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This work proves the existence and multiplicity results of monotonic traveling
wave solutions for some lattice differential equations by using the monotone itera-
tion method. Our results include the model of cellular neural networks (CNN). In
addition to the monotonic traveling wave solutions, non-monotonic and oscillating
traveling wave solutions in the delay type of CNN are also obtained. � 2000
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I. INTRODUCTION

This work studies the existence and multiplicity of traveling wave solutions
of lattice differential equations. As generally considered, lattice differential
equations are infinite systems of ordinary differential equations on a spatial
lattice, such as the D-dimensional integer lattice ZD. Lattice differential equa-
tions arise from many system models such as in chemical reaction theory
[14, 24], biology [2, 3], image processing and pattern recognition [11, 13],
and material science [4].

An underlying motivation for studying the lattice differential equations is
the large array of a locally coupled first-order nonlinear dynamical system,
i.e., Cellular Neural Networks (CNN). Proposed by Chua and Yang [12, 13],
such an information processing system is occasionally referred to as CY-CNN.
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Indeed, cellular neural networks (CNN) without input terms are of the
form

dxi, j

dt
=&xi, j+z+ :

|k|�d, |l | �d

ak, l f (xi+k, j+l) (i, j) # Z2 (1.1)

or

dxi

dt
=&xi+z+ :

|l |�d

al f (x i+l) i # Z1. (1.2)

Here the nonlinearity f is an output function and a piecewise-linear func-
tion in CY-CNN. The quantity z is called a threshold or bias term and the
numbers ak, l can be arranged into the (2d+1)_(2d+1) matrix A which
is called a space-invariant template.

The study of traveling wave solutions can proceed as follows. Let % # R1

be given and consider solutions of (1.1) or (1.2) of the form

xi, j (t)=x(i cos %+ j sin %&ct) or xi (t)=x(i&ct) (1.3)

for some unknown function x: R1 � R1 and some unknown real number c.
A solution of the form (1.3) of system (1.1) or (1.2) is called a traveling
wave solution of (1.1) (or 1.2). By denoting s=i cos %+ j sin %&ct (or
s=i&ct), x and c satisfy the equation of the form

&cx$(s)=G(x(s+r0), x(s+r1), ..., x(s+rN)), (1.4)

where r0=0, ri are real numbers for i=1 to N.
If Eq. (1.4) depends on the past and future, i.e., if

rmin #min[ri]N
i=0<0<rmax #max[ri]N

i=0 , (1.5)

then (1.5) is called a mixed type. If rmin=0 or rmax=0, then (1.4) is called
an advance or delay type, respectively.

Previous studies [5, 34] have numerically observed traveling wave
solutions and mathematically proven them [1, 6, 26�28] in the case of the
discrete reaction�diffusion equation. Chow, Mallet-Paret, and Shen [9]
studied the existence and stability of traveling wave solutions in lattice
dynamical systems. In a related study Mallet-Paret [28] confirmed the
existence and uniqueness of a traveling wave which connects the two stable
states in bistable systems. Previous investigations of [28] and [35] provide
the basis for this study. Indeed, define 8(x) by

8(x)=G(x, x, ..., x), (1.6)
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and assume x0<x+ such that

8(x0)=8(x+)=0 and 8(x)>0 for x # (x0, x+). (1.7)

By assuming that G is quasi-monotone, i.e., G(u0 , u1 , ..., uN) is strictly
increasing in uj for 1� j�N, Wu and Zou [35] verified that a family of
monotone traveling wave solutions of (1.4) satisfies the boundary conditions

lim
s � &�

x(s)=x0 and lim
s � �

x(s)=x+. (1.8)

A monotonic iteration scheme is employed in [35]. Under certain conditions
on G, Wu and Zou constructed upper and lower solutions of (1.4), thereby
satisfying the boundary conditions in (1.8).

In this work, we first generalize the results in [35]. Indeed, we denote
the characteristic equation of (1.4) at x� by

2(_, c, x� )=&c_& :
N

j=0

�G
�uj

(x� ) e_rj. (1.9)

The assumptions needed for this mixed type problem are:

(G.1) Assume that �N
j=0 (�G��u j )(x0)>0.

(G.2) Assume that G is quasi-monotonic for uj , j�1, in [x0, x+]N+1,
i.e.,

�G
�uj

(u)>0, for u # [x0, x+]N+1, j�1.

(G.3) Assume that

G(u)� :
N

j=0

�G
�uj

(x0)(uj&x0) for u # [x0, x+]N+1.

The first main results are

Theorem 1.1. By assuming that rmin<0<rmax with (G.1), (G.2), and
(G.3) being held, c*�0 exists such that for any c<c* Eq. (1.4) has a non-
decreasing solution satisfying the boundary conditions (1.8). Herein, c* satisfies

2(_*, c*, x0)=0 and 2$(_*, c*, x0)=0 (1.10)

for some _*>0, where `` $ '' denotes the partial derivative of 2(_, c, x0) with
respect to _. Moreover, (_*, c*) is a unique solution of (1.10).
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With Condition (G.1) we can construct lower solutions. Condition (G.2)
ensures the validity of the monotone iteration scheme. Condition (G.3), a
global sublinearity of G at x0, allows us to construct an upper solution.
Notably, the condition (G.3) is much weaker than that in [35]. Condition
(G.3) holds in many models, such as in the reaction�diffusion equation
and CNN.

In Theorem 1.1, c* is the critical velocity which verifies the existence of
a monotonic traveling wave connecting x0 and x+. Furthermore, in the
delay case, our results indicate that (G.3) is redundant. Indeed, the following
results are obtained.

Theorem 1.2. Assume (G.1), (G.2), and that rmax=0. Then, for any c�0,
a non-decreasing solution of (1.4) satisfies the boundary conditions (1.8).

All general results of Theorems 1.1 and 1.2 can be applied to CNN,
enabling us to obtain monotone traveling waves. However, owing to the
simplicity of the piecewise-linear nonlinearity of CY-CNN, the solutions
can be obtained explicitly in the case of the delay or advance type. In
addition to monotone traveling waves, non-monotonic waves can also be
obtained in the case when G is quasi-monotone. Furthermore, overshoot
non-monotonic waves can be obtained in the case when G is not quasi-
monotone. Previous investigations have not rigorously proved these
non-monotonic waves.

The rest of this paper is organized as follows. Section 2 introduces a
novel monotone iteration scheme to construct upper and lower solutions of
(1.4). In Section 3 we prove the main theorems by using the monotone
iteration scheme. Section 4 applies the results in Section 3 to examine the
CNN problem and also obtains non-monotonic solutions when G is either
quasi-monotone or not quasi-monotone.

II. MONOTONE ITERATION SCHEME

In this section, we consider the differential equation (1.4) with

G(u)#G(u0 , u1 , ..., uN): RN+1 � R1

being a C2-function, c<0, and ri in R1 for i=0 to N. In general, the
smoothness of G can be relaxed, say G # C1, except at a finite set. Hereafter,
we assume (1.7) and that r0=0.

These conditions (1.7) occur quite frequently in many models, and the
two zeros of 8 correspond to the homogeneous steady states of (1.4). For
simplicity, we also denote x0=(x0, ..., x0) # RN+1, etc., when it does not
cause any confusion.
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This section largely focuses on obtaining monotonic traveling wave
solutions of (1.4). The method employed herein to study Eqs. (1.4) and
(1.8) is the well-known monotone iteration method. Importantly, the
characteristic equation of (1.4), which occurs with the linearization of (1.4)
about some trivial solutions, e.g. x0 and x+, must be considered.

Clearly, a pair of upper and lower solutions can be constructed accord-
ing to the roots of the characteristic equation of (1.4).

Herein, we denote the characteristic functions about x0 and x+ by
2(_, c, x0) and 2(_, c, x+) respectively, which are defined by

2(_, c, x0)=&c_& :
N

j=0

�G
�uj

(x0) e_rj (2.1)

and

2(_, c, x+)=&c_& :
N

j=0

�G
�uj

(x+) e_rj. (2.2)

Proving the existence of a traveling wave requires that G satisfies the
assumptions (G.1), (G.2), and (G.3).

We recall the definition of upper and lower solutions of (1.4).

Definition 2.1. A continuous function U: R1 � R1 is called an upper
solution of (1.4) if it is differentiable almost everywhere and satisfies

&cU$(s)�G(U(s+r0), ..., U(s+rN)). (2.3)

Similarly, the lower solution L(s) satisfies

&cL$(s)�G(L(s+r0), ..., L(s+rN)). (2.4)

To construct the upper and lower solutions of (1.4), we need some
properties of characteristic function 2(_, c, x0). Indeed, by differentiating
with respect to _, we have

�2(_, c, x0)
�_

=&c& :
N

j=1

�G
�uj

(x0) e_rj rj (2.5)

and

�2 2(_, c, x0)
�_2 =& :

N

j=1

�G
�uj

(x0) e_rj r2
j . (2.6)

According to (2.5) and (2.6), we have the following result.
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Lemma 2.2. By assuming that (G.1) and (G.2) hold, c*�0 exists such
that for any c<c*, _0(c)>0 and =0(c)>0 satisfy

2(_0, c, x0)=0

and

2(_0+=, c, x0)>0 for 0<=<=0 .

Proof. According to (G.2) and (2.6), 2(_, c, x0) is a concave function of
_. Hence, (G.1) implies that c*�0 exists such that for any c<c*, _0(c)>0
and =0(c)>0 satisfy the results. Therefore, the proof is complete.

In the following proposition, the construction of upper and lower
solutions in mixed type resembles that in [35]. The construction of the
lower solution in the delay case is new.

Proposition 2.3. (i) Under the assumptions of Theorem 1.1, for the
given positive numbers `, h, and =, define functions

U(s)={x+

x0+(x+&x0) e_0 s

if s�0,
if s�0,

(2.7)

and

L(s)={x0

x0+`(1&he=s) e_ 0 s

if s�s0 ,
if s�s0 ,

(2.8)

where s0<0 is such that he=s0=1. Then U(s) is an upper solution of (1.4),
and positive numbers h0 , `0 , and =0 in R1 exist such that if h>h0>1,
0<`<`0 , and 0<=<=0 , L(s) is a lower solution of (1.4).

(ii) Under the assumptions of Theorem 1.2, for given positive numbers
`, h, and =, we define the function

L� (s)={x0+`(1&he=s1 ) e_ 0s1

x0+`(1&he=s) e_ 0s

if s�s1 ,
if s�s1 ,

(2.9)

with s1=(1�=) ln(_0�h(_0+=))<0. Then, positive numbers h� 0 , �̀ 0 , and =~ 0
exist such that if h>h� 0>1, 0<`< �̀ 0 , and 0<=<=~ 0 , then L� (s) is a lower
solution of (1.4).

Proof. To demonstrate that U(s) is an upper solution, note that if s�0
then U$(s)=0, and by (G.2) we have

G(U(s+r0), ..., U(s+rN))�8(x+)=0.
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Hence,

&cU$(s)�G(U(s+r0), ..., U(s+rN)).

If s�0, according to the definition of U we have

U$(s)=_0(x+&x0) e_ 0s.

Now, applying (G.3), we have

G(U(s+r0), ..., U(s+rN))� :
N

j=0

�G
�uj

(x0)(U(s+rj)&x0),

� :
N

j=0

�G
�uj

(x0)(x+&x0) e_ 0 (s+rj ). (2.10)

Since

2(_0, c, x0)=&c_0& :
N

j=0

�G
�uj

(x0) e_ 0 rj,

(2.10) implies

&cU$(s)�G(U(s+r0), ..., U(s+rN)),

for s�0. Hence, U(s) is an upper solution of (1.4).
Next, we prove L is a lower solution. If s�s0 , we have L$(s)=0 and

(G.2) implies that

G(L(s+r0), ..., L(s+rN))�G(x0, ..., x0)=0.

Hence, for s�s0 ,

&cL$(s)�G(L(s+r0), ..., L(s+rN)).

If s�s0 , then from the definition of L we have

L$(s)=`(_0&h(_0+=) e=s) e_ 0s.

Now, applying Taylor's expansion of G about x0, if ` is small then we can
write

G(u0 , ..., uN)=8(x0)+ :
N

j=0

�G
�uj

(x0)(uj&x0)+Q(u&x0) (2.11)

for u in [x0, x+]N+1 and

|Q(u&x0)|�K0 |u&x0|2 for some K0�0. (2.12)
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Thus, by (2.11) and direct computation, we have

G(L(s+r0), ..., L(s+rn))+cL$(s)

=`e(_ 0+=)sh 2(_0+=, c, x0)+Q(L(s+r0)&x0, ..., L(s+rN)&x0).

(2.13)

From (2.12), the constant K>0 exists such that

|Q(L(s+r0)&x0, ..., L(s+rN)&x0)|�K`2e2_ 0s.

Since (G.1) holds and by Lemma 2.2 we know that there exists an =0>0
such that

2(_0+=, c, x0)>0 for 0<=<=0 ,

there exists an h0>1 such that if h>h0 , the right-hand side of (2.13) is
positive, i.e.,

&cL$(s)�G(L(s+r0), ..., L(s+rN)).

for s�s0 . Hence, L(s) is a lower solution of (1.4).
Finally, we show that L� (s) is a lower solution when rmax=0. First, we

choose positive numbers `, h, and = such that L(s) is a lower solution and
define L� (s) as in (2.9). Let L(s1) be the maximum of L(s) in R1, i.e.,

s1=
1
=

ln
_0

h(_0+=)
<0,

then L� $(s)=0 for s�s1 . From (G.1), we have

�G
�u0

(x0)+ :
n

j=1

�G
�uj

(x0) e_ 0rj>0,

and this implies

G(L� (s+r0), ..., L� (s+rN))

= :
N

j=0

�G
�uj

(x0)(L� (s+r j)&x0)+Q(L(s+r0)&x0, ..., L(s+rN)&x0)

�K� \ �G
�u0

(x0)+ :
N

j=1

�G
�uj

(x0) e_ 0rj+
>0,
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for some positive constant K� . Hence,

&cL� $(s)�G(L� (s+r0), ..., L� (s+rN)),

for s�s1 . If s<s1 , then by an argument similar to that used in proving
that L(s) is a lower solution we can also obtain

&cL� $(s)�G(L� (s+r0), ..., L� (s+rN)),

for s�s1 . By combining these results, L� (s) is a lower solution of (1.4).
The proof is complete.

After construction of upper and lower solutions of (1.4), using the quasi-
monotonicity of G, we present a novel monotone iteration scheme to
obtain the non-decreasing solutions of (1.4) and (1.8).

From (G.2), a +>0 exists such that the function H(u0 , ..., uN): RN+1 �
R1 defined by

H(u0 , ..., uN)=&
1
c

G(u0 , ..., uN)++u0 (2.14)

is monotonic in uj # [x0, x+] for each j�0. Thus we rewrite (1.4) as

x$(s)=H(x(s+r0), ..., x(s+rN))&+x(s). (2.15)

Then x(s) is easily verified to be a solution of (2.15) if and only if x(s)
satisfies

x(s)=e&+s |
s

&�
e +t H(x(t+r0), ..., x(t+rN)) dt. (2.16)

If we define the operator T by

(T.)(s)=e&+s |
s

&�
e +tH(x(t+r0), ..., x(t+rN)) dt, (2.17)

then by (2.16) the fixed point of T satisfies (2.15), and vice versa.
In the following, we apply the monotonic iteration method to find the

fixed point of T. Clearly, .(s) is an upper (lower) solution of (1.4) if and
only if

.(s)� (�) (T.)(s). (2.18)

Denote the set by

1� =[. | .: R1 � [x0, x+] and continuous]
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and the set of profiles by

1=[. # 1� | . is non-decreasing and satisfies (1.8)],

then T has the following properties on 1.

Lemma 2.4. Assume that (G.2) holds, then

(i) If .(s), .~ (s) # 1� and .(s)�.~ (s) for all s in R1, then

(T.)(s)�(T.~ )(s) for all s in R1.

(ii) If . is an upper (or lower) solution of (1.4), then (T.)(s) is also
an upper (or lower) solution of (1.4).

(iii) if . # 1 then (T.)(s) # 1, too.

Proof. Since H is non-decreasing, (i) follows. Next, assume that . is an
upper solution of (1.4). By (2.18) we have (T.)(s)�.(s) for all s in R1. By
(i), we obtain

T(T.)(s)�(T.)(s) for all s in R1.

Hence, (T.)(s) is also an upper solution of (1.4), and (ii) follows.
To prove (iii), note that H is non-decreasing. Hence, . # 1 obviously

implies that T. is also non-decreasing. To demonstrate that T. satisfies
(1.8), note that

H(x0)=+x0 and H(x+)=+x+.

Now, according to L'Hospital's rule, it is easy to verify that

lim
s � &�

(T.)(s)=x0 and lim
s � �

(T.)(s)=x+.

Hence, (T.)(s) lies in 1. The proof is complete.

III. PROOF OF THE MAIN THEOREMS

Proof of Theorem 1.1. By assuming that (G.1), (G.2), and (G.3) hold,
then by Proposition 2.3 U and L are the upper and lower solutions of (1.4),
respectively. For any positive integer n, define Un(s) and Ln(s) by

Un(s)=(T nU )(s) and Ln(s)=(T nL)(s), (3.1)

440 HSU AND LIN



with U0=U and L0=L. Then using (2.18) and Lemma 2.4, we have

x0� } } } �Un(s)� } } } �U1(s)�U(s)�x+.

According to Lebesgue's dominated convergence theorem, the limiting function
U

*
(s) defined by

U
*

(s)= lim
n � �

Un(s)

exists and is a fixed point of T. Moreover, U
*

(s) is non-decreasing and satisfies
(1.4). Therefore, it must be verified that U

*
(s) satisfies the boundary conditions

(1.8). However, L(s), constructed in (2.8), is a non-trivial lower solution. Since
U�L in R1, it is also easy to verify that Un�L for all n, hence U

*
�L. Since

Un is non-decreasing and satisfies (1.8), U
*

lies in 1 and is a non-decreasing
solution of (1.4) and (1.8).

It remains to show that c* satisfies (1.10). Since

2(0, c, x0)<0 and 2"(_, c, x0)<0,

it is clear that there are a unique c*<0 and _*>0 that satisfy (1.10).
Indeed, c* satisfies

c*=& :
N

j=1

�G
�u j

(x0) e_*rj rj (3.2)

with

_*=inf {_>0 } :
N

j=1

�G
�uj

(x0) e_ rj (_rj&1)>
�G
�u0

(x0)= . (3.3)

The proof is complete.

Remark 3.1. According to Theorem 1.1, the critical velocity c* exists,
thereby ensuring a monotone traveling wave solution connecting x0 and
x+ for any c # (&�, c*). When c=c*, it is not easy to construct the lower
solution as (2.8) to show the existence of a solution of (1.4) and (1.8).
However, we believe that such a solution exists. For example, in [38],
Zinner et al. studied the discrete Fisher equation and obtained the traveling
wave solutions when c�c*.

For another example, consider one-dimensional cellular neural networks
by

dxi

dt
=&xi+af (xi)+;f (xi+1) (3.4)
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with f (x)=( |x+1|&|x&1|)�2. Define L(s) by

L(s)={x0+$
x0+$e_*s

for s�0,
for s�0,

(3.5)

then L(s) is a lower solution of (3.4) when a+;&1>0 and $ is positive
and small enough. Hence, we have a traveling wave solution of (3.4) and
(1.8) when c=c*. In addition, the global structure of the traveling wave
solutions of (3.4) is completely classified in [19]. Of relevant interest is
whether or not a traveling wave of (1.4) exists which may be non-monotone
for c>c*.

Proof of Theorem 1.2. Since rmax=0, by (2.5) and (2.6), we have that
2(_, c, x0) is a concave function in _ and 2$(_, c, x0)>0 for any c<0.
Hence (G.1) holds for any c<0. Now from Proposition 2.3(ii), we know
that L� (s) is a lower solution of (1.4). If we denote L� n(s) by

L� n(s)=(T nL� )(s). (3.6)

with L� 0=L� and apply Lemma 2.4, we obtain

x0�L� 0(s)�L� 1(s)� } } } �L� n(s)� } } } �x+.

By the Lebesgue dominated convergence theorem again, the limiting
function L�

*
(s) defined by

L�
*

(s)= lim
n � �

L� n(s)

is the fixed point of T. It remains to be shown that L�
*

(s) satisfies the
boundary conditions. Clearly, L�

*
(s) is non-decreasing due to the monotonicity

of T. This is because we do not have a non-trivial upper solution as a barrier
function to separate L�

*
(s) from a trivial solution x+ ; to overcome this

difficulty, we need to show L�
*

(s) � x0 as s � &�. This can be achieved
inductively on L� n(s).

By (3.6), we have

L� n+1=e&+s |
s

�
e+tH(L� n(t+r0), ..., L� n(t+rN)) dt.

We begin with the study of L� 1(s) as s � &�. By (2.11), L� 1 can be written as

L� 1(s)=e&+s |
s

&�
e +t _&

1
c

:
N

j=0

�G
�u j

(x0)(L� (t+rj)&x0)++L� (t)

+Q(L� (t+r0)&x0, ..., L� (t+rN)&x0)& dt.
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As s tends to &�, we have

L� 1(s)=x0+`e_ 0s&`h \1&
2(_0+=, c, x0)

++_0+= + e(_ 0+=)s

+e&+s |
s

&�
e+tQ(L� (t+r0)&x0, ..., L� (t+rN)&x0)] dt. (3.7)

However, (2.12) implies that a positive constant K� exists such that

e&+s |
s

&�
e+tQ(L� (t+r0)&x0, ..., L� (t+rN)&x0) dt

�
K�

++2_0 e2_ 0s. (3.8)

Define ! and \ as

!=1&
2(_0+=, c, x0)

++_0+=
and \=

K�
++2_0 .

In addition, by combining (3.7) with (3.8), we have 0<!<1 and \< 1
2 , for

+ large enough. Hence, L� 1(s) can be written as

L� 1(s)=x0+`(1&!he=s) e_ 0s+r1(s),

where

r1(s)=e&+s |
s

&�
e +tQ(L� (t+r0)&x0, ..., L� (t+rN)&x0) dt

and

|r1(s)|�\e2_ 0s.

Let `�\, and by induction L� n(s) can be written as

L� n(s)=x0+`(1&!nhe=s) e_0s+rn(s) (3.9)

and

|rn(s)|�\e2_ 0s. (3.10)
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Hence, L� n and L�
*

tend to x0 as s tends to &�. Thus L�
*

is not the trivial
solution x+. Since L�

*
is monotonously increasing, according to (1.7), we

have

lim
s � �

L�
*

(s)=x+.

The proof is complete.

Remark 3.2. By using a comparison theorem obtained in [28], we can
prove that the monotone solution obtained in Theorems 1.1 and 1.2 is
unique for c # (&�, c*). We only sketch the proof in the following and
omit the details.

It is not difficult to prove that if x(s) is a monotonic solution of (1.4) and
(1.8) then we have x(s)=x0+O(e_ 0s), as s � &�. On the other hand, if
�N

j=0 (�G��uj )(x+)<0 then (1.4) satisfies the hyperbolicity at x+ ; see [27].
Hence, as in [27], we have x(s)=x0+O(e_+s), as s � �. Here _+<0 and
satisfies 2(_+, c, x+)=0. By an argument similar to that used in proving
Proposition 6.5 of [28], the uniqueness result follows.

IV. APPLICATIONS TO CNN

In this section, we initially apply the above results to obtain a monotonic
traveling wave solution in CNN. For a CY-CNN with delay or advance
type, we demonstrate that the solutions can be obtained explicitly. In
addition to the non-decreasing traveling waves, we obtain non-monotonic
traveling waves. The various results obtained for CY-CNN allow us to
study the general case of (1.4) even when G is not quasi-monotonic.

For simplicity we only study the one-dimensional CNN; the higher
dimensional cases can be treated analogously. Consider

dxi

dt
=&xi+z+:f (xi&1)+af (xi)+;f (xi+1) (4.1)

where z, :, a, and ; are constants. Here f is a non-decreasing continuous
function which is differentiable except for finite points. A typical case is

f (x)= f0(x)# 1
2 ( |x+1|&|x&1|). (4.2)

In this case, it is called CY-CNN. Assuming

xi (t)=x(i&ct)=.(s) for i # Z1, (4.3)
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where s=i&ct and .(s) is in C1(R1, R1), then .(s) satisfies

&c.$(s)=&.(s)+z+:f (.(s&1))+af (.(s))+;f (.(s+1)), (4.4)

and the boundary conditions are

lim
s � &�

.(s)=x0 and lim
s � �

.(s)=x+. (4.5)

Now,

8(x)=&x+z+(:+a+;) f (x). (4.6)

Assume that x0<x+ are the two zeros of 8(x) such that 8(x)>0 for
x # (x0, x+). For CY-CNN we have

x0=
&z

&1+a+:+;
and x+=z+a+:+;,

whenever a+:+;&1{0.
Applying Theorem 1.1, we obtain

Theorem 4.1. Suppose :, a, and ; are real numbers and f is a continuous
function differentiable except for finite points. If f $(x)�0, f $(x0) exists and
satisfies the conditions

(i) &1+(:+a+;) f $(x0)>0,

(ii) :>0 and ;>0,

(iii) f (x)� f (x0)+(:+a+;) f $(x0)(x&x0), for x in [x0, x+],

then c*<0 exists such that for each c<c* there is a non-decreasing solution
satisfying (4.4) and (4.5). Moreover, c* satisfies

&c*= f $(x0)(&:e&_*+;e_*) and

&c*_*=&1+ f $(x0)(a+:e&_*+;e_*)

for some _*>0.

Proof. It is easy to verify that the assumptions (i), (ii), and (iii) imply
(G.1), (G.2), and (G.3) with

2(_, c, x0)=&c_+1& f $(x0)(a+:e&_+;e_).

The following result immediately occurs. Therefore, the proof is complete.

In the following theorem, we observe whether the assumption (G.2) fails.
A traveling wave solution may exist which satisfies (4.5) which overshoots
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the steady state x+. For simplicity, we consider the delay type of CY-CNN,
i.e., ;=0. Now, the monotonic traveling wave can be solved explicitly.

Theorem 4.2 (Delay case of CY-CNN). Assume that ;=0 and f =f0 in
(4.2). If &1+:+a>0, then:

(i) If :>0, then for any c<c*, monotonic traveling wave solutions of
(4.1) and (4.5) exist.

(ii) If a>1, :<0 and we define c*=(ln(&:�a))&1, then for any
c�c*, monotonic traveling wave solutions of (4.1) and (4.5) exist.

(iii) If a>1, :<0, and c>c*, then a solution , of (4.1) and (4.5)
exists which has a single maximum. In this case, , is not monotonic.

Furthermore, in any case the solution ,(s) can be expressed as

x0+(1&x0) e_ 0s for s�0,

,(s)={x0+le_ 0s+al(1&e&$s)&
al$

_0+$
(e_ 0 s&e&$s) for s # [0, 1],

x++e&$(s&1)(,(1)&x+) for s # [1, �),

(4.7)

where l=1&x0, $=&1�c, x0=&z�(&1+a+:), x+=z+a+:, and
2(_0, c, x0)=0.

Proof. Since f is piecewise linear, the problems (4.4) and (4.5) can be
decomposed into the equations

&c,$(s)={
&,(s)+z+:,(s&1)+a,(s)
&,(s)+z+:,(s&1)+a,(s)
&,(s)+z+:,(s&1)+a
&,(s)+z+:+a

if s # (�, 1],
if s # [&1, 0],
if s # [0, 1],
if s # [0, �).

(4.8)

Herein, assume that ,(0)=1, ,(&�)=x0, and ,(�)=x+. Now, (4.8) can
be solved and the solution is given in (4.7). Since the proof is elementary
but lengthy, the detail is omitted. Therefore, the proof is complete.

Remark 4.3. In the case (iii) of Theorem 4.2, the assumption (G.2)
does not hold and the solution is now nonmonotonic, as shown in Fig. 1.

Remark 4.4. According to Theorem 4.2, a bifurcation diagram can be
drawn which exhibits how the monotonic traveling wave changes into a
non-monotonic traveling wave when : changes from positive to negative.
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FIGURE 1

Indeed, if we assume that a>1 and c<0 will be given fixed numbers, we
define :*(a, c) and c*(a) by

:*(a, c)=&ae1�c and c*(a)=ln
a&1

a
.

If c>c*(a) then the bifucation pictures with respect to : are given as
follows.

In Case (ii) of Fig. 2, the traveling wave solution ,(s) is equal to x+ for
s greater than some s*.

Finally, the oscillating traveling wave solution of CY-CNN is considered
as follows

Theorem 4.5. While considering (4.4) and (4.5) with ;=0, a solution
,osc(s) exists which is given by

,osc(s)={x0+le*s cos(&s)+me*s sin(&s)
x0+le*s cos(&s)+me*s sin(&s)+,� osc(s)

if s # (&�, 0],
if s # [0, 1],

(4.9)

FIG. 2. Bifurcation diagram.
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FIG. 3. Oscillating wave.

where *>0, l and m are non-zero real numbers, and $=&1�c,

,� osc(s)=al&ale&$s&al$e&$sg(s)&am$e&$sv(s),

g(s)=
(*+$)(e(*+$) s cos(&s)&1)+&e(*+$) s sin(&s)

&2+(*+$)2 ,

v(s)=
(*+$) e(*+$) s sin(&s)&&(e(*+$) s cos(&s)&1)

&2+(*+$)2 ,

and 2(*+&i, c, x0)=0.

Proof. The proof of the theorem is the same as that used in proving
Theorem 4.2 by solving (4.8) with suitable l and m. Since the proof is
elementary but lengthy, the details are omitted here.

Example 4.6. Within a certain parameter range of a, :, z, and appropriate
choices of l and m, we can prove that ,osc satisfies lims � � ,osc(s)=x+. Here
is an example with the aid of numerical computation: If we choose a=200,
:=144.14?, z=0, &=1.1?, c=&17.3277, l=1, and m=0.2, then the oscillat-
ing wave ,osc(s) is given in Fig. 3.
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