190,818 research outputs found

    A framework for quantification and physical modeling of cell mixing applied to oscillator synchronization in vertebrate somitogenesis

    Get PDF
    In development and disease, cells move as they exchange signals. One example is found in vertebrate development, during which the timing of segment formation is set by a ‘segmentation clock’, in which oscillating gene expression is synchronized across a population of cells by Delta-Notch signaling. Delta-Notch signaling requires local cell-cell contact, but in the zebrafish embryonic tailbud, oscillating cells move rapidly, exchanging neighbors. Previous theoretical studies proposed that this relative movement or cell mixing might alter signaling and thereby enhance synchronization. However, it remains unclear whether the mixing timescale in the tissue is in the right range for this effect, because a framework to reliably measure the mixing timescale and compare it with signaling timescale is lacking. Here, we develop such a framework using a quantitative description of cell mixing without the need for an external reference frame and constructing a physical model of cell movement based on the data. Numerical simulations show that mixing with experimentally observed statistics enhances synchronization of coupled phase oscillators, suggesting that mixing in the tailbud is fast enough to affect the coherence of rhythmic gene expression. Our approach will find general application in analyzing the relative movements of communicating cells during development and disease.Fil: Uriu, Koichiro. Kanazawa University; JapónFil: Bhavna, Rajasekaran. Max Planck Institute of Molecular Cell Biology and Genetics; Alemania. Max Planck Institute for the Physics of Complex Systems; AlemaniaFil: Oates, Andrew C.. Francis Crick Institute; Reino Unido. University College London; Reino UnidoFil: Morelli, Luis Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; Argentina. Max Planck Institute for Molecular Physiology; Alemania. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentin

    Spinocerebellar Ataxia Type 2

    Get PDF
    1. Introduction: The autosomal dominant cerebellar ataxias (ADCA) are a clinically, pathologically and genetically heterogeneous group of neurodegenerative disorders caused by degeneration of cerebellum and its afferent and efferent connections. The degenerative process may additionally involves the ponto- medullar systems, pyramidal tracts, basal ganglia, cerebral cortex, peripheral nerves (ADCA I) and the retina (ADCA II), or can be limited to the cerebellum (ADCA III) (Harding et al., 1993). The most common of these dominantly inherited autosomal ataxias, ADCA I, includes many Spinocerebellar Ataxias (SCA) subtypes, some of which are caused by pathological CAG trinucleotide repeat expansion in the coding region on the mutated gene. Such is the case for SCA1, SCA2, SCA3/MJD, SCA6, SCA7, SCA17 and Dentatorubral-pallidoluysian atrophy (DRPLA) (Matilla et al., 2006). Among the almost 30 SCAs, the variant SCA2 is the second most prevalent subtype worldwide, only surpassed by SCA3 (Schöls et al., 2004; Matilla et al., 2006; Auburger, 2011)..

    The Huntington's disease mutation impairs Huntingtin's role in the transport of NF-κB from the synapse to the nucleus

    Get PDF
    Expansion of a polyglutamine (polyQ) tract in the Huntingtin (Htt) protein causes Huntington's disease (HD), a fatal inherited neurodegenerative disorder. Loss of the normal function of Htt is thought to be an important pathogenetic component of HD. However, the function of wild-type Htt is not well defined. Htt is thought to be a multifunctional protein that plays distinct roles in several biological processes, including synaptic transmission, intracellular transport and neuronal transcription. Here, we show with biochemical and live cell imaging studies that wild-type Htt stimulates the transport of nuclear factor κ light-chain-enhancer of activated B cells (NF-κB) out of dendritic spines (where NF-κB is activated by excitatory synaptic input) and supports a high level of active NF-κB in neuronal nuclei (where NF-κB stimulates the transcription of target genes). We show that this novel function of Htt is impaired by the polyQ expansion and thus may contribute to the etiology of HD

    Kinesin Light Chains Are Essential for Axonal Transport in Drosophila

    Get PDF
    Kinesin is a heterotetramer composed of two 115-kD heavy chains and two 58-kD light chains. The microtubule motor activity of kinesin is performed by the heavy chains, but the functions of the light chains are poorly understood. Mutations were generated in the Drosophila gene Kinesin light chain (Klc), and the phenotypic consequences of loss of Klc function were analyzed at the behavioral and cellular levels. Loss of Klc function results in progressive lethargy, crawling defects, and paralysis followed by death at the end of the second larval instar. Klc mutant axons contain large aggregates of membranous organelles in segmental nerve axons. These aggregates, or organelle jams (Hurd, D.D., and W.M. Saxton. 1996. Genetics. 144: 1075-1085), contain synaptic vesicle precursors as well as organelles that may be transported by kinesin, kinesin-like protein 68D, and cytoplasmic dynein, thus providing evidence that the loss of Klc function blocks multiple pathways of axonal transport. The similarity of the Klc and Khc ((Saxton et al. Cell 64:1093-1102; Hurd, D.D., and W.M. Saxton. 1996. Genetics 144: 1075-1085) mutant phenotypes indicates that KLC is essential for kinesin function, perhaps by tethering KHC to intracellular cargos or by activating the kinesin motor

    The limits of mean-field heterozygosity estimates under spatial extension in simulated plant populations

    Get PDF
    Computational models of evolutionary processes are increasingly required to incorporate multiple and diverse sources of data. A popular feature to include in population genetics models is spatial extension, which reflects more accurately natural populations than does a mean field approach. However, such models necessarily violate the mean field assumptions of classical population genetics, as do natural populations in the real world. Recently, it has been questioned whether classical approaches are truly applicable to the real world. Individual based models (IBM) are a powerful and versatile approach to achieve integration in models. In this study an IBM was used to examine how populations of plants deviate from classical expectations under spatial extension. Populations of plants that used three different mating strategies were placed in a range of arena sizes giving crowded to sparse occupation densities. Using a measure of population density, the pollen communication distance (Pcd), the deviation exhibited by outbreeding populations differed from classical mean field expectations by less than 5% when Pcd was less than 1, and over this threshold value the deviation significantly increased. Populations with an intermediate mating strategy did not have such a threshold and deviated directly with increasing isolation between individuals. Populations with a selfing strategy were influenced more by the mating strategy than by increased isolation. In all cases pollen dispersal was more influential than seed dispersal. The IBM model showed that mean field calculations can be reasonably applied to natural outbreeding plant populations that occur at a density in which individuals are less than the average pollen dispersal distance from their neighbors

    Mutation of SLC35D3 causes metabolic syndrome by impairing dopamine signaling in striatal D1 neurons

    Get PDF
    We thank Dr. Ya-Qin Feng from Shanxi Medical University, Dr. Tian-Yun Gao from Nanjing University and Dr. Yan-Hong Xue from Institute of Biophysics (CAS) for technical assistance in this study. We are very thankful to Drs. Richard T. Swank and Xiao-Jiang Li for their critical reading of this manuscript and invaluable advice. Funding: This work was partially supported by grants from National Basic Research Program of China (2013CB530605; 2014CB942803), from National Natural Science Foundation of China 1230046; 31071252; 81101182) and from Chinese Academy of Sciences (KSCX2-EW-R-05, KJZD-EW-L08). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Molecular studies on the sweet potato virus disease and its two causal agents

    Get PDF
    The studies presented in this thesis contribute to an increased understanding of the molecular aspects, variability and interaction of the two most important viral pathogens of sweet potato (Ipomoea batatas L): Sweet potato feathery mottle virus (SPFMV) and Sweet potato chlorotic stunt virus (SPCSV), which cause the severe sweet potato virus disease (SPVD) when co-infecting sweet potato plants. SPVD is the most important disease affecting sweet potato in Africa, and may be the most important virus disease of sweet potato globally. The coat protein gene sequences of several African SPFMV isolates were determined and compared by phylogenetic analyses. Results showed that East African SPFMV isolates were genetically distinct. They could furthermore be divided into two serotypes which differed in their ability to systemically infect the sweet potato cultivar Tanzania. The aetiology of SPVD was studied in sweet potato plants co-infected with SPFMV and SPCSV using nucleic acid hybridisation, bioassays, tissue printing and thin section immunohistochemistry. Resistance to SPFMV in East African sweet potato cultivars was found to be due to inhibition of virus replication rather than movement and resistance was suppressed by infection with SPCSV, resulting in a ca. 600-fold increase in titres of SPFMV. Furthermore, in SPVD affected plants SPFMV is detected outside of the phloem, whereas SPCSV is detected only inside the phloem, which suggests novel as yet unknown mechanisms how SPCSV synergises SPFMV. The genomic sequence of SPCSV was determined. It was composed of two RNA molecules (9407 and 8223 nucleotides), representing the second largest (+)ssRNA genome of plant viruses. The genomic organization of SPCSV revealed novel features for the genus Crinivirus, such as i) the presence of a gene putatively encoding an ribonuclease III-like protein, ii) near-identical, 208 nucleotides long 3’-sequences on both viral RNAs, and iii) the placement of the SHP gene at a new position on the genome of SPCSV relative to other closteroviridae. Northern analyses showed the presence of several sub-genomic RNAs, of which the accumulation was temporally regulated in infected tissues. The 5’-ends of seven sub-genomic RNAs were determined using a PCR based method, which indicated that the sgRNAs were capped
    corecore