3 research outputs found

    Cepstral distance based channel selection for distant speech recognition

    No full text
    Shifting from a single to a multi-microphone setting, distant speech recognition can be benefited from the multiple instances of the same utterance in many ways. An effective approach, especially when microphones are not organized in an array fashion, is given by channel selection (CS), which assumes that for each utterance there is at least one channel that can improve the recognition results when compared to the decoding of the remaining channels. In order to identify this most favourable channel, a possible approach is to estimate the degree of distortion that characterizes each microphone signal. In a reverberant environment, this distortion can vary significantly across microphones, for instance due to the orientation of the speaker’s head. In this work, we investigate on the application of cepstral distance as a distortion measure that turns out to be closely related to properties of the room acoustics, such as reverberation time and direct-to-reverberant ratio. From this measure, a blind CS method is derived, which relies on a reference computed by averaging log magnitude spectra of all the microphone signals. Another aim of our study is to propose a novel methodology to analyze CS under a wide set of experimental conditions and setup variations, which depend on the sound source position, its orientation, and the microphone network configuration. Based on the use of prior information, we introduce an informed technique to predict CS performance. Experimental results show both the effectiveness of the proposed blind CS method and the value of the aforementioned analysis methodology. The experiments were conducted using different sets of real and simulated data, the latter ones derived from synthetic and from measured impulse responses. It is demonstrated that the proposed blind CS method is well related to the oracle selection of the best recognized channel. Moreover, our method outperforms a state-of-the-art one, especially on real data

    Deep Learning for Distant Speech Recognition

    Full text link
    Deep learning is an emerging technology that is considered one of the most promising directions for reaching higher levels of artificial intelligence. Among the other achievements, building computers that understand speech represents a crucial leap towards intelligent machines. Despite the great efforts of the past decades, however, a natural and robust human-machine speech interaction still appears to be out of reach, especially when users interact with a distant microphone in noisy and reverberant environments. The latter disturbances severely hamper the intelligibility of a speech signal, making Distant Speech Recognition (DSR) one of the major open challenges in the field. This thesis addresses the latter scenario and proposes some novel techniques, architectures, and algorithms to improve the robustness of distant-talking acoustic models. We first elaborate on methodologies for realistic data contamination, with a particular emphasis on DNN training with simulated data. We then investigate on approaches for better exploiting speech contexts, proposing some original methodologies for both feed-forward and recurrent neural networks. Lastly, inspired by the idea that cooperation across different DNNs could be the key for counteracting the harmful effects of noise and reverberation, we propose a novel deep learning paradigm called network of deep neural networks. The analysis of the original concepts were based on extensive experimental validations conducted on both real and simulated data, considering different corpora, microphone configurations, environments, noisy conditions, and ASR tasks.Comment: PhD Thesis Unitn, 201
    corecore