34,356 research outputs found
Aportacions a la flora vascular dels Pirineus centrals: plantes de la Vall d'Àneu
Contribution to the knowledge of vascular flora of Central Pyrenees. Saxifraga cotyledon
L. is recorded for the first time from catalan Pyrenees. Commentaries on the chrology
of species and the cartography of the more interesting taxa are given
Spatial and temporal phylogeny of border disease virus in pyrenean chamois (Rupicapra p. Pyrenaica)
Border disease virus (BDV) affects a wide range of ruminants worldwide, mainly domestic sheep and goat. Since 2001 several outbreaks of disease associated to BDV infection have been described in Pyrenean chamois (Rupicapra pyrenaica pyrenaica) in Spain, France and Andorra. In order to reconstruct the most probable places of origin and pathways of dispersion of BDV among Pyrenean chamois, a phylogenetic analysis of 95 BDV 5'untranslated sequences has been performed on chamois and domestic ungulates, including novel sequences and retrieved from public databases, using a Bayesian Markov Chain Monte Carlo method. Discrete and continuous space phylogeography have been applied on chamois sequences dataset, using centroid positions and latitude and longitude coordinates of the animals, respectively.
The estimated mean evolutionary rate of BDV sequences was 2.9x10(-3) subs/site/year (95% HPD: 1.5-4.6x10(-3)). All the Pyrenean chamois isolates clustered in a unique highly significant clade, that originated from BDV-4a ovine clade. The introduction from sheep (dated back to the early 90s) generated a founder effect on the chamois population and the most probable place of origin of Pyrenean chamois BDV was estimated at coordinates 42.42 N and 1.9 E. The pathways of virus dispersion showed two main routes: the first started on the early 90s of the past century with a westward direction and the second arise in Central Pyrenees. The virus spread westward for more than 125 km and southward for about 50km and the estimated epidemic diffusion rate was about 13.1 km/year (95% HPD 5.2-21.4 km/year). The strong spatial structure, with strains from a single locality segregating together in homogeneous groups, and the significant pathways of viral dispersion among the areas, allowed to reconstruct both events of infection in a single area and of migrations, occurring between neighboring areas
Syntaxonomic conspectus of the vegetation of Catalonia and Andorra. I: Hygrophilous herbaceous communities.
The first part of a general survey of the vegetation of Catalonia and
Andorra, this paper reports all the phytocoenological associations and subassociations recorded in this area. For each community, we provide the correct name and usual synonyms, its typification (where appropriate), all the references including relevés, and the most outstanding features of its structure, species composition, ecology, distribution and diversity. Moreover, associations and subassociations are ordered appropriately in a syntaxonomic scheme. Syntaxonomic ranks are considered in a fairly broad, conservative sense. This classification established 101 associations, which correspond to the classes Lemnetea, Zosteretea, Potametea, Littorelletea, Montio-Cardaminetea, Phragmiti-Magnocaricetea, Scheuchzerio-Caricetea, Isoeto-Nanojuncetea and Molinio-Arrhenatheretea
Thinning of the Monte Perdido Glacier in the Spanish Pyrenees since 1981
Producción CientíficaThis paper analyzes the evolution of the Monte Perdido Glacier, the third largest glacier in the Pyrenees, from 1981 to the present. We assessed the evolution of the glacier's surface area by analysis of aerial photographs from 1981, 1999, and 2006, and changes in ice volume by geodetic methods with digital elevation models (DEMs) generated from topographic maps (1981 and 1999), airborne lidar (2010) and terrestrial laser scanning (TLS, 2011, 2012, 2013, and 2014) data. We interpreted the changes in the glacier based on climate data from nearby meteorological stations. The results indicate that the degradation of this glacier accelerated after 1999. The rate of ice surface loss was almost three times greater during 1999–2006 than during earlier periods. Moreover, the rate of glacier thinning was 1.85 times faster during 1999–2010 (rate of surface elevation change = −8.98 ± 1.80 m, glacier-wide mass balance = −0.73 ± 0.14 m w.e. yr−1) than during 1981–1999 (rate of surface elevation change = −8.35 ± 2.12 m, glacier-wide mass balance = −0.42 ± 0.10 m w.e. yr−1). From 2011 to 2014, ice thinning continued at a slower rate (rate of surface elevation change = −1.93 ± 0.4 m yr−1, glacier-wide mass balance = −0.58 ± 0.36 m w.e. yr−1). This deceleration in ice thinning compared to the previous 17 years can be attributed, at least in part, to two consecutive anomalously wet winters and cool summers (2012–2013 and 2013–2014), counteracted to some degree by the intense thinning that occurred during the dry and warm 2011–2012 period. However, local climatic changes observed during the study period do not seem sufficient to explain the acceleration of ice thinning of this glacier, because precipitation and air temperature did not exhibit statistically significant trends during the study period. Rather, the accelerated degradation of this glacier in recent years can be explained by a strong disequilibrium between the glacier and the current climate, and likely by other factors affecting the energy balance (e.g., increased albedo in spring) and feedback mechanisms (e.g., heat emitted from recently exposed bedrock and debris covered areas).Ministerio de Economía, Industria y Competitividad - IBERNIEVE (project CGL2014-52599-P)Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente (project 844/2013
Geomatic methods applied to the change study of the la Paúl Rock Glacier, Spanish Pyrenees
Producción CientíficaRock glaciers are one of the most important features of the mountain permafrost in the Pyrenees. La Paúl is an active rock glacier located in the north face of the Posets massif in the La Paúl glacier cirque (Spanish Pyrenees). This study presents the preliminary results of the La Paúl rock glacier monitoring works carried out through two geomatic technologies since 2013: Global Navigation Satellite System (GNSS) receivers and Terrestrial Laser Scanning (TLS) devices. Displacements measured on the rock glacier surface have demonstrated both the activity of the rock glacier and the utility of this equipment for the rock glaciers dynamic analysis. The glacier has exhibited the fastest displacements on its west side (over 35 cm yr-1), affected by the Little Ice Age, and frontal area (over 25 cm yr-1). As an indicator of permafrost in marginal environments and its peculiar morphology, La Paúl rock glacier encourages a more prolonged study and to the application of more geomatic techniques for its detailed analysis.Ministerio de Economía, Industria y Competitividad - Fondo Europeo de Desarrollo Regional (project CGL2015-68144-R)Junta de Extremadura - Fondo Europeo de Desarrollo Regional (project GR10071
Quaternary glacial evolution in the Central Cantabrian Mountains (Northern Spain)
Peer reviewedPostprin
First ground penetrating radar survey on Monte Perdido glacier (Pyrenees)
Producción CientíficaThe project “The Monte Perdido Glacier: Monitoring the glacial dynamic and the associated cryospheric processes as
indicators of global change” (National Park´s 2013 Fund) aims to study the recent dynamic and degradation of this ice
mass, using geomatic and geophysical techniques in order to estimate thickness and potential volumetric variations.
We present the first ground penetrating radar survey, carried out on the northwest section of the lower Monte Perdido
Glacier. The survey was conducted along a 270 m transect, using three antennas of different frequencies -500, 200 and
50 MHz- that enabled us to study the glacier´s structure at various maximum depths and spatial resolutions. The results
show a first section composed by several seasonal snow layers (2015-2016 winter and spring), a clear snow/ice transition layer, an ice layer and a final basal zone characterised by typical sub-glacial till sediments.Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente (project 844/2013)Junta de Extremadura - Fondo Europeo de Desarrollo Regional (grant GR15107
Critical rainfall conditions for the initiation of torrential flows: results from the Rebaixader catchment (Central Pyrenees)
Torrential flows like debris flows or debris floods are fast movements formed by a mix of water and different amounts of unsorted solid material. They generally occur in steep torrents and pose high risk in mountainous areas. Rainfall is their most common triggering factor and the analysis of the critical rainfall conditions is a fundamental research task. Due to their wide use in warning systems, rainfall thresholds for the triggering of torrential flows are an important outcome of such analysis and are empirically derived using data from past events.
In 2009, a monitoring system was installed in the Rebaixader catchment, Central Pyrenees (Spain). Since then, rainfall data of 25 torrential flows (“TRIG rainfalls”) were recorded, with a 5-min sampling frequency. Other 142 rainfalls that did not trigger torrential flows (“NonTRIG rainfalls”) were also collected and analyzed. The goal of this work was threefold: (i) characterize rainfall episodes in the Rebaixader catchment and compare rainfall data that triggered torrential flows and others that did not; (ii) define and test Intensity–Duration (ID) thresholds using rainfall data measured inside the catchment by with different techniques; (iii) analyze how the criterion used for defining the rainfall duration and the spatial variability of rainfall influences the value obtained for the thresholds.
The statistical analysis of the rainfall characteristics showed that the parameters that discriminate better the TRIG and NonTRIG rainfalls are the rainfall intensities, the mean rainfall and the total rainfall amount. The antecedent rainfall was not significantly different between TRIG and NonTRIG rainfalls, as it can be expected when the source material is very pervious (a sandy glacial soil in the study site). Thresholds were derived from data collected at one rain gauge located inside the catchment. Two different methods were applied to calculate the duration and intensity of rainfall: (i) using total duration, Dtot, and mean intensity, Imean, of the rainfall event, and (ii) using floating durations, D, and intensities, Ifl, based on the maximum values over floating periods of different duration. The resulting thresholds are considerably different (Imean = 6.20 Dtot-0.36 and Ifl_90% = 5.49 D-0.75, respectively) showing a strong dependence on the applied methodology.
On the other hand, the definition of the thresholds is affected by several types of uncertainties. Data from both rain gauges and weather radar were used to analyze the uncertainty associated with the spatial variability of the triggering rainfalls. The analysis indicates that the precipitation recorded by the nearby rain gauges can introduce major uncertainties, especially for convective summer storms. Thus, incorporating radar rainfall can significantly improve the accuracy of the measured triggering rainfall.
Finally, thresholds were also derived according to three different criteria for the definition of the duration of the triggering rainfall: (i) the duration until the peak intensity, (ii) the duration until the end of the rainfall; and, (iii) the duration until the trigger of the torrential flow. An important contribution of this work is the assessment of the threshold relationships obtained using the third definition of duration. Moreover, important differences are observed in the obtained thresholds, showing that ID relationships are significantly dependent on the applied methodology.Peer ReviewedPostprint (author's final draft
Study geomorphology, past and present, linear trench, tectonics relationship between Pyrenees and Alps
The author has identified the following significant results. ERTS-1 images obviously show up some large linear features trending N 80 E or N 30 E common to both Alps and Pyrenees. One of them, the Ligurian Fault, had been previously forecast by Laubscher in an interpretation of the Alps by the plate tectonic theory, but it extends westward farthest from the Alps, cutting the Pyrenees axis. These lineaments have been interpreted as reflections of deep seated wrench faults in the surficial part of the sedimentary series. A large set of such lineaments is perceptible in western Europe, such as the Guadalquivir Fault in southern Spain, Ligurian Fault, Insubrian Fault, Northern-Jura Fault, Metz Fault. Perhaps these may be interpreted as transform faults of the mid-Atlantic ridge or of a paleo-rift seated in the Rhine-Rhone graben
Strontium isotope compositions of river waters as records of lithology-dependent mass transfers : the Garonne river and its tributaries (SW France)
The relation of lithology in the drainage basin to the dissolved load of the Garonne river and its main tributaries, in southwestern France, was evaluated by determining 87Sr/86Sr ratios, and concentrations of major and trace elements during a 2-year-long survey. In the upper drainage basin, the Garonne river waters were isotopically varied at two observation points: 0.71131+/−0.00030 (2σ) for 84+/−18 ppb (2σ) and 0.71272+/−0.00044 for 86+/−10 ppb, respectively. In the lower drainage basin, the Garonne river waters were isotopically identical at three observation points at 0.71020+/−0.00024 for 125+/−22 ppb. By contrast, the tributaries (Lot, Truyère, Aveyron, Arriège, Gers and Salat) are widely varied in their 87Sr/86Sr ratios and Sr concentrations from 0.70836+/−0.00049 to 0.71058+/−0.00057, and from 18+/−8 to 280+/−116 ppb.
The Sr isotope ratios and concentrations suggest a dominant supply of two reservoirs of Sr, one of which is with low 87Sr/86Sr ratios and high Sr contents that is typically characteristic of carbonate rocks, and the other with high 87Sr/86Sr ratios and low Sr concentrations that is characteristic of felsic rocks. Locally as in the Lot waters draining the Massif Central and within the Pyrénées mountains, a third source of Sr from mafic rocks may be involved. Mass-balance calculations based on the mean 87Sr/86Sr ratios and contents of the dissolved Sr, and on the mean discharges integrating the 2-year survey, suggest that contribution of the silicate reservoir amounts 3–8% of the total dissolved Sr flux. Mass-balance calculations also suggest that variation in the supply of Sr from either of the two major reservoirs does not exceed the analytical uncertainty at about +/−5%.
The 87Sr/86Sr ratios of HCl and NH4Cl leachates of suspended loads of the Garonne river are different from that of the associated dissolved Sr. This leaching-related supplementary Sr represents less than 10% of the total amount of Sr transported by the Garonne waters. The Sr isotope characteristics of the leachates are probably records of an intermediate pedogenic episode in the weathering-erosion process occurring in the Garonne drainage basin
- …
