294 research outputs found

    ENERGY EFFICIENCY VIA HETEROGENEOUS NETWORK

    Get PDF
    The mobile telecommunication industry is growing at a phenomenal rate. On a daily basis, there are continuous inflow of mobile users and sophisticated devices into the mobile network. This has triggered a meteoric rise in mobile traffic; forcing network operators to embark on a series of projects to increase the capacity and coverage of mobile networks in line with growing traffic demands. A corollary to this development is the momentous rise in energy bills for mobile operators and the emission of a significant amount of CO2 into the atmosphere. This has become worrisome to the extent that regulatory bodies and environmentalist are calling for the adoption of more “green operation” to curtail these challenges. Green communication is an all-inclusive approach that champions the cause of overall network improvement, reduction in energy consumption and mitigation of carbon emission. The emergence of Heterogeneous network came as a means of fulfilling the vision of Green communication. Heterogeneous network is a blend of low power node overlaid on Macrocell to offload traffic from the Macrocell and enhance quality of service of cell edge users. Heterogeneous network seeks to boost the performance of LTE-Advanced beyond its present limit, and at the same time, reduce energy consumption in mobile wireless network. In this thesis, we explore the potential of heterogeneous network in enhancing the energy efficiency of mobile wireless network. Simulation process sees the use of a co-deployment of Macrocell and Picocell in cluster (Hot spot) and normal scenario. Finally, we compared the performance of each scenario using Cell Energy Efficiency and the Area Energy Efficiency as our performance metricfi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Dynamic Almost Blank Subframe Scheme for Enhanced Intercell Interference Coordination in LTE-A Heterogeneous Networks

    Full text link
    In LTE-A heterogeneous network, traffic load may be distributed unequally because the transmission power of macro eNodeB (eNB) is higher than pico eNB. To address the coverage problems resulting from nodes with different transmission powers, cell range expansion (CRE) technique has been proposed as a cell selection technique. However, in this case, the intercell interference (ICI) problem can occur on both data and control channels when users connect to pico eNB. To mitigate ICI problem, a new dynamic almost blank subframe (ABS) scheme is proposed in this paper. In this scheme, a fuzzy logic system is deployed to monitor the system performance and then obtain the required number of ABSs. Simulation results show that the cell throughput and user throughput can be improved using the proposed dynamic ABS scheme

    Cell Selection in Wireless Two-Tier Networks: A Context-Aware Matching Game

    Full text link
    The deployment of small cell networks is seen as a major feature of the next generation of wireless networks. In this paper, a novel approach for cell association in small cell networks is proposed. The proposed approach exploits new types of information extracted from the users' devices and environment to improve the way in which users are assigned to their serving base stations. Examples of such context information include the devices' screen size and the users' trajectory. The problem is formulated as a matching game with externalities and a new, distributed algorithm is proposed to solve this game. The proposed algorithm is shown to reach a stable matching whose properties are studied. Simulation results show that the proposed context-aware matching approach yields significant performance gains, in terms of the average utility per user, when compared with a classical max-SINR approach.Comment: 11 pages, 11 figures, Journal article in ICST Wireless Spectrum, 201

    Intercell interference mitigation in long term evolution (LTE) and LTE-advanced

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Bandwidth is one of the limited resources in Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks. Therefore, new resource allocation techniques such as the frequency reuse are needed to increase the capacity in LTE and LTE-A. However, the system performance is severely degraded using the same frequency in adjacent cells due to increase of intercell interference. Therefore, the intercell interference management is a critical point to improve the performance of the cellular mobile networks. This thesis aims to mitigate intercell interference in the downlink LTE and LTE-A networks. The first part of this thesis introduces a new intercell interference coordination scheme to mitigate downlink intercell interference in macrocell-macrocell scenario based on user priority and using fuzzy logic system (FLS). A FLS is an expert system which maps the inputs to outputs using “IF...THEN” rules and an aggregation method. Then, the final output is obtained through a deffuzifaction approach. Since this thesis aims to mitigate interference in downlink LTE networks, the inputs of FLS are selected from important metrics such as throughput, signal to interference plus noise ratio and so on. Simulation results demonstrate the efficacy of the proposed scheme to improve the system performance in terms of cell throughput, cell edge throughput and delay when compared with reuse factor one. Thereafter, heterogeneous networks (HetNets) are studied which are used to increase the coverage and capacity of system. The focus of the next part of this thesis is picocell because it is one of the important low power nodes in HetNets which can efficiently improve the overall system capacity and coverage. However, new challenges arise to intercell interference management in macrocell-picocell scenario. Three enhanced intercell interference coordination (eICIC) schemes are proposed in this thesis to mitigate the interference problem. In the first scheme, a dynamic cell range expansion (CRE) approach is combined with a dynamic almost blank subframe (ABS) using fuzzy logic system. In the second scheme, a fuzzy q-learning (FQL) approach is used to find the optimum ABS and CRE offset values for both full buffer traffic and video streaming traffic. In FQL, FLS is combined by q-learning approach to optimally select the best consequent part of each FLS rule. In the third proposed eICIC scheme, the best location of ABSs in each frame is determined using Genetic Algorithm such that the requirements of video streaming traffic can be met. Simulation results show that the system performance can be improved through the proposed schemes. Finally, the optimum CRE offset value and the required number of ABSs will be mathematically formulated based on the outage probability, ergodic rate and minimum required throughput of users using stochastic geometry tool. The results are an analytical formula that leads to a good initial estimate through a simple approach to analyse the impact of system parameters on CRE offset value and number of ABSs

    Capacity Analysis of LTE-Advanced HetNets with Reduced Power Subframes and Range Expansion

    Get PDF
    The time domain inter-cell interference coordination techniques specified in LTE Rel. 10 standard improves the throughput of picocell-edge users by protecting them from macrocell interference. On the other hand, it also degrades the aggregate capacity in macrocell because the macro base station (MBS) does not transmit data during certain subframes known as almost blank subframes. The MBS data transmission using reduced power subframes was standardized in LTE Rel. 11, which can improve the capacity in macrocell while not causing high interference to the nearby picocells. In order to get maximum benefit from the reduced power subframes, setting the key system parameters, such as the amount of power reduction, carries critical importance. Using stochastic geometry, this paper lays down a theoretical foundation for the performance evaluation of heterogeneous networks with reduced power subframes and range expansion bias. The analytic expressions for average capacity and 5th percentile throughput are derived as a function of transmit powers, node densities, and interference coordination parameters in a heterogeneous network scenario, and are validated through Monte Carlo simulations. Joint optimization of range expansion bias, power reduction factor, scheduling thresholds, and duty cycle of reduced power subframes are performed to study the trade-offs between aggregate capacity of a cell and fairness among the users. To validate our analysis, we also compare the stochastic geometry based theoretical results with the real MBS deployment (in the city of London) and the hexagonal-grid model. Our analysis shows that with optimum parameter settings, the LTE Rel. 11 with reduced power subframes can provide substantially better performance than the LTE Rel. 10 with almost blank subframes, in terms of both aggregate capacity and fairness.Comment: Submitted to EURASIP Journal on Wireless Communications and Networking (JWCN

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    A dynamic almost blank subframe scheme for video streaming traffic model in heterogeneous networks

    Full text link
    © 2015 IEEE. In heterogeneous network (HetNet), the coverage area of picocell is small due to transmission power difference between macro eNodeB (eNB) and pico eNB. As a result, the traffic load is distributed unequally which yields to macrocell overloading. In order to overcome this issue, cell range expansion (CRE) technique has been proposed. However, the CRE approach can affect the downlink signal quality of the offloaded users and then these users experience high downlink interference from macro eNB on their control and data channels. Therefore, such inter-cell interference coordination (ICIC) techniques are needed to realize the promised capacity and coverage. Enhanced ICIC (eICIC) is a time domain technique to mitigate interference in HetNets using almost blank subframes (ABSs). However, the static ABS value cannot support the dynamic changing of network conditions. In this paper, a dynamic ABS scheme is proposed based on Genetic Algorithm to find the best ABS value and ABS locations in a frame to mitigate interference problem between macrocell and picocells for video streaming traffic model. Exhaustive simulation results show that the proposed scheme can improve the system performance in terms of throughput, outage probability and delay
    • …
    corecore