherwise computes Di = γiaP and D

′

i = γ
′

iaP

– Secret-value queries: B maintains a list Lsv to keep the tuples <IDi, pki, xi>. At
the beginning of the simulation, the list is empty. AI submits the secret value query
SV(IDi) on IDi, B chooses a random xi ∈ Z∗

q , computes pki = xiP , returns xi and
add <IDi, pki, xi> to Lsv.



– Public-Key queries: B submits the public key query PK(IDi), it returns the same
answer from the list Lsv, if the request has been submitted before. Otherwise, B performs
the following:
• If entry <IDi, pki, xi> is in Lsv, the public key pki of the user with identity IDi

is ⊥. B chooses x
′

i ∈ Z∗
q , computes pk

′

i = x
′

iP and returns the answer is pk
′

i. Then

upgrade the entry <IDi, pki, xi> to <IDi, pk
′

i, x
′

i> in the list Lsv.
• Otherwise, chooses xi ∈ Z∗

q , computes pki = xiP and the answer return is pki.
Includes pki to Lsv.

– Replace-Public-Key queries: AI selects a new public key for the user with iden-
tity IDi and submits a Replace-Public-Key query RPK(IDi, pk

′

i), B search the entry

<IDi, pki, xi> on the list Lsv, if found on the list Lsv, set pki = pk
′

i and xi = ⊥.
Otherwise B runs SV(IDi) query, updates pki to pk

′

i and sets xi = ⊥.
– Sign queries:AI submits sign query SGN (IDi,mi,△i, pki), B searches the entry<IDi, Qi, Q

′

i, γi, γ
′

i>
from the list LH0 , <IDi, pki, xi> from Lsv list and <△i,Wi, θi> from LH1 list. Then B
does as follows:
• If bi = 0, chooses ψi, θi, hi ∈ Z∗

q at random and computes h
′

i = hiα
−1
i , σi =

ψipki + θipki + ahiβiP . Returns σi and add the tuple <mi, pki, IDi,△i, ψi, Ti> to
LH2 , <mi, pki, IDi, hi, h

′

i> to LH3 and <△i,Wi, θi> to LH1 list.

• Otherwise for bi = 1, B selects four random ψi, θi, hi, h
′

i ∈ Z∗
q and computes σi =

ψipki + θipki + hiγiaP + h
′

iγ
′

iaP .

Forgery

Eventually B returns a valid CL-ASS σ∗ with a set U of n users U1 . . . Un. The corresponding
identities are from the aggregating sets LID∗ = {ID∗

1 . . . ID
∗
n} and the set of public key

Lpk = {pk∗1 . . . pk∗n} of the corresponding users and a state information △∗. There are two
cases in the simulations.

1. If bi = 0, B aborts the simulation and returns ‘‘fail"
2. Else for bi = 1, B recovers the tuples<m∗

i , pk
∗
i , ID

∗
i ,△∗

i , ψ
∗
i , T

∗
i >,<m

∗
i , pk

∗
i , ID

∗
i , h

∗
i , h

′∗

i >
and <△∗

i ,W
∗
i , θ

∗
i> from the list LH2 , LH3 and LH1 respectively. A replaces the public

key pki. Since it successes to generate valid CL-ASS, the following equation holds.

e(σ∗, P ) =
∏n
i=1 e(T

∗
i , pk

∗
i )e

(∑n
i=1 h

∗
iQ

∗
i + h

′∗

i Q
′

i∗ , Ppub

)
e

(
W ∗,

∑n
i=1 pk

∗
i

)
∏n
i=1 e(T

∗
i , pk

∗
i )e

(∑n
i=1 h

∗
iQ

∗
i + h

′∗

i Q
′

i∗ , Ppub

)
e

(
W ∗,

∑n
i=1 pk

∗
i

)
=

∏n
i=1 e(ψ

∗
i P, pk

∗
i )e

(∑n
i=1 h

∗
i bP + h

′

iαi(βiP − bP ), aP
)
e

(
θiP,

∑n
i=1 pk

∗
i

)
=

∏n
i=1 e(ψ

∗
i P, pk

∗
i )e

(∑n
i=1 h

∗
i bP + h∗

′

i αi(βiP − bP ), aP
)
e

(
θ∗i P,

∑n
i=1 pk

∗
i

)
=

∏n
i=1 e(ψ

∗
i pk

∗
i , P )e

(∑n
i=1 h

∗
i abP + h∗

′

i αia(βiP − bP ), P
)
e

(∑n
i=1 pk

∗
i θ

∗
i , P

)
=

∏n
i=1 e(ψ

∗
i pk

∗
i , P )e

(∑n
i=1 hiabP + h∗

′

i αia(βiP − bP ), P
)
e

(∑n
i=1 pk

∗
i θ

∗
i , P

)
= e

(∑n
i=1(ψ

∗
i pk

∗
i , P )

)
e

(∑n
i=1 h

∗
i abP + h∗

′

i αia(βiP − bP ), P
)
e

(∑n
i=1 pk

∗
i θ

∗
i , P

)
= e

(∑n
i=1(ψ

∗
i pk

∗
i + h∗i abP + h∗

′

i αia(βiP − bP ) + pk∗i θ
∗
i , P )

)
Hence σ =

∑n
i=1(ψ

∗
i pk

∗
i + hiabP + h∗

′
iαia(βiP − bP ) + pk∗i θ

∗
i

=
∑n
i=1(ψ

∗
i pk

∗
i + h∗i abP + h∗

′

i αiβiaP − h
′

iαiβiabP ) + pk∗i θi

=
∑n
i=1(ψ

∗
i pk

∗
i + pk∗i θ

∗
i + abP (h∗i − h∗

′

i αi) + h∗
′

i αiβiaP

=
∑n
i=1(ψ

∗
i pk

∗
i + pk∗i θ

∗
i ) + abP

∑n
i=1(h

∗
i − h∗

′

i αi) +
∑n
i=1 h

∗
′

i αiβiaP



⇒ abP
∑n
i=1(h

∗
i − h∗

′

i αi) = σ −
∑n
i=1(ψ

∗
i pk

∗
i + pk∗i θ

∗
i )−

∑n
i=1 h

∗
′
iαiβiaP

⇒ abP =
σ−

∑n
i=1(ψ

∗
i pk

∗
i +pk

∗
i θ

∗
i )−aP

∑n
i=1 h

∗
′

i αiβi∑n
i=1(h

∗
i −h∗′

i αi)

Probability of success

We compute probability of success of B. B solves CDH problem with probability ϵ∗ ≥
ϵ

(qH0
+n)µ . During the simulation, there exists the following events for success of B.

– E1: B does not abort the simulation during the AI ’s partial private key queries.
– E2: AI can generate a valid and nontrivial forged aggregate signature.
– E3: Event E2 happen, b∗i = 0 for one of i, [i = 1 . . . n] and b∗i = 1 for other value of indices

of i.

If all the three events happen, then B succeeds.The advantage of B is

AdvCDHB = Pr[E1 ∧ E2 ∧ E3]

Pr[E1 ∧ E2 ∧ E3] = Pr[E1]Pr[E2 | E1]Pr[E3 | E1 ∧ E2]

Lemma 1. The probability of B does not abort the simulation as long as the AI ’s partial
private key queries continues is at least (1− ξ)qH0 . So Pr[E1] ≥ (1− ξ)qH0

Proof. The probability that B does not abort the simulation for a query of partial private
key extraction is (1− ξ). The maximum number of queries submitted to the partial private
key oracles PPK(IDi) is qH0 . Hence the probability of B does not abort the simulation as
a result of PPK(IDi) is at least (1− ξ)qH0 .

Lemma 2. The probability of B does not abort the simulation over the extraction of partial
private key and signing queries of AI is at least ϵ (where ϵ is small positive integer).

Proof. Let B does not abort the simulation over the extraction of partial private key queries
of AI . Under this circumstances, AI generates a valid and nontrivial forged aggregate sig-
nature. The probability of observing event E2, given that E1 is true is Pr[E2 | E1]. Then the
algorithm view of AI is identical to its view in the actual attack. Hence Pr[E2 | E1] ≥ ϵ.

Lemma 3. The probability that B does not abort the simulation after AI returning a valid
and nontrivial forged aggregate signature is at least ξ(1− ξ)n−1

. So Pr[E3 | E1 ∧ E2] ≥
ξ(1− ξ)n−1

.

Proof. Let both the events E1 and E2 happen at a time and AI returns a valid and nontrivial
forgery (ID∗

1 . . . ID
∗
n; pk

∗
1 . . . pk

∗
n;m

∗
1 . . .m

∗
n;σ

∗). B aborts the simulation as long as AI is
not generating a forgery such that bj = 0 for some j ∈ {1 . . . n} and bi = 1, for all other

i ∈ {1 . . . n}/{j}. Hence Pr[E3 | E1 ∧ E2] ≥ ξ(1− ξ)n−1
.

Pr[E1 ∧ E2 ∧ E3] ≥ (1− ξ)qH0 ϵξ(1− ξ)n−1
= ϵξ(1− ξ)qH0+n−1

.

Let ξ = 1
qH0+n

. Hence ϵξ(1− ξ)qH0
+n−1

= ϵ 1
qH0+n

(
1− 1

qH0+n

)qH0+n−1

≥ ϵ 1
qH0+n

.

Theorem 2. In the random oracle model, if the adversary AII of Type-II has a non-
negligible advantage ϵ against the EUF-CMA security of the proposed CL-ASS scheme in
the adversary model of Game-II in time span t for a security parameter µ, and performing
at most qpk number of public key queries, then there exists an algorithm B that can solve
CDH problem in G1 with time t+O(qH1 + qH2 + qH3 + qsv)TG1with probability ϵ∗ ≥ ϵ

(qpk+n)
,

where TG1 is the computational time for scalar multiplication in G1 and n is the size of the
aggregating set.

Proof. Let us assume that, there exists a super Type-II adversary AII which has an ad-
vantage in attacking the proposed CL-ASS scheme in the adversary model of Game-II. Let
to construct an algorithm B that applies AII to solve CDH problem i.e the algorithm takes
the CDH instance (P, aP, bP ) for randomly picking the scalar a, b ∈ Z∗

q and P be an element
in G1. The goal of AII is to compute abP . B runs AII as subroutine and simulates the



adversary model of Game-II. B initializes Ppub = sP , where s is the master secret key.
B provides the system parameters along with the master secret key to AII . Since AII is
allowed to access the master secret key, he can perform Partial-Private-Key extraction
query.
B maintains four lists LH0 , LH1 , LH2 , LH3 and Lsv to simulate the hash oracles<H0,H

′

0>,H1,H2, <H3,H
′

3>
and secret value oracle respectively. AII performs the following queries in an adaptive man-
ner.

– H0,H
′

0 queries: Assume that, AII submits at most qH0 queries to the hash oracle H0H
′

0.
B maintains a list LH0 to store the tuples (IDi, Qi, Q

′

i). At the beginning of the sim-

ulation, list is empty. B selects Qi and Q
′

i at random, returns <Qi, Q
′

i> and add to
LH0 .

– H1 queries:B maintains a list as LH1 . At the beginning of the simulation, the list is
empty. It keeps the tuples <△i,Wi, θi>. When AII submits the query H1(△i). This
returns the same answer from the list LH1 if it has been requested before. Otherwise B
picks a random θi ∈ Z∗

q , returns Wi = θiP , adds <△i,Wi, θi> to LH1 and returns Wi

as answer.
– H2 queries: B maintains a list as LH2 . At the beginning of the simulation, the list is

empty. It keeps the tuples <mi, pki, IDi,△i, ψi, Ti>. AI submits a query on (mi∥pki∥△i
∥IDi), if the list LH2 contains the tuples <mi, pki, IDi,△i, ψi, Ti>, B returns Ti. Other-
wise B picks a random ψi ∈ Z∗

q , returns Ti = ψiaP as answer and add<mi, pki, IDi,△i, ψi, Ti>
to LH2 .

– H3,H
′

3 queries: B submits this query on (mi∥pki∥IDi. At the beginning of the simulation,
the list LH3 is empty. It keeps the tuples <mi, pki, IDi, hi, h

′

i>. If this list contains this

entry, it returns (hi, h
′

i) as answer. Otherwise B chooses hi, h
′

i ∈ Z∗
q at random, returns

(hi, h
′

i) as answer and adds <mi, pki, IDi, hi, h
′

i> to LH3 .
– Public-Key queries: B maintains a list Lsv containing the tuples <IDi, pki, xi, bi>. At

the beginning of the simulation, the list is empty. B submits at most qpk public key
query PK(IDi) on IDi, 1 ≤ i ≤ qH0 . B selects xi ∈ Z∗

q , then tosses a coin bi ∈ {0, 1}
that come up 0 with probability ξ and 1 with probability 1 − ξ. If bi = 0, B returns
pki = bP and add <IDi, pki, xi = ⊥, bi> to Lsv, otherwise, B computes pki = xiP
and adds <IDi, pki, xi, bi>. The answer return is pki.

– Secret-value queries: B maintains a list Lsv to keep the tuples <IDi, pki, xi>. At the
beginning of the simulation the list is empty. AI submits the query on IDi, B chooses
a random xi ∈ Z∗

q , computes pki = xiP , returns xi and add <IDi, pki, xi> to Lsv.
– Public-Key-Request: Let AII submits at most qpk times Public-Key-Request queries. B

picks j ∈ [1, qpk] at random. When AII submits Public-Key-Request query on IDj to
oracle RPK(IDj), it returns the same answer from the list Lsv if it has been requested
before, otherwise B chooses xi ∈ Z∗

q and tosses a coin bi = [0, 1] come up 0 with
probability ξ and 1 with probability 1− ξ.
• If bi = 0, it returns pki = bP and adds <IDi, pki, xi, bi> to Lsv.
• Otherwise, bi = 1, B computes pki = xiP , adds the entry <IDi, pki, xi, bi> to Lsv
and returns the output pki.

– Sign queries:AI submits sign query SGN (IDi,mi,△i, pki), B searches the entry<IDi, Qi, Q
′

i, γi, γ
′

i>
from the list LH0 , <IDi, pki, xi> from Lsv list and <△i,Wi, θi> from LH1 list. B gen-
erates the signature as follows:

• If bi = 0, chooses ψi, θi, hi ∈ Z∗
q at random and sets σi = ψibP+hiDi+h

′

iD
′

i+θipki.

Returns σi and add the tuple<mi, pki, IDi,△i, ψi, Ti> to LH2 ,<mi, pki, IDi, hi, h
′

i>
to LH3 and <△i,Wi, θi> to LH1 list.
• Otherwise, bi = 1, B selects four random ψi, θi, hi, h

′

i ∈ Z∗
q and computes σi =

ψipki + hisQi + h
′

isQ
′

i + θipki.

Forgery

Eventually B returns a valid CL-ASS σ∗ with a set U of n users U1 . . . Un. The corre-
sponding identities are from the aggregating sets LID∗ = {ID∗

1 . . . ID
∗
n} and the set of

public key Lpk = {pk∗1 . . . pk∗n} of the corresponding users and a state information △∗.

1. If bi = 0, B aborts the simulation and returns “fail”.



2. B searches the entry<m∗
i , pk

∗
i , ID

∗
i ,△∗

i , ψ
∗
i , T

∗
i >,<m

∗
i , pk

∗
i , ID

∗
i , h

∗
i , h

∗
′

i > and<△∗
i ,W

∗
i , θ

∗
i>

from the list LH2 , LH3 and LH1 respectively. AII replaces the public key pk∗i . Since it
returns a valid CL-ASS, the following equation holds.

e(σ, P ) =
∏n
i=1 e(T

∗
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∗
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∗
iQ
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i Q
∗
′

i , Ppub

)
e
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=
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=
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i=1 e(ψ
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∗
iQ

∗
i + h∗
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i Q
∗
′
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)
e

(
θ∗i P,
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∗
i

)
=
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i=1 e(abPψ

∗
i , P )e

(
s
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∗
iQ

∗
i + h∗

′

i Q
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)
e

(∑n
i=1 pk
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i θ
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= e
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i=1(abPψ
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e
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iQ
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i Q
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e
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= e
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i=1(abPψ
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i + sh∗iQ

∗
i + sh∗
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i Q
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i + θ∗i pk
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i , P )

)
Hence σ =

∑n
i=1(abPψ

∗
i + sh∗iQ

∗
i + sh∗

′

i Q
∗
′

i + θ∗i pk
∗
i

⇒ abP
∑n
i=1 ψ

∗
i = σ −

∑n
i=1(sh

∗
iQ

∗
i + sh∗

′

i Q
∗
′

i + θ∗i pk
∗
i )

⇒ abP =
σ−
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i=1(sh

∗
iQ

∗
i +sh
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′

i Q
′
i+θ

∗
i pk

∗
i )∑n

i=1 ψ
∗
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Probability of success

We compute probability of success for B to solve the given instances of CDH problem. The
probability is ϵ∗ ≥ ϵ

(qH0+n)µ
. We consider the following events for success of B .

– E1: B does not abort the simulation during the AII ’s secret value queries.
– E2: AI can generate a valid and nontrivial forged aggregate signature.
– E3: Event E2 happen, b∗i = 0 for one of i, [i = 1 . . . n] and b∗i = 1 for other value of indices

of i.

If all the three events happen, then B succeeds. The advantage of B is

AdvCDHB = Pr[E1 ∧ E2 ∧ E3]

Pr[E1 ∧ E2 ∧ E3] = Pr[E1]Pr[E2 | E1]Pr[E3 | E1 ∧ E2], ϵ∗ = Pr[E1 ∧ E2 ∧ E3]

Lemma 4. The probability of B does not abort the simulation as long as the AII ’s secret
value key queries continues is at least (1− ξ)qpk . So Pr[E1] ≥ (1− ξ)qpk

Proof. The probability that B does not abort the simulation for a query of secret value is
(1−ξ). The maximum number of queries submitted to PK(IDi) is qpk. Hence the probability
of B does not abort the simulation as a result of PK(IDi) is at least (1− ξ)qpk .

Lemma 5. The probability of B does not abort the simulation over the extraction of public
key and signing queries of AII is at least ϵ (where ϵ is small positive integer).

Proof. Let B does not abort the simulation over the extraction of partial private key queries
of AII . Under this circumstances, AII generates a valid and nontrivial forged aggregate
signature. The probability of observing event E2, given that E1 is true is Pr[E2 | E1]. Then
the algorithm view of AII is identical to its view in the actual attack. Hence Pr[E2 | E1] ≥ ϵ.

Lemma 6. The probability that B does not abort the simulation after AII returning a valid
and nontrivial forged aggregate signature is at least ξ(1− ξ)n−1

. So Pr[E3 | E1 ∧ E2] ≥
ξ(1− ξ)n−1

.



Proof. Let both the events E1 and E2 happen at a time and AI returns a valid and nontrivial
forgery (ID∗

1 . . . ID
∗
n; pk

∗
1 . . . pk

∗
n;m

∗
1 . . .m

∗
n;σ

∗). B aborts the simulation as long as AI is
not generating a forgery such that bj = 0 for some j ∈ {1 . . . n} and bi = 1, for all other

i ∈ {1 . . . n}/{j}. Hence Pr[E3 | E1 ∧ E2] ≥ ξ(1− ξ)n−1
.

Pr[E1 ∧ E2 ∧ E3] ≥ (1− ξ)qpkϵξ(1− ξ)n−1
= ϵξ(1− ξ)qpk + n− 1.

Let ξ = 1
qpk+n

. Hence ϵξ(1− ξ)qpk+n−1
= ϵ 1

qpk+n

(
1− 1

qHpk
+n

)qHpk
+n−1

≥ ϵ 1
qpk+n

.

7 Conclusion

In this paper, we have proposed an efficient and provably secure certificateless aggregate
signature scheme of short length. Our scheme adopted CL-PKC that guarantees the validity
of the public key without certificate signed by TTP. Also it greatly reduces the computational
cost and communication overhead. Our scheme is proven to be existentially unforgeable
under the adversary model with the assumption of hardness of solving CDH problem. Our
scheme can be implemented on constrained hand held devices such as cell phone, smart card,
PDA etc.
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