522 research outputs found

    Automotive Intelligence Embedded in Electric Connected Autonomous and Shared Vehicles Technology for Sustainable Green Mobility

    Get PDF
    The automotive sector digitalization accelerates the technology convergence of perception, computing processing, connectivity, propulsion, and data fusion for electric connected autonomous and shared (ECAS) vehicles. This brings cutting-edge computing paradigms with embedded cognitive capabilities into vehicle domains and data infrastructure to provide holistic intrinsic and extrinsic intelligence for new mobility applications. Digital technologies are a significant enabler in achieving the sustainability goals of the green transformation of the mobility and transportation sectors. Innovation occurs predominantly in ECAS vehicles’ architecture, operations, intelligent functions, and automotive digital infrastructure. The traditional ownership model is moving toward multimodal and shared mobility services. The ECAS vehicle’s technology allows for the development of virtual automotive functions that run on shared hardware platforms with data unlocking value, and for introducing new, shared computing-based automotive features. Facilitating vehicle automation, vehicle electrification, vehicle-to-everything (V2X) communication is accomplished by the convergence of artificial intelligence (AI), cellular/wireless connectivity, edge computing, the Internet of things (IoT), the Internet of intelligent things (IoIT), digital twins (DTs), virtual/augmented reality (VR/AR) and distributed ledger technologies (DLTs). Vehicles become more intelligent, connected, functioning as edge micro servers on wheels, powered by sensors/actuators, hardware (HW), software (SW) and smart virtual functions that are integrated into the digital infrastructure. Electrification, automation, connectivity, digitalization, decarbonization, decentralization, and standardization are the main drivers that unlock intelligent vehicles' potential for sustainable green mobility applications. ECAS vehicles act as autonomous agents using swarm intelligence to communicate and exchange information, either directly or indirectly, with each other and the infrastructure, accessing independent services such as energy, high-definition maps, routes, infrastructure information, traffic lights, tolls, parking (micropayments), and finding emergent/intelligent solutions. The article gives an overview of the advances in AI technologies and applications to realize intelligent functions and optimize vehicle performance, control, and decision-making for future ECAS vehicles to support the acceleration of deployment in various mobility scenarios. ECAS vehicles, systems, sub-systems, and components are subjected to stringent regulatory frameworks, which set rigorous requirements for autonomous vehicles. An in-depth assessment of existing standards, regulations, and laws, including a thorough gap analysis, is required. Global guidelines must be provided on how to fulfill the requirements. ECAS vehicle technology trustworthiness, including AI-based HW/SW and algorithms, is necessary for developing ECAS systems across the entire automotive ecosystem. The safety and transparency of AI-based technology and the explainability of the purpose, use, benefits, and limitations of AI systems are critical for fulfilling trustworthiness requirements. The article presents ECAS vehicles’ evolution toward domain controller, zonal vehicle, and federated vehicle/edge/cloud-centric based on distributed intelligence in the vehicle and infrastructure level architectures and the role of AI techniques and methods to implement the different autonomous driving and optimization functions for sustainable green mobility.publishedVersio

    6G Cellular Networks and Connected Autonomous Vehicles

    Get PDF
    With 5G mobile communication systems been commercially rolled out, research discussions on next generation mobile systems, i.e., 6G, have started. On the other hand, vehicular technologies are also evolving rapidly, from connected vehicles as coined by V2X (vehicle to everything) to autonomous vehicles to the combination of the two, i.e., the networks of connected autonomous vehicles (CAV). How fast the evolution of these two areas will go head-in-head is of great importance, which is the focus of this paper. After a brief overview on technological evolution of V2X to CAV and 6G key technologies, this paper explores two complementary research directions, namely, 6G for CAVs versus CAVs for 6G. The former investigates how various 6G key enablers, such as THz, cell free communication and artificial intelligence (AI), can be utilized to provide CAV mission-critical services. The latter discusses how CAVs can facilitate effective deployment and operation of 6G systems. This paper attempts to investigate the interactions between the two technologies to spark more research efforts in these areas

    Augmenting CCAM Infrastructure for Creating Smart Roads and Enabling Autonomous Driving

    Get PDF
    Autonomous vehicles and smart roads are not new concepts and the undergoing development to empower the vehicles for higher levels of automation has achieved initial milestones. However, the transportation industry and relevant research communities still require making considerable efforts to create smart and intelligent roads for autonomous driving. To achieve the results of such efforts, the CCAM infrastructure is a game changer and plays a key role in achieving higher levels of autonomous driving. In this paper, we present a smart infrastructure and autonomous driving capabilities enhanced by CCAM infrastructure. Meaning thereby, we lay down the technical requirements of the CCAM infrastructure: identify the right set of the sensory infrastructure, their interfacing, integration platform, and necessary communication interfaces to be interconnected with upstream and downstream solution components. Then, we parameterize the road and network infrastructures (and automated vehicles) to be advanced and evaluated during the research work, under the very distinct scenarios and conditions. For validation, we demonstrate the machine learning algorithms in mobility applications such as traffic flow and mobile communication demands. Consequently, we train multiple linear regression models and achieve accuracy of over 94% for predicting aforementioned demands on a daily basis. This research therefore equips the readers with relevant technical information required for enhancing CCAM infrastructure. It also encourages and guides the relevant research communities to implement the CCAM infrastructure towards creating smart and intelligent roads for autonomous driving

    Proposition of Augmenting V2X Roadside Unit to Enhance Cooperative Awareness of Heterogeneously Connected Road Users

    Full text link
    Intelligent transportation and autonomous mobility solutions rely on cooperative awareness developed by exchanging proximity and mobility data among road users. To maintain pervasive awareness on roads, all vehicles and vulnerable road users must be identified, either cooperatively, where road users equipped with wireless capabilities of Vehicle-to-Everything (V2X) radios can communicate with one another, or passively, where users without V2X capabilities are detected by means other than V2X communications. This necessitates the establishment of a communications channel among all V2X-enabled road users, regardless of whether their underlying V2X technology is compatible or not. At the same time, for cooperative awareness to realize its full potential, non-V2X-enabled road users must also be communicated with where possible or, leastwise, be identified passively. However, the question is whether current V2X technologies can provide such a welcoming heterogeneous road environment for all parties, including varying V2X-enabled and non-V2X-enabled road users? This paper investigates the roles of a propositional concept named Augmenting V2X Roadside Unit (A-RSU) in enabling heterogeneous vehicular networks to support and benefit from pervasive cooperative awareness. To this end, this paper explores the efficacy of A-RSU in establishing pervasive cooperative awareness and investigates the capabilities of the available communication networks using secondary data. The primary findings suggest that A-RSU is a viable solution for accommodating all types of road users regardless of their V2X capabilities.Comment: 13 page

    Ultra reliable 5G mmWAve communications for V2X scénarios

    Get PDF
    The Automotive Vehicle to Everything (V2X)technology is one of the most important innovations that theworld will see in the years to come. This paradigm will supportmany advanced services such as object detection and recognition,risk identification and avoidance, car platooning. These serviceswill require several keys among them, the high data transmissionrates of the order of gigabits per driving hour, and highreliability, and high speed for transition of data, which may beavailable through the capabilities of the new architecture for thenext generation of wireless communications 5G and the widebandwidth of the millimeter wave (mm Wave) which is deemed tobe a real solution for the V2X requirements. However, thechallenges related to the reliability/latency and security of theV2X system and nature of mm wave communication requireseveral solutions either for natural challenges such as High pathloss propagation, penetrating disability or for the technicalchallenges. This paper provides an overview of the V2Xcommunication technology investigates the V2X challengesincluding the mm wave and and finally presents some efficientsolutions
    • …
    corecore