4 research outputs found

    On the completeness of solutions of Bethe's equations

    Full text link
    We consider the Bethe equations for the isotropic spin-1/2 Heisenberg quantum spin chain with periodic boundary conditions. We formulate a conjecture for the number of solutions with pairwise distinct roots of these equations, in terms of numbers of so-called singular (or exceptional) solutions. Using homotopy continuation methods, we find all such solutions of the Bethe equations for chains of length up to 14. The numbers of these solutions are in perfect agreement with the conjecture. We also discuss an indirect method of finding solutions of the Bethe equations by solving the Baxter T-Q equation. We briefly comment on implications for thermodynamical computations based on the string hypothesis.Comment: 17 pages; 85 tables provided as supplemental material; v2: clarifications and references added; v3: numerical results extended to N=14, M=

    Gale duality, decoupling, parameter homotopies, and monodromy

    Get PDF
    2014 Spring.Numerical Algebraic Geometry (NAG) has recently seen significantly increased application among scientists and mathematicians as a tool that can be used to solve nonlinear systems of equations, particularly polynomial systems. With the many recent advances in the field, we can now routinely solve problems that could not have been solved even 10 years ago. We will give an introduction and overview of numerical algebraic geometry and homotopy continuation methods; discuss heuristics for preconditioning fewnomial systems, as well as provide a hybrid symbolic-numerical algorithm for computing the solutions of these types of polynomials and associated software called galeDuality; describe a software module of bertini named paramotopy that is scientific software specifically designed for large-scale parameter homotopy runs; give two examples that are parametric polynomial systems on which the aforementioned software is used; and finally describe two novel algorithms, decoupling and a heuristic that makes use of monodromy
    corecore