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The Limits of Mean-Field Heterozygosity Estimates under
Spatial Extension in Simulated Plant Populations
James L. Kitchen, Robin G. Allaby*

School of Life Sciences, University of Warwick, Coventry, United Kingdom

Abstract

Computational models of evolutionary processes are increasingly required to incorporate multiple and diverse sources of
data. A popular feature to include in population genetics models is spatial extension, which reflects more accurately natural
populations than does a mean field approach. However, such models necessarily violate the mean field assumptions of
classical population genetics, as do natural populations in the real world. Recently, it has been questioned whether classical
approaches are truly applicable to the real world. Individual based models (IBM) are a powerful and versatile approach to
achieve integration in models. In this study an IBM was used to examine how populations of plants deviate from classical
expectations under spatial extension. Populations of plants that used three different mating strategies were placed in a
range of arena sizes giving crowded to sparse occupation densities. Using a measure of population density, the pollen
communication distance (Pcd), the deviation exhibited by outbreeding populations differed from classical mean field
expectations by less than 5% when Pcd was less than 1, and over this threshold value the deviation significantly increased.
Populations with an intermediate mating strategy did not have such a threshold and deviated directly with increasing
isolation between individuals. Populations with a selfing strategy were influenced more by the mating strategy than by
increased isolation. In all cases pollen dispersal was more influential than seed dispersal. The IBM model showed that mean
field calculations can be reasonably applied to natural outbreeding plant populations that occur at a density in which
individuals are less than the average pollen dispersal distance from their neighbors.
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Introduction

Understanding the evolutionary process is increasingly requiring

in the integration of sources of data that are typically beyond

classical population genetics models [1]. One such example is the

inclusion of spatial extension. Classical population genetics

approaches typically use a simplified mean-field approach in

which individuals of a population or subpopulation conceptually

occupy the same space, and are therefore subject to the same

conditions and pressures, and purely random mating occurs.

Along with other simplifying assumptions such as non-overlapping

generations and constant population sizes, such populations

behave in tractable ways that can be described through

deterministic approaches leading to features such as Hardy-

Weinberg equilibria [2] and the Wright-Fisher model [3]. The

predictions of such models provide a useful starting point for

evolutionary studies, for instance in establishing whether there has

been significant deviation from neutrality indicative of selection.

However, Mayr [4] observed that it was surprising how little

classical population genetics has contributed to the understanding

of one of the most important processes in evolution, speciation.

This is because a mean-field based model is essentially based on an

anagenic evolutionary system, rather than a cladogenic one [5].

The evolutionary differentiation of populations, which ultimately

leads to speciation, requires different selective environments.

In reality populations are spread across environments that are

often patchy with different sets of conditions. Environmental

conditions may have a variety of effects, such as impeding dispersal

[6] or providing different selective niches [7]. Plant mates are

unlikely to be entirely chosen at random. For instance, plants have

been known to have assortative mating due to pollinator foraging

behaviour regarding petal color [8], inflorescence height [9] and

overlapping flowering times [10]. Furthermore the spatial

dimension is of particular importance even within a single

constant environment because of their sedentary nature causing

a bias for nearest-neighbor mating over panmixia [11]. The spatial

density of a plant species affects the optimal mating strategy with

higher out-crossing rates being more suited to higher densities [11]

and selfing systems evolving to invade low-density environments

[12]. The boundaries and margins between contrasting selection

environments may be areas in which globally rare but locally

abundant alleles occur through gene flow between areas in which

they have high selective value to areas of low or neutral selective

value, giving rise to processes such as the persistence of unfit alleles

which would not be detected in mean field based model systems

[1]. A problem with spatially extended plant populations in nature

recently highlighted is that it is unclear to what extent classical

population genetics tools can meaningfully be applied at all when

individuals are continuously distributed across space [13].
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It is therefore desirable to include the dimension of spatial

extension into population genetics models in order to effectively

incorporate these factors and more accurately reflect the

evolutionary process. Individual-based modeling (IBM) is a

versatile approach for the integration of non-parametric and

complex factors into population genetics. Spatial extension can

readily be incorporated into IBM and has been successfully

applied to a variety of problems including plant domestication

[14,15], predator prey relationships [16–20] and the emergent

field of landscape genetics [21–23]. As ecological boundaries,

environmental conditions and varying dispersal distances can be

readily incorporated into these models they have been used to

study speciation events [24–26] and hybrid zone formation [27].

Furthermore as these models readily allow individual behaviors to

be defined they have been useful for simulating gender specific

mating preferences and the resultant effects of assortative mating

on speciation and hybridization [28–29]. Cuddington and Yodzis

[16] demonstrated that there is a reduced mobility in spatially

explicit relative to mean-field models, resulting in reduced

reproduction rates in the former. By reducing mobility parameters

of the mean-field model, a close congruence between the two

model types was achieved. The differentiating effects of spatial

extension are likely to increase as individuals become more

distantly spaced out. However, it is still unclear how the

relationship between the two systems changes with increasing

spatial extension.

We have developed an IBM to study the evolution of plant

systems in order to integrate multiple diverse data sources and

structures [1]. In brief, the IBM is implemented as follows: diploid

individuals are arranged onto a two-dimensional grid made up of

cells each of which can hold a single adult plant. The individuals

contain genes that can accumulate neutral mutations and gametes

are generated by Mendelian segregation of homologous chromo-

somes. The simulation updates in intervals each representing one

month. Individuals begin as seeds and may germinate with a

defined probability on condition of the absence of an adult in the

cell. The individuals then move through the following life cycle

stages: seed, vegetative growth, flowering and senescence, with the

duration of each life cycle stage varying between individuals.

Flowering individuals disperse pollen and seeds and may self or

out-cross according to a user-input probability. Individuals senesce

and are removed a number of updates after dispersing their seeds

determined by randomly sampling.

In this study we aimed to determine under what conditions, if

any, parameters estimated by classical population genetics

approaches can be applied approximately to establish the presence

of conditions of equilibria and neutrality in a spatially extended

system. The IBM was used to generate plant populations of

varying spatial densities, mating systems, and pollen and seed

dispersal capabilities. We assessed the extent of deviation between

classical population genetics and the spatially extended system by

comparing values of the heterozygosity parameter. Heterozygosity

was measured as expected from classical population genetics

through the Hardy-Weinberg law (He), and compared to the real

value obtained from individuals (Ho). As far as we are aware this is

the first attempt to determine how perturbations of spatial

extension affect the accuracy of mean-field based calculations of

population parameters.

Results

All simulations in this study began with populations of 1000

individuals in a two dimensional matrix with M cells, in which a

single cell could contain a single growing plant. Simulations were

carried out for 4000 updates with a burn-in period in which

populations were allowed to equilibrate (see methods). For each set

of conditions, simulations were repeated ten times. To prevent

individuals from forming clusters with each other [30], we used a

strategy in which cells were randomly blocked out (void cells)

within all matrices from all simulations, such that they could not

be occupied until just 1000 cells remained. On average this

achieved an even spacing between individuals in our simulations

with a greater degree of spacing between individuals within the

larger matrices, Figure 1. In preliminary simulations where

blocking was not applied we observed clustering behaviour even

within larger matrices (data not shown).

Mating System
The first set of simulations investigated the effect of mating

system in a spatially explicit population. In this case a matrix size

of 352 cells was used in which 225 cells were randomly blocked. In

this matrix size most individuals were immediately adjacent to

other individuals in all eight surrounding cells. The model takes a

user input of the probability of self-pollination, Su, to allow control

over the outcrossing exhibited by flowering individuals. The value

Su is the probability that a particular pollen grain will self-fertilize

the parent plant rather than leave the flower and pollinate another

plant. Simulations were carried out with Su ranging in value from 0

to 1, Figure 2. At values of Su at 0 and 0.001, the resulting values of

Ho and He overlapped, and at a Su of 0.1 were within 5% of each

other suggesting Ho gave a good approximation of He. Su equal to 0

is representative of a self-incompatible mating strategy, while a

value of 0.001 represents a level of out-crossing equal to that found

in panmictic systems. Increasing values of Su in the spatially

extended system resulted in a reduction in heterozygosity, as

would also be expected of a mean field system [31].

Matrix Size
We investigated the effect of increased separation between

individuals in a spatially extended population. Simulations were

carried out with progressively increased matrix sizes ranging from

352 to 1352 cells, with increments of 10 in both matrix dimensions

between each set of simulation conditions, Figure 1. Each

simulation was performed with M - 1000 void cells, allowing the

population size to remain constant between different sets of

simulation conditions. Three series of simulation experiments were

carried out with different mating strategies defined by values of Su

of 0.001, 0.1 and 0.9, respectively, Figure 3. We used the

parameter pollen communicating distance (Pcd) to express the

degree of separation between individuals defined as:

Pcd~nnd=Pd ð1Þ

Where nnd is the average distance to the nearest neighbor in matrix

cells, and pd is the average dispersal distance of pollen in matrix

cells. We also measured a second parameter, the seed communi-

cating distance (Scd) which is defined as:

Scd~nnd=Sd ð2Þ

Where Sd is the average dispersal distance of seeds in matrix cells.

Constant values of maximum dispersal of Sd and Pd were used of

10 cells.

The population size per update in simulations with values of M

over 13225 and Su 0.001 was often low, leading to an increased

variation of Ho which ranged in standard deviation 0.015–0.064.

At smaller matrix sizes the standard deviation ranged

Spatial Extension in IBM Plants
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46102420.008. This increase in variation was probably due to

high mortality and low fertility rates under these conditions in the

model resulting from low numbers of nearby vacant cells for seeds

to disperse to, and low numbers of nearby pollinating individuals

(not shown). Ho decreased as the Pcd increased with matrix size.

The relationship between Pcd and Ho in Figure 3 varied between

Figure 1. Model screen shots of the different matrix sizes used in the study. The void cells are in black with grey cells representing
unoccupied non-void cells. The different colors of the individuals represent their different life-cycle stages, with red = seeds, green = vegetative and
yellow = flowering/senescence.
doi:10.1371/journal.pone.0043254.g001

Figure 2. Heterozygosity as a function of selfing probability. Ho is plotted with the solid line and He using a dashed line. Simulations were
repeated ten times. Error bars represent the standard error.
doi:10.1371/journal.pone.0043254.g002

Spatial Extension in IBM Plants
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the three mating systems tested. In the case of Su equal to 0.001,

the rate at which Ho decreased with increased Pcd, or r, as we shall

use in the text, is given by the gradient of the line, which varies

either side of a Pcd value of 1.1. At values of Pcd lower than 1.1 r is

relatively shallow at [20.005], and steepens considerably to

[20.103] at Pcd values higher than 1.1. In contrast, in simulations

where Su was equal to 0.1, an approximately linear relationship

occurred between Ho and Pcd in which r was relatively constant. At

the highest values of Pcd these two sets of simulations produced

similar values of Ho. In the third set of simulations where Su was

equal to 0.9, values of Ho decreased to an asymptote.

The Scd parameter describes the movement of seeds in relation

to the spatial density of plants, and we expected it to have some

influence on heterozygosity also. At the minimum matrix size a Scd

of 0.9 occurred, while at maximum matrix size this value was 2.2.

Therefore, in the smallest matrix system the dispersal ranges of

seeds encompassed neighboring individuals, but not in the case of

the largest matrix suggesting that seed movement was contributing

to gene flow in the former, but much less in the latter.

A threshold effect is apparent in these results, in which under a

panmictic mating system deviation from the classical expectation is

small, typically within 5%, while plants are within a range of their

nearest neighbor, with an average nearest neighbor distance less

than the average pollen dispersal distance. After this threshold the

deviation from classical expectations increases rapidly with

increasing separation. However, a more mixed mating strategy

shows a steady deviation from classical expectation with increasing

matrix size indicating that spatial separation has a more direct

effect in these cases. Interestingly, these two sets of simulations

reach similar levels of heterozygosity at the maximum extent of

separation investigated in this study. The isolation caused by the

highly selfing system has a large effect on heterozygosity even in

small matrices with low Pcd values, which then decreases to a

minimum equilibrium which is probably kept from reaching zero

by the influx of new mutations. In these cases, the selfing mating

strategy is the principal influence on heterozygosity.

Pollen and Seed Dispersal
An alternative to increasing the space between individuals to

increase spatial isolation is to reduce dispersal of pollen and seeds.

If there are no other influencing factors introduced by increased

spacing of individuals, then altering the dispersal behavior should

allow similar levels of heterozygosity to be achieved under

differentially extended systems. We tested this prediction by

performing simulations at the largest matrix size (M = 1352) in

which we progressively increased pollen (Figure 4) or seed

dispersal (Figure 5). Simulations were performed under the three

different mating systems of Su equal to 0.001, 0.1 and 0.9. We used

the parameter Pcd to measure extent of separation of individuals

expressed through pollen communication, and the equivalent

parameter Scd to express the extent of movement of seeds.

A threshold effect was again apparent in the pollen dispersal

based perturbation simulations when Su was set to 0.001, in which

the gradient of the line varied either side of a Pcd value of 0.9, from

20.005 to 20.183, Figure 4. Generally, lower values of Ho at each

Pcd were obtained in this simulation than in the matrix size

simulations for the same mating system. This is likely to be due in

part at least to the effects of seed dispersal. The value of Scd in the

pollen dispersal based perturbations was consistently 2.3. Howev-

er, Scd varied in the matrix size based perturbation simulations

Figure 3. Heterozygosity as a function of matrix sizes. Heterozygosity was plotted at Su = 0.001 (blue), Su = 0.1 (red) and Su = 0.9 (green). Ho is
plotted with the solid line and He using a dashed line. Simulations were repeated ten times for each value of Su, with error bars representing the
standard error.
doi:10.1371/journal.pone.0043254.g003
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Figure 4. Heterozygosity as a function of Pcd. Heterozygosity was plotted at Su = 0.001 (blue), Su = 0.1 (red) and Su = 0.9 (green). Ho is plotted
with the solid line and He using a dashed line. Simulations were repeated ten times for each value of Su, with error bars representing the standard
error.
doi:10.1371/journal.pone.0043254.g004

Figure 5. Heterozygosity as a function of Scd. Heterozygosity was plotted at Su = 0.001 (blue), Su = 0.1 (red) and Su = 0.9 (green). Ho is plotted
with the solid line and He using a dashed line. Simulations were repeated ten times for each value of Su, with error bars representing the standard
error.
doi:10.1371/journal.pone.0043254.g005

Spatial Extension in IBM Plants
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from 0.9–2.2. Consequently, at low values of Pcd there was a

disparity in the effect of seed dispersal between the two systems,

and the higher Ho of the matrix size perturbation based

simulations is explicable due to the greater gene flow mediated

by seed movement. The remaining two mating system simulations

also produced results that echoed those of the matrix size based

perturbation simulations (Figure 3), but with consistently lower

values of Ho.

The effect of increasing seed dispersal had a more limited effect

on increasing Ho than that observed with pollen dispersal, Figure 5.

In these simulations, the Pcd value was consistently 1.5. In the case

of simulations with Su of 0.001, the results had a great deal of

variance leading to a jagged line plotted of Ho against Scd. In this

case the jagged line correlates closely with the average population

sizes generated in the simulations that varied considerably and

included very low sizes (less than 100 individuals, data not shown).

This is because low population densities (as defined by high values

of Pcd and Scd) are subject to a high risk of failure to reproduce

under this mating system, which requires 99.9% outbreeding,

because there may be an inadequate supply of neighbors

sufficiently close for pollination. The other mating system

simulations where Su was 0.1 and 0.9 did not give rise to such

an erratic set of results.

In all simulations the effect of increasing the seed dispersal on Ho

was less than increasing the extent of pollen dispersal that

demonstrates that although increasing seed dispersal has an

influence on heterozygosity, it is weaker than the effect of pollen

flow. Furthermore, we did not observe a clear threshold effect for

seed dispersal.

Discussion

To our knowledge this is the only study where increasing spatial

perturbations are made to examine the discrepancy between real

observed values of population genetics variables, and those

expected based on mean-field population genetics theory. The

results we present here demonstrate that the deviation from

classical population genetics introduced by the closer approxima-

tion to the real world through spatial extension is largely tractable,

and different for different mating systems. We suggest that extent

of spatial extension can be usefully viewed through a concept of

effective population density which is described in the Pcd and Scd

variables, which can be measured directly for any plant species

population in nature.

Our findings suggest that in outbreeding populations systems in

which the Pcd and Scd values are below 1, the deviation from

classical expectations is generally low (less than 5%), and therefore

classical population genetics approaches may make acceptable

approximations of reality. The approximation breaks down

rapidly once the threshold value of ,1 is exceeded for Pcd in

particular. In the case of inbreeding systems, typical of sparsely

populated systems, the effects of inbreeding are far greater than

any introduced by spatial extension, consequently mean-field

based adjustments for inbreeding may also be adequate in a

spatially extended system. However, we found that populations

with mixed mating strategies are more sensitive to increased spatial

extension, and in these cases values generated from classical

population genetics are likely to be poor approximations of the

true values.

In order to study the effects of spatial extension we prevented

clumping from occurring, which has been observed in previous

studies [30], It may be argued that in reality populations form a

clumpy pattern of distribution. We found that increasing matrix

size and nearest-neighbor distances had little effect on lowering Ho

when individuals were clumped together (not shown). Therefore

clumping in this case may confound the effects of spatiality, even

though clumped subpopulations maintain a spatial population

structure. When we Increased seed and pollen dispersal on

clumped individuals, however, we saw similar increases in Ho as

with spaced individuals, consistent with previous observations

[30]. We suggest that clumped populations in the real world could

usefully be considered within the effective population density

framework presented here. Values of Pcd and Scd could be

considered within and between clumps. Often, these values of

Pcd and Scd within clumps would be low such that classical

population genetics could be applied as an approximation. The Pcd

and Scd values between clumps may well be high enough to identify

the expectation of genetic structure in the population, This in part

answers Platt et al’s [13] concern, that a lack of geographic

barriers and continual changes in spatial genetic autocorrelation

observed in Arabidopsis thaliana suggests that no single population

structure could be identifiable, and therefore that application of

classical population genetics could be problematic.

Our simulated results show that under certain conditions

spatially extended populations closely approximate HWE, and

this is verified by studies of plant populations in the real world [34–

37]. These studies include plants with various pollen and dispersal

systems, including both abiotic and biotic mechanisms. Plant

populations of Sandalwood, for instance, with high dispersal and

outcrossing rates conform to HWE [38] are consistent with our

simulated results. In our simulations we observed that population

sparcity leads to deviations from HWE. This deviation has also

been observed in reality with sparse plant populations in species of

juniper and poppy [39–40]. Conversely, it is expected that higher

outcrossing frequencies should be associated with higher popula-

tion densities, and so a tendency to conform to HWE, and this too

has been observed in wind-pollinated conifers [41] and in Mimulus

ringens [42]. Our simulations predict that some plant populations

would be observed to conform to HWE in some cases and deviate

from it in other cases due to the consequences of limited dispersal

relative to stand density. This finding is concordant with that of

Dering and Chybicki [43] who compared the genetic diversity of

natural and artificial regenerations of Quercus robur (L.) and Quercus

petrea (Matt.) Liebl. populations. In this case the natural

regenerations were in HWE, but the artificially regenerated

progeny plantations were not because of limitations in dispersal

caused by the sowing regime. Similarly, limitations of dispersal

caused deviations from HWE in 1 out of 14 sampled populations

of Striga hermonthica [44]. Our simulations further showed that

HWE is restored in sparse populations where dispersal rates are

increased to rates in which values of Pcd are 1 or less. This effect is

observed in Desmodium nudiflorum, which despite apparent popula-

tion sparcity has long-range seed dispersal by animals [45].

This study demonstrates that our IBM system behaves as

expected under neutral conditions, and has given some useful

insight into how the relationship between stand density and

dispersal as encompassed by the Pcd and Scd values is a predictor of

adherence to HWE that could be applied to the real world. The

model therefore has utility in exploring hypotheses in which

deviation from neutral expectations occurs due to other factors,

such as selection. An emergent observation from studies of

evolution at the systems and genomic level is that simple scenarios

that affect single genes are rare, and that often many genes and

regulatory networks are involved, as observed with humans [46–

47]. Similarly, with the evolution of domesticated plants estimates

of the number of genes underlying the domestication syndrome

traits range from 27 to 70 in wheat [48–49]. Therefore there is a

need to be able to consider evolutionary change in a way that

Spatial Extension in IBM Plants
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connects the interdependency of gene networks, genome archi-

tecture to spatially explicit populations. The IBM approach

presented here is designed to achieve this end by having

individuals that are capable of supporting gene networks in a

virtual genome, such that a systems biology architecture can be

connected to a spatially explicit population level of organization

and selection. We believe that such approaches will enable the

computational exploration of evolutionary genetics to move to a

new level in which systems approaches and spatially explicit

population genetics are integrated.

Methods

Model
Individuals are arranged onto a two-dimensional grid-like

matrix. Cells may be occupied by a plant, or be empty. In each

update the model processes each individual by iterating its age and

allowing it to interact with other individuals. Each grid cell may

contain only one adult and ten seeds. A ‘seed queue’ system was

implemented to replace older seeds with newer seeds and discard

the older seeds. Each simulation begins with 1000 diploid

individuals each containing two genes per genome copy. When

individuals germinate they can accumulate mutations, which are

passed on to their progeny. Gametes are produced by Mendelian

segregation of the individual’s genes at the floral stage of the life

cycle. Individuals will then either pollinate themselves or other

flowering individuals and then disperse their resultant seeds. Once

individuals have dispersed their seeds they senesce and are

removed from the model.

Burn-in. To ensure there had already been an accumulation

of mutations as the simulations start, a burn-in algorithm was

implemented. For each of the 1000 starting individuals 4000

updates with mutations occur to the genes at each copy of the

genome, according to the input mutation rate of 1024. The

resulting genotypes are then randomly assigned to each of the

starting individuals.

Individuals. Each individual has the following life cycle

stages: seed, vegetative, flowering and senescence. The number of

updates for an individual to move to each life stage is drawn from a

Poisson distribution. Once a seed has germinated it is considered

to be an adult. Individuals may disperse pollen and reproduce

within their flowering stage, with the number of ovules per

individual set to 30. At the end of the flowering life stage all

fertilized ovules are dispersed as seeds. At the end of the senescing

life stage the individual dies and is removed from the model.

Matrix. Simulations were run with increasing matrix sizes of

352 cells to 1352 cells in steps of 10 cells in each dimension. In each

simulation, cells were made unoccupiable in the matrix thus

preventing individuals from occupying these cells, termed ‘void

cells’. The number of void cells per simulation was calculated

according to the formula:

v~m2{1000 ð3Þ

where v is the number of void cells and m2 is the matrix size in

cells. Simulations for each matrix size were repeated ten times.

The matrix was constructed using a quadtree data structure [32]:

this is a tree-like structure where objects are stored in two-

dimensional space, with the whole matrix being the root node. As

objects are added to the tree the tree nodes are recursively split

into four more nodes, until the smallest node size has been reached

(which was set to a 262 sub-matrix). When an individual is

extracted for distance calculations the tree nodes are recursively

searched for the specified (x,y) coordinates of the individual until

the smallest node containing the individual is obtained. Groups of

individuals are extracted in a similar way using a radius. This

method provided better performance than using an exhaustive

search approach.

Dispersal. In this model pollen is dispersed by wind. A

probability for self-fertilization per ovule, Su is input by the user, if

this probability value is overcome then the ovule may be pollinated

by an outcrossing event. Seeds and pollen are dispersed using a

cumulative form of the function, described in [33] for wind-

pollinated plants such that the probability of a pollen grain

travelling j cells is given by:

P(X~xj)~
ceaxj

Pn
i~1

ceaxi

ð4Þ

Where xj is a distance in cells that a pollen grain is dispersed. The

maximum number of cells pollen (Pmax) can disperse is given by n.

The variable c is the intercept and a is the gradient of the

underlying function:

y~ceax ð5Þ

A value of 1.5 was used for c. For pollen x is considered in the

range 1# x #Pmax.The form of the equation used for seeds is

similar, except that x is considered in the range 0# x # Smax These

variations ensure that pollen exiting the flower does outcross but

that seeds can fall onto the same cell as their parent individual.

Pmax and Smax were user input. For pollen, a was calculated as:

a~l=Pmax ð6Þ

Where l is a constant set to 22 for pollen dispersal. An equivalent

equation is used for seed dispersal, with the denominator set to

Smax and l set to 24. A maximum dispersal distance for both seed

and pollen is input as a user defined parameter. The distance (D) a

pollen or seed was dispersed was determined by generating a

random number in the range of 0 to 1 that was used to sample

under the probability distribution generated from equation (4).

Once distance of dispersal had been determined, the direction

of dispersal was generated. Two different approaches were used

for pollen and seeds respectively. The direction of dispersal was

assumed to be due to a prevailing wind. The general direction of

the wind was randomized for each update. The angle of the

prevailing wind in degrees, h, is drawn from a uniform distribution

each update and is relative to the vertical axis. The specific

direction of dispersal is generated from h by resampling from a

normal distribution with mean h and a standard deviation of 180̊

to produce y, the specific angle of dispersal. The destination cell is

determined to which the seed will be dispersed using the values of

c and x.

For pollen dispersal, we began with the recipient of pollen and

calculated the relative probabilities of pollination by all potential

pollen donors. Potential pollen donors were those individuals that

were within the range of the recipient defined by Pmax. For each

donor, the angle (w) was calculated which is defined as the angle of

the recipient to the donor relative to a vertical axis passing through

the donor. A quantile value (qi) was calculated for w from the

normal distribution of mean h (angle of wind direction) and

standard deviation of 15 (degrees), which gave a measure

proportional to the probability of pollen emanating from the

donor in the direction of the recipient. The probability of the
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donor di being the successful pollen donor to the recipient was then

calculated as:

P(di)~
yiqi

Pn
j~1

yjqj

ð7Þ

Where yi is calculated as in equation (4) for the distance xi between

potential donor and recipient, and n is the total number of

potential pollen donors. The successful pollen donor was then

selected through random sampling of all possible donors. The

process was repeated independently for each ovule to be pollinated

on the recipient plant.

Analysis
Heterozygosity calculations. The observed heterozygosity,

Ho of remaining individuals after 4000 updates of each simulation

was recorded and compared with the expected heterozygosity as

calculated by an ideal population under Hardy-Weinberg

equilibria, as in [23]. The Hardy-Weinberg formula for multiple

alleles was used to calculate He.
Average nearest neighbor distances. To calculate the

nearest neighbor distance an individual plant i, the distance (D)

to all other individuals was calculated based on their Cartesian

coordinates using:

D~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xj{xi)

2z(yj{yi)
2

q
ð8Þ

Where xi and yi are the x and y coordinates of the individual i, and

xj and yj are coordinates of the jth individual. The lowest value of D

was recorded for each individual. All recorded D values were

averaged at the end of the simulation to produce an average

nearest neighbor distance For most simulations, the pollen

dispersal distance (Pd) or seed dispersal distance (Sd) was recorded

for each dispersal event in number of cells. The effect of the

dispersal is context dependent on the density of individuals in the

population, so we used an expression that captured this

information defined in equations (1) and (2) in the main body of

the text.

Selfing probabilities. In the experiment to explore the effect

of mating strategy on heterozygosity, the model was run with input

selfing probabilities (Su) at 0, 0.001 and then from 0.1 to 1 in steps

of 0.1. Each experiment at all selfing probabilities described was

repeated ten times. A matrix size of 352 was used, with 225 void

cells to limit the population to a maximum of 1000 individuals.

Pollen and seed dispersal. In the experiment to explore the

effect of dispersal on heterozygosity, simulations were run with

increasing maximum seed and pollen dispersal distances. To

provide sufficient isolation of individuals simulations were run with

a matrix size of 1352 cells with 17225 void cells. Maximum seed

and pollen dispersal were separately increased throughout

simulations from 5 to 50 cells in steps of 5 cells. When maximum

seed dispersal was increased, maximum pollen dispersal was set to

10 cells, and vice-versa for seed dispersal. With seed dispersal,

seeds were given 1000 attempts to find a habitable cell, to avoid

population crashes in the simulation. Distance values for pollen

dispersal or seed dispersal were then calculated as described above.
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