69,559 research outputs found

    Ceramic matrix and resin matrix composites: A comparison

    Get PDF
    The underlying theory of continuous fiber reinforcement of ceramic matrix and resin matrix composites, their fabrication, microstructure, physical and mechanical properties are contrasted. The growing use of organometallic polymers as precursors to ceramic matrices is discussed as a means of providing low temperature processing capability without the fiber degradation encountered with more conventional ceramic processing techniques. Examples of ceramic matrix composites derived from particulate-filled, high char yield polymers and silsesquioxane precursors are provided

    Zirconia toughened SiC whisker reinforced alumina composites small business innovation research

    Get PDF
    The objective of this phase 1 project was to develop a ceramic composite with superior fracture toughness and high strength, based on combining two toughness inducing materials: zirconia for transformation toughening and SiC whiskers for reinforcement, in a controlled microstructure alumina matrix. The controlled matrix microstructure is obtained by controlling the nucleation frequency of the alumina gel with seeds (submicron alpha-alumina). The results demonstrate the technical feasibility of producing superior binary composites (Al2O3-ZrO2) and tertiary composites (Al2O3-ZrO2-SiC). Thirty-two composites were prepared, consolidated, and fracture toughness tested. Statistical analysis of the results showed that: (1) the SiC type is the key statistically significant factor for increased toughness; (2) sol-gel processing with a-alumina seed had a statistically significant effect on increasing toughness of the binary and tertiary composites compared to the corresponding mixed powder processing; and (3) ZrO2 content within the range investigated had a minor effect. Binary composites with an average critical fracture toughness of 6.6MPam sup 1/2, were obtained. Tertiary composites with critical fracture toughness in the range of 9.3 to 10.1 MPam sup 1/2 were obtained. Results indicate that these composites are superior to zirconia toughened alumina and SiC whisker reinforced alumina ceramic composites produced by conventional techniques with similar composition from published data

    Ceramic matrix composites properties/microstresses with complete and partial interphase bond

    Get PDF
    A multilevel substructuring technique which includes a unique fiber substructuring concept is used for the analysis of continuous fiber reinforced ceramic matrix composites. This technique has four levels of substructuring--from laminate to ply, to supply, and then to fiber. A stand-alone computer code CEMCAN (Ceramic Matrix Composites Analyzer), incorporating this technique and specifically for the simulation of ceramic matrix composites behavior, is currently under development at NASA Lewis Research Center in Cleveland, Ohio. The thermal and mechanical properties, along with the microstresses, for a SiC/RBSN (silicon carbide fiber and reaction bonded silicon nitride matrix) composite at different fiber volume ratios and varying degrees of interfacial bond around the fiber circumference are computed. Values predicted by CEMCAN computer code are shown to bound the experimentally measured values. Results also show that transverse tensile strength test can be a sensitive test method to assess interfacial conditions

    Electroactive influence of ferroelectric nanofillers on polyamide 11 matrix properties

    Get PDF
    Barium titanate ceramic powders have been incorporated in polyamide 11 to form homogeneous dispersion of particles in the matrix. Barium titanate/polyamide 11 nanocomposites have been synthesized using a solvent casting method with ultrasonic stirring to homogeneously disperse inclusions in the matrix. Composites with volume fraction of barium titanate / ranging from 0.01 to 0.4 were elaborated. Films were fabricated using a hot press method. Only the inclusions were poled in the matrix to form a ferroelectric particles/ unpoled matrix composite. Interactions between the particles and the matrix, pyroelectric and piezoelectric response were studied as a function of / by dynamic dielectric spectroscopy. Composites show interesting pyro-piezoelectric activity. Pyroelectric merit factor increases linearly and it reaches a limit value of 0.3 for a volume fraction / = 0.1

    Thermo-oxidative stability studies of PMR-15 polymer matrix composites reinforced with various fibers

    Get PDF
    An experimental study was conducted to measure the thermo-oxidative stability of PMR-15 polymer matrix composites reinforced with various fibers and to observe differences in the way they degrade in air. The fibers that were studied included graphite and the thermally stable Nicalon and Nextel ceramic fibers. Weight loss rates for the different composites were assessed as a function of mechanical properties, specimen geometry, fiber sizing, and interfacial bond strength. Differences were observed in rates of weight loss, matrix cracking, geometry dependency, and fiber-sizing effects. It was shown that Celion 6000 fiber-reinforced composites do not exhibit a straight-line Arrhenius relationship at temperatures above 316 C

    Polymer precursors for ceramic matrix composites

    Get PDF
    The synthesis and characterization of a polycyclohexasilane is reported. Because of its cyclic structure, it is anticipated that this polymer might serve as a precursor to SIC having a high char yield with little rearrangement to form small, volatile cyclic silanes, and, as such, would be of interest as a precursor to SiC composite matrices and fibers, or as a binder in ceramic processing. Several approaches to the synthesis of a bifunctional cyclic monomer were attempted; the most successful of these was metal coupling of PhMeSiCl2 and Me2SiCl2. The procedure gives six-membered ring compounds with all degrees of phenyl substitution, from none to hexaphenyl. The compounds with from 0-2 groups were isolated and characterized. The fraction with degree of phenyl substitution equal to 2, a mixture of cis and trans 1,2-; 1,3-; and 1,4 isomers, was isolated in 32 percent yield. Pure 1,4 diphenyldecamethylcyclohexasilane was isolated from the mixed diphenyl compounds and characterized. Diphenyldecamethylcyclohexasilanes were dephenylated to dichlorodecamethylcyclohexasilanes by treating with H2SO4.NH4Cl in benzene. The latter were purified and polymerized by reacting with sodium in toluene. The polymers were characterized by HPGPC, elemental analysis, proton NMR, and IR. Thermogravimetric analyses were carried out on the polymers. As the yield of residual SiC was low, polymers were heat treated to increase the residual char yield. As high as 51.52 percent residual char yield was obtained in one case

    Stir casting process for manufacture of Al–SiC composites

    Get PDF
    Stir casting is an economical process for the fabrication of aluminum matrix composites. There are many parameters in this process, which affect the final microstructure and mechanical properties of the composites. In this study, micron-sized SiC particles were used as reinforcement to fabricate Al-3 wt% SiC composites at two casting temperatures (680 and 850 C) and stirring periods (2 and 6 min). Factors of reaction at matrix/ceramic interface, porosity, ceramic incorporation, and agglomeration of the particles were evaluated by scanning electron microscope (SEM) and high-resolution transition electron microscope (HRTEM) studies. From microstructural characterizations, it is concluded that the shorter stirring period is required for ceramic incorporation to achieve metal/ceramic bonding at the interface. The higher stirring temperature (850 C) also leads to improved ceramic incorporation. In some cases, shrinkage porosity and intensive formation of Al4C3 at the metal/ceramic interface are also observed. Finally, the mechanical properties of the composites were evaluated, and their relation with the corresponding microstructure and processing parameters of the composites was discussed

    High-temperature durability considerations for HSCT combustor

    Get PDF
    The novel combustor designs for the High Speed Civil Transport will require high temperature materials with long term environmental stability. Higher liner temperatures than in conventional combustors and the need for reduced weight necessitates the use of advanced ceramic matrix composites. The combustor environment is defined at the current state of design, the major degradation routes are discussed for each candidate ceramic material, and where possible, the maximum use temperatures are defined for these candidate ceramics

    XRD and EDS Investigations of Metal Matrix Composites and Syntactic Foams

    Get PDF
    Metal matrix composites (MMCs) of different composition were produced and investigated by X-ray diffraction (XRD) and energy dispersive spectrometry (EDS) analysis. Firstly unidirectionally reinforced MMCs were produced using two type carbon fibre reinforcement and commercial purity aluminium matrix. In MMCs the interface layer has significant effect on the mechanical properties of the composites therefore need to be correctly explored. The investigations showed chemical composition changes in the composites, especially at the interface layers. In the case of carbon fibre reinforced composites Al4C3 phase was formed. The amount of Al4C3 depended on the temperature and the time at temperature of the composite during production and on the quality of carbon fibres. As the second investigated MMC, SiC fibre reinforced aluminium matrix composite wires were produced by continuous pressure infiltration. In SiC reinforced MMC wires the effect of interface diffusion was observed. After long term thermal ageing at 300°C alumina was formed and Si and Ti of SiC fibres moved into the matrix. Finally, metal matrix syntactic foams were manufactured which are particle-reinforced composites, but also known as porous materials (foams), because they contain high amount of hollow ceramic microspheres. Four type hollow spheres from different suppliers with different chemical composition and mean diameters were used. In syntactic foams an exchange reaction took place between the aluminium alloy matrix and the Si content of ceramic inclusions. The reaction resulted in significant alumina formation
    corecore