3,978 research outputs found

    Non-Linear Shallow Water Equations numerical integration on curvilinear boundary-conforming grids

    Get PDF
    An Upwind Weighted Essentially Non-Oscillatory scheme for the solution of the Shallow Water Equations on generalized curvilinear coordinate systems is proposed. The Shallow Water Equations are expressed in a contravariant formulation in which Christoffel symbols are avoided. The equations are solved by using a high-resolution finite-volume method incorporated with an exact Riemann Solver. A procedure developed in order to correct errors related to the difficulties of numerically satisfying the metric identities on generalized boundary-conforming grids is presented; this procedure allows the numerical scheme to satisfy the freestream preservation property on highly-distorted grids. The capacity of the proposed model is verified against test cases present in literature. The results obtained are compared with analytical solutions and alternative numerical solutions

    Development of a fractional-step method for the unsteady incompressible Navier-Stokes equations in generalized coordinate systems

    Get PDF
    A fractional step method is developed for solving the time-dependent three-dimensional incompressible Navier-Stokes equations in generalized coordinate systems. The primitive variable formulation uses the pressure, defined at the center of the computational cell, and the volume fluxes across the faces of the cells as the dependent variables, instead of the Cartesian components of the velocity. This choice is equivalent to using the contravariant velocity components in a staggered grid multiplied by the volume of the computational cell. The governing equations are discretized by finite volumes using a staggered mesh system. The solution of the continuity equation is decoupled from the momentum equations by a fractional step method which enforces mass conservation by solving a Poisson equation. This procedure, combined with the consistent approximations of the geometric quantities, is done to satisfy the discretized mass conservation equation to machine accuracy, as well as to gain the favorable convergence properties of the Poisson solver. The momentum equations are solved by an approximate factorization method, and a novel ZEBRA scheme with four-color ordering is devised for the efficient solution of the Poisson equation. Several two- and three-dimensional laminar test cases are computed and compared with other numerical and experimental results to validate the solution method. Good agreement is obtained in all cases

    Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations

    Get PDF
    One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology

    Minimal surfaces from circle patterns: Geometry from combinatorics

    Full text link
    We suggest a new definition for discrete minimal surfaces in terms of sphere packings with orthogonally intersecting circles. These discrete minimal surfaces can be constructed from Schramm's circle patterns. We present a variational principle which allows us to construct discrete analogues of some classical minimal surfaces. The data used for the construction are purely combinatorial--the combinatorics of the curvature line pattern. A Weierstrass-type representation and an associated family are derived. We show the convergence to continuous minimal surfaces.Comment: 30 pages, many figures, some in reduced resolution. v2: Extended introduction. Minor changes in presentation. v3: revision according to the referee's suggestions, improved & expanded exposition, references added, minor mistakes correcte
    • …
    corecore