190 research outputs found

    Existence and Multiplicity of Traveling Waves in a Lattice Dynamical System

    Get PDF
    AbstractThis work proves the existence and multiplicity results of monotonic traveling wave solutions for some lattice differential equations by using the monotone iteration method. Our results include the model of cellular neural networks (CNN). In addition to the monotonic traveling wave solutions, non-monotonic and oscillating traveling wave solutions in the delay type of CNN are also obtained

    Single-Layer Raster CNN simulator using RK-Gill

    Get PDF
    An efficient numerical integration algorithm for single layer Raster Cellular Neural Networks (CNN) simulator is presented in this paper. The simulator is capable of performing CNN simulations for any size of input image, thus a powerful tool for researchers investigating potential applications of CNN. This paper reports an efficient algorithm exploiting the latency properties of Cellular Neural Networks along with numerical integration techniques; simulation results and comparisons are also presented

    A fully CNN based fingerprint recognition system

    Get PDF
    In this paper, a fully cellular neural networks (CNN) based fingerprint recognition system is introduced. The system includes a preprocessing phase where the input fingerprint image is enhanced and a recognition phase where the enhanced fingerprint image is matched with the fingerprints in the database. Both preprocessing and recognition phases are realized by means of CNN approaches. A novel application of skeletonization method is used to perform ridgeline thinning which improves the quality of the extracted lines for further processing, and hence increases the overall system performance

    On The Application Of Genetic Probabilistic Neural Networksand Cellular Neural Networks In Precision Agriculture

    Get PDF
    This article details the effect of Gaussian smoothing parameter (spread) on the performance of Probabilistic Neural Networks (PNN). Two (2) different Genetic Algorithms (GAs) were used to optimize the PNN spread in order to avoid under and over fitting. In this work there is a novel combination of Cellular Neural Networks (CNN), Probabilistic Neural Networks (PNN) and GA to address the present challenges on automatic identification of plant species. Such problems include misclassification species of plants that are similar in shapes and image segmentation speed. In this work, GA was used in both feature selection and PNN parameter optimization. The GA developed herein improved the performance of the PNN. This work serves as a framework for building image classification or pattern recognition system

    Current-Mode Techniques for the Implementation of Continuous- and Discrete-Time Cellular Neural Networks

    Get PDF
    This paper presents a unified, comprehensive approach to the design of continuous-time (CT) and discrete-time (DT) cellular neural networks (CNN) using CMOS current-mode analog techniques. The net input signals are currents instead of voltages as presented in previous approaches, thus avoiding the need for current-to-voltage dedicated interfaces in image processing tasks with photosensor devices. Outputs may be either currents or voltages. Cell design relies on exploitation of current mirror properties for the efficient implementation of both linear and nonlinear analog operators. These cells are simpler and easier to design than those found in previously reported CT and DT-CNN devices. Basic design issues are covered, together with discussions on the influence of nonidealities and advanced circuit design issues as well as design for manufacturability considerations associated with statistical analysis. Three prototypes have been designed for l.6-pm n-well CMOS technologies. One is discrete-time and can be reconfigured via local logic for noise removal, feature extraction (borders and edges), shadow detection, hole filling, and connected component detection (CCD) on a rectangular grid with unity neighborhood radius. The other two prototypes are continuous-time and fixed template: one for CCD and other for noise removal. Experimental results are given illustrating performance of these prototypes

    A neuronal classification system for plant leaves using genetic image segmentation

    Get PDF
    This paper demonstrates the use of radial basis networks (RBF), cellular neural networks (CNN) and genetic algorithm (GA) for automatic classication of plant leaves. A genetic neuronal system herein attempted to solve some of the inherent challenges facing current software being employed for plant leaf classication. The image segmentation module in this work was genetically optimized to bring salient features in the images of plants leaves used in this work. The combination of GA-based CNN with RBF in this work proved more ecient than the existing systems that use conventional edge operators such as Canny, LoG, Prewitt, and Sobel operators. The results herein showed that GA-based CNN edge detector outperforms other edge detector in terms of speed and classication accuracy

    A Model for VLSI implementation of CNN image processing chips using current-mode techniques

    Get PDF
    A new Cellular Neural Network model is proposed which allows simpler and faster VLSI implementation than previous models. Current-mode building blocks are presented for the design of CMOS image preprocessing chips (feature extraction, noise filtering , compound component detection, etc.) using the cellular neural network paradigm. Area evaluation for the new model shows a reduction off about 50% as compared to the use of current-mode techniques with conventional models. Experimental measurements of CMOS prototypes designed in a 1.6 μm n-well double-metal single-poly technology are reported
    corecore