769,176 research outputs found

    Multi-scale simulation of capillary pores and gel pores in Portland cement paste

    Get PDF
    The microstructures of Portland cement paste (water to cement ratio is 0.4, curing time is from 1 day to 28 days) are simulated based on the numerical cement hydration model, HUMOSTRUC3D (van Breugel, 1991; Koenders, 1997; Ye, 2003). The nanostructures of inner and outer C-S-H are simulated by the packing of monosized (5 nm) spheres. The pore structures (capillary pores and gel pores) of Portland cement paste are established by upgrading the simulated nanostructures of C-S-H to the simulated microstructures of Portland cement paste. The pore size distribution of Portland cement paste is simulated by using the image segmentation method (Shapiro and Stockman, 2001) to analyse the simulated pore structures of Portland cement paste. The simulation results indicate that the pore size distribution of the simulated capillary pores of Portland cement paste at the age of 1 day to 28 days is in a good agreement with the pore size distribution determined by scanning electron microscopy (SEM). The pore size distribution of the simulated gel pores of Portland cement paste (interlayer gel pores of outer C-S-H and gel pores of inner C-S-H are not included) is validated by the pore size distribution obtained by mercury intrusion porosimetry (MIP). The pores with pore size of 20 nm to 100 nm occupy very small volume fraction in the simulated Portland cement paste at each curing time (0.69% to 1.38%). This is consistent with the experimental results obtained by nuclear magnetic resonance (NMR)

    An Investigation of the Mechanical and Physical Characteristics of Cement Paste Incorporating Different Air Entraining Agents using X-ray Micro-Computed Tomography

    Get PDF
    Improving the thermal insulation properties of cement-based materials is the key to reducing energy loss and consumption in buildings. Lightweight cement-based composites can be used efficiently for this purpose, as a structural material with load bearing ability or as a non-structural one for thermal insulation. In this research, lightweight cement pastes containing fly ash and cement were prepared and tested. In these mixes, three different techniques for producing air voids inside the cement paste were used through the incorporation of aluminum powder (AL), air entraining agent (AA), and hollow microspheres (AS). Several experiments were carried out in order to examine the structural and physical characteristics of the cement composites, including dry density, compressive strength, porosity and absorption. A Hot Disk device was used to evaluate the thermal conductivity of different cement composites. In addition, X-ray micro-computed tomography (micro-CT) was adopted to investigate the microstructure of the air-entrained cement pastes and the spatial distribution of the voids inside pastes without destroying the specimens. The experimental results obtained showed that AS specimens with admixture of hollow microspheres can improve the compressive strength of cement composites compared to other air entraining admixtures at the same density level. It was also confirmed that the incorporation of aluminum powder creates large voids, which have a negative effect on specimens’ strength and absorption.EC/H2020/841592/EU/Ultra-Lightweight Concrete for 3D printing technologies/Ultra-LightCon-3

    Photocatalytic Activity and Mechanical Properties of Cements Modified with TiO2/N

    Get PDF
    In this paper, studies of the mechanical properties and photocatalytic activity of new photoactive cement mortars are presented. The new building materials were obtained by the addition of 1, 3, and 5 wt % (based on the cement content) of nitrogen-modified titanium dioxide (TiO2/N) to the cement matrix. Photocatalytic active cement mortars were characterized by measuring the flexural and the compressive strength, the hydration heat, the zeta potential of the fresh state, and the initial and final setting time. Their photocatalytic activity was tested during NOx decomposition. The studies showed that TiO2/N gives the photoactivity of cement mortars during air purification with an additional positive effect on the mechanical properties of the hardened mortars. The addition of TiO2/N into the cement shortened the initial and final setting time, which was distinctly observed using 5 wt % of the photocatalyst in the cement matrix

    High-Power Fiber Laser Cutting for 50-mm-Thick Cement-Based Materials

    Get PDF
    This experimental research highlights the applicability of laser cutting to cement-based materials using multimode fiber lasers. A 9 kW multimode fiber laser is used, and the experimental variables are the water-to-cement ratio, laser speed, and material compositions such as cement paste, cement mortar and ultra high performance concrete (UHPC). The laser cutting performance on the cement-based materials is investigated in the downward laser direction. The kerf width and penetration depth of the cement-based materials are quantitatively evaluated with the parameters in the surface and cross section of the specimens after the laser cutting. Moreover, the material removal zone of each specimen is compared in terms of the penetration shapes in the cross-sectional view. Based on experimental observations, the interaction mechanism between the laser and cement-based materials is proposed

    Quality of type I Portland cement from Ghana and UK

    Get PDF
    Type I Portland cement is general purpose cement found in many countries and it is manufactured by different companies. This study sought to compare the properties of Type I Portland cements from Ghana (less economically developed country) and United Kingdom (more economically developed country) to ascertain whether the quality of Ghana cement is a contributing factor for recent spate of building collapse in the country. The study adopted a laboratory-based experimental approach to determine the properties of three cement samples: one from Ghana and two from the United Kingdom (UK). It was identified that UK cements particles were the fineness, contained more Calcium oxide (CaO), recorded earlier setting times and achieved early strength. Ghana cement on the other hand, had more Alkali (Na2O + K2O) content, higher density, good resistance to water and achieved better late strength development than UK grey cement. The study has revealed that although there are some differences in the properties of Ghana and UK Type I Portland cements, they all meet international standard requirements and therefore, the quality of Ghana cement may not be one of the contributing factors of recent building collapse in the country

    Investigation of the effect of consolidation on cement flow behaviour

    Get PDF
    International audienceOne of the main problems affecting the flow of cement bulk powder is the formation of cohesive arching at the outlet of the hopper, causing blockage of the silo opening and bridge formation. A simple concept is established which outlines these complications. In this context, the interactions of particles lead to a high degree of consolidation of the cement powder and an increase of adhesion force due to the small size and the large surface area of the cement particles. The results from the consolidation test and the flow properties (cohesion) show that the cement powder flow is mainly controlled by internal forces (Van der Waals and adhesion forces) and external forces. These forces have a direct influence on the powder structure, leading to a variable packing behaviour. Since the problem is attributable mainly to interparticle forces, before storage of the cement powder in the silo, the powder should be fluidised with air at a high velocity to disintegrate the cohesive structure and to overcome this undesirable property of cement flow

    Comparison between two ultrasonic methods in their ability to monitor the setting process of cement pastes

    Get PDF
    This paper presents the comparison between ultrasonic wave transmission (USWT) method and ultrasonic wave reflection (USWR) method in their ability to monitor the setting process of cement pastes. The velocity of ultrasonic longitudinal waves and shear wave reflection coefficient were measured simultaneously on cement pastes with different hydration kinetics. Even though both methods are able to reliably monitor the hydration process and formation of structure of an arbitrary cement paste, they monitor the setting process in different ways. The relationship between the velocity of longitudinal waves and shear wave reflection coefficient can be simplified into three characteristic phases and the end of the first phase can be used to define the beginning of the setting process of cement paste. (C) 2009 Elsevier Ltd. All rights reserved

    Magnesium-Containing Slurry as Technogenic Alternative Raw Material for Magnesium Oxychloride Cement

    Get PDF
    It has been shown experimentally that a waste of magnesium metal production is a realistic alternative to naturally occurring cement raw materials. The waste is the carnallite slurry forming during the chlorination stage. The slurry contains magnesium oxide (MgO) and magnesium chloride (MgCl2) in a mass ratio close to their optimal ratio when preparing Sorel cement. It is found that the magnesium oxide in the slurry is highly reactive. MgO extracted from the slurry and MgCl2 solution are mixed forming homogeneous magnesium oxychloride cement (MOC) paste in which bonding crystalline structures typical for Sorel cement are formed during hardening. © 2019 Published under licence by IOP Publishing Ltd

    Potential of Orange Peel Ash as a Cement Replacement Material

    Get PDF
    The potential of Orange peel ash (OPA) as a cement replacement material was investigated with focus on the effect of OPA content on the physicomechnical properties such as consistency, setting times, soundness, compressive and flexural strengths of OPA-cement blend for cement replacement between 2.5-10% at 2.5% interval. The optimal calcination temperature and time of orange peel (OP) was achieved by calcining the OP at various temperature between (600 °C, 700 °C, 800 °C) and time (1 hr. and 2 hrs.) respectively. The chemical compositions of the various orange peel ashes were determined using X-ray fluorescence equipment and the optimal conditions was obtained at 600 °C and 2 hours. The consistency and setting time tests were conducted with a Vicat apparatus on the binary cement pastes in accordance to ASTM standards. Results indicated an increase in the water required for consistency as the OPA content was increased from 2.5-10 % which was attributed to the unburnt carbon content present in the ash. Similarly, a gradual increase in the cement replacement with OPA resulted in a prolonged setting time which was could be attributed to the diminution of the clinker content and the higher water requirement for normal consistence. The soundness of the OPA cement blend experienced an increase in free lime content as the OPA content rose from 2.5-10 %. Both compressive and flexural strengths were found to decrease as the OPA content was gradually increased whereas an increase in the strengths were observed as the curing days progressed. It was also observed that 5% cement replacement with OPA did not adversely affect the strength in comparison to the OPC control due to the pozzolanic reaction which resulted in the enhanced strengths especially at 28 days
    corecore