
HOMOTOPY TECHNIQUES FOR TENSOR DECOMPOSITION
AND PERFECT IDENTIFIABILITY

JONATHAN D. HAUENSTEIN, LUKE OEDING, GIORGIO OTTAVIANI,
AND ANDREW J. SOMMESE

Abstract. Let T be a general complex tensor of format (n1, ..., nd). When the fraction∏
i ni/[1+

∑
i(ni−1)] is an integer, and a natural inequality (called balancedness) is satisfied,

it is expected that T has finitely many minimal decomposition as a sum of decomposable
tensors. We show how homotopy techniques allow us to find all the decompositions of T ,
starting from a given one. Computationally, this gives a guess regarding the total number of
such decompositions. This guess matches exactly with all cases previously known, and pre-
dicts several unknown cases. Some surprising experiments yielded two new cases of generic
identifiability: formats (3, 4, 5) and (2, 2, 2, 3) which have a unique decomposition as the sum
of 6 and 4 decomposable tensors, respectively. We conjecture that these two cases together
with the classically known matrix pencils are the only cases where generic identifiability
holds, i.e., the only identifiable cases. Building on the computational experiments, we use
algebraic geometry to prove these two new cases are indeed generically identifiable.

1. Introduction

Tensor decomposition is an active field of research, with many applications (see, e.g., [49]
for a broad overview). A tensor T of format (n1, . . . , nd) is an element of the tensor space
Cn1 ⊗ · · · ⊗ Cnd . The rank of T is the minimum r such that

(1) T =
r∑
i=1

vi1 ⊗ · · · ⊗ vid

where vij ∈ Cnj . This reduces to the usual matrix rank when d = 2.
The space Cn1⊗· · ·⊗Cnd contains a dense subset where the rank is constant. This constant

is called the generic rank for tensors of format (n1, . . . , nd). By a simple dimensional count,
the generic rank for tensors of format (n1, ..., nd) is at least

(2) R(n1, . . . , nd) :=

∏d
i=1 ni

1 +
∑d

i=1(ni − 1)
=

∏d
i=1 ni

1− d+
∑d

i=1 ni
.

The value dR(n1, . . . , nd)e is called the expected generic rank for (n1, . . . , nd).
A necessary condition for a general tensor T of format (n1, . . . , nd) to have only finitely

many decompositions (1) is that the number R(n1, . . . , nd) is actually an integer. Such
formats are called perfect [15,68]. Moreover, if a general tensor is known to have finitely many
decompositions (1), then the generic rank is equal to the expected generic rank R(n1, . . . , nd).

Date: October 31, 2016.
1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Florence Research

https://core.ac.uk/display/301578982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 J.D. HAUENSTEIN, L. OEDING, G. OTTAVIANI, AND A.J. SOMMESE

A tensor format is said to be generically identifiable if a generic tensor of that format
has a unique decomposition (up to global rescaling and permutation of the factors). A
tensor format is said to satisfy perfect identifiability if the format is perfect and generically
identifiable. The main goal of this paper is to study the number of decompositions of perfect
formats (n1, . . . , nd) when the generic rank is indeed equal to the generic expected rank.

The main tool for inquiry is numerical algebraic geometry, a collection of algorithms
to numerically compute and manipulate solutions sets of polynomial systems. Numerical
algebraic geometry, named in [65], grew out of numerical continuation methods for finding
all isolated solutions of polynomial systems. For a development and history of the area,
see the monographs [10, 66] and the survey [70]. The monograph [10] develops the subject
using the software package Bertini [9], which is used to perform the computations in this
article. For understanding the relation between numerical approaches and the more classical
symbolic approaches to computational algebraic geometry, see [7].

Numerical algebraic geometry has proven useful in many other applications. A small subset
of such applications include computing the initial cases for equations of an infinite family of
Segre-Grassmann hypersurfaces in [24]; numerically decomposing a variety in [11] which was
a crucial computation leading to a set-theoretic solution of the so-called salmon problem [2]
improving upon a previous result of Friedland [27], and inspiring a later result of Friedland
and Gross [28]; solving Alt’s problem [5] which counts the number of distinct four-bar linkages
whose coupler curve interpolates nine general points in the plane, namely 1442 [69]; finding
the maximal likelihood degree for many cases of matrices with rank constraints [45] and
observing duality which was proven in [26]; a range of results in physics such as [40,41,54,55];
and numerically solving systems of nonlinear differential equations [32–39].

We consider the equation (1) where r is the generic rank and the vij’s are unknowns.
Starting from one decomposition for T , we can move T (s) along a loop, for 0 ≤ s ≤ 1, such
that T (0) = T (1) = T . This consequently defines corresponding vectors vij(s) which satisfy

T (s) =
r∑
i=1

vi1(s)⊗ · · · ⊗ vid(s).

The decompositions of T at the end values, s = 0 and s = 1, may be different. Since
this process is computationally cheap, it can be repeated with random loops a considerable
number of times and one can record all of the distinct decompositions found. Moreover,
in the perfect case, where decompositions correspond to solutions to system of polynomial
equations with the same number of variables, i.e., a square system, one can use α-theory
via alphaCertified [42, 43] to prove lower bounds on the total number of decompositions.
Theory guarantees that all decompositions can be found using finitely many loops while ex-
perience shows that all decompositions of T can be found after a certain number of attempts
using random loops. When the number of decompositions is small, this process stabilizes
quickly to the total number of decompositions. We describe using this process on some pre-
viously known cases and predict several unknown cases. In particular, the values reported
in Section 3 are provable lower bounds that we expect are sharp.
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To put these results in perspective, we recall that finding equations that detect tensors
of small rank is a difficult subject. Recent progress is described in [3], which gives a semi-
algebraic description of tensors of format (n, n, n) of rank n and multilinear rank (n, n, n).
In addition, several recent algorithms and techniques are available to find best rank-one
approximations [57] or even to decompose a tensor of small rank [12, 14, 58, 67]. However,
the problem generally becomes more difficult as the rank increases so that decomposing a
tensor which has the generic rank is often the hardest case.

The formats (3, 4, 5) and (2, 2, 2, 3) were exceptional in our series of experiments since our
technique showed that they have a unique decomposition (up to reordering). Indeed, an
adaptation of the approach developed in [58] allowed to us to confirm our computations.

Theorem 1.1. A general tensor of format (3, 4, 5) has a unique decomposition (1) as a sum
of 6 decomposable summands.

Theorem 1.2. A general tensor of format (2, 2, 2, 3) has a unique decomposition (1) as a
sum of 4 decomposable summands.

These theorems are proved in Section 5. The proofs provide algorithms for computing
the unique decomposition, which we have implemented in Macaulay2 [31]. Based on the
evidence described throughout, we formulate the following conjecture.

Conjecture 1.3. The only perfect formats (n1, . . . , nd), i.e., R(n1, . . . , nd) in (2) is an
integer, where a general tensor has a unique decomposition (1) are:

(1) (2, k, k) for some k — matrix pencils, known classically by Kronecker normal form,
(2) (3, 4, 5), and
(3) (2, 2, 2, 3).

We would like to contrast the tensor case to the symmetric tensor case, where the excep-
tional cases were known since the 19th century, as well as the following recent result.

Theorem 1.4 (Galuppi–Mella [30]). The only perfect formats (n, d), i.e., n−1 ·
(
n+d−1

d

)
is

an integer, where a general tensor in SymdCn has a unique decomposition are:

(1) (2, 2k + 1) for some k — odd degree binary forms, known to Sylvester,
(2) (3, 5) — Quintic Plane Curves (Hilbert, Richmond, Palatini), and
(3) (4, 3) — Cubic Surfaces (Sylvester Pentahedral Theorem).

Theorem 1.4 was still stated as a conjecture (following [53] and [52]) in the first preprint of
the present article. See [53] and [60] for classical references. In [58, § 4.4], two of the authors
showed that the Koszul flattening method predicts exactly the cases listed in Theorem 1.4
and no others.

2. Some known results on the number of tensor decompositions

2.1. General tensors. The following summarizes some known results about tensors of for-
mat (n1, . . . , nd). For any values of r smaller than the generic rank, which was defined in
the introduction, the (Zariski) closure of the set of tensors of rank r is an irreducible alge-
braic variety. This variety is identified with the cone over the rth secant variety to the Segre
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variety P(Cn1)× · · · × P(Cnd) of decomposable tensors, e.g., see [16, 49]. In particular, it is
meaningful to speak about a general tensor of rank r.

Throughout this section, we consider cases where d ≥ 3 and, without loss of generality,
assume that 2 ≤ n1 ≤ n2 ≤ . . . ≤ nd. First, we review the known results on the so-called
unbalanced formats.

Theorem 2.1. For formats (n1, . . . , nd), suppose that nd ≥
∏d−1

i=1 ni −
∑d−1

i=1 (ni − 1).

(1) The generic rank is min
(
nd,

∏d−1
i=1 ni

)
.

(2) A general tensor of rank r has a unique decomposition if r <
∏d−1

i=1 ni−
∑d−1

i=1 (ni−1).

(3) A general tensor of rank r =
∏d−1

i=1 ni −
∑d−1

i=1 (ni − 1) has exactly
(
D
r

)
different de-

compositions where

D =

(∑d−1
i=1 (ni − 1)

)
!

(n1 − 1)! · · · (nd−1 − 1)!
.

This value of r coincides with the generic rank in the perfect case: when r = nd.

(4) If nd >
∏d−1

i=1 ni−
∑d−1

i=1 (ni−1), a general tensor of rank r >
∏d−1

i=1 ni−
∑d−1

i=1 (ni−1),
e.g., a general tensor of format (n1, . . . , nd), has infinitely many decompositions.

Proof. When nd >
∏d−1

i=1 ni −
∑d−1

i=1 (ni − 1), Item 1 follows from [18, Thm. 2.1(1-2)] (see

also [13, Prop. 8.2]). In the perfect case, i.e., nd =
∏d−1

i=1 ni −
∑d−1

i=1 (ni − 1), Item 1 follows
from [13, Prop. 8.3]. Items 2 and 3 follow from [13, Prop. 8.3, Cor. 8.4]. When nd − 1 >∏d−1

i=1 ni−
∑d−1

i=1 (ni−1), Item 4 follows from [1, Lemma 4.1]. If nd−1 =
∏d−1

i=1 ni−
∑d−1

i=1 (ni−1),

then
∏d−1

i=1 ni =
∑d

i=1(ni − 1). Hence, 1 +
∑d

i=1(ni − 1) cannot divide
∏d

i=1 ni and so the
format cannot be perfect. �

The case (2, n, n), corresponding to pencils of square matrices, is the only case for which
the binomial coefficient

(
D
r

)
in Theorem 2.1(3) is equal to 1. The unique decomposition is a

consequence of the canonical form for these pencils, found by Weierstrass and Kronecker [15].
For convenience, Table 1 lists some perfect cases coming from Theorem 2.1(3), namely

when nd =
∏d−1

i=1 ni −
∑d−1

i=1 (ni − 1) with generic rank r = nd.

After Theorem 2.1, the only open cases are when the balancedness condition is satisfied:

(3) nd <

d−1∏
i=1

ni −
d−1∑
i=1

(ni − 1).

A seminal identifiability result for general tensors up to a certain rank is [68, Cor. 3.7].
In [20], based on weak defectiveness introduced in [19], there are techniques to check the
number of decompositions of a general tensor of rank r, generalizing Kruskal’s result [48].

De Lathauwer’s condition (mentioned after equation (1.7) in [25]) can guarantee unique-
ness up to rank

(4)
d−1∑
i=1

ni − d+ 1
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(n1, . . . , nd) gen. rank # of decomp. of general tensor
(2, n, n) n 1
(3, 3, 5) 5 6
(3, 4, 7) 7 120
(3, 5, 9) 9 5005

(3, 6, 11) 11 352716
(4, 4, 10) 10 184756

(2, 2, 2, 5) 5 6
(2, 2, 3, 8) 8 495

Table 1. Generic ranks and numbers of decompositions for perfect formats (Thm. 2.1).

In the 3 × 4 × 5 the bound (4) is 5. In the 2 × 2 × 2 × 3 the bound (4) is 3. Indeed De
Lathauwer considers only “tall” tensors when the rank is no larger than the dimension of any
mode, so his methods don’t apply to the perfect case. However if you ignore this assumption
(rank R ≤ n3) in [25, Theorem 2.5], the second inequality

R(R− 1) ≤ n1(n1 − 1)n2(n2 − 1)

2

becomes 30 ≤ 36, which is valid in the 3× 4× 5 case. So the previous bound just misses our
results.

For all formats such that
∏d

i=1 ni ≤ 15, 000 which satisfy the inequality (3), a general
tensor of rank r which is strictly smaller then the generic rank has a unique decomposition
except for a list of well understood exceptions, e.g., see [20, Thm. 1.1]. These results support
the belief that, other than some exceptions, a general tensor of rank r smaller then the generic
rank has a unique decomposition. When r is the generic rank, since the techniques in [20]
cannot be applied, we apply numerical algebraic geometry to such cases in Section 3.

2.2. The symmetric case. The following summarizes results about symmetric tensors to
contrast with the general case. Recall that symmetric tensors of format (n, d) are tensors
T ∈ SymdCn, which can be identified with homogeneous polynomials of degree d in n
variables. The (symmetric) rank of T is the minimum r such that there is an expression

T =
r∑
i=1

vi ⊗ · · · ⊗ vi

with vi ∈ Cn. If T is identified with a polynomial, then each summand vi ⊗ · · · ⊗ vi is the
d-power of a linear form. By a naive dimension count, a general tensor in SymdCn has rank
at least n−1 ·

(
n+d−1

d

)
. When this fraction is an integer, the symmetric format (d, n) is called

perfect. As in the general case, perfectness is a necessary condition in order for a general
tensor in SymdCn to have only finitely many decompositions.

The following is the basic result about decomposition of symmetric tensors that we state
for perfect formats.
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d gen. rank # of decomp. of general tensor
4 6 ∞
5 7 1
7 12 5
8 15 16

Table 2. Generic ranks and numbers of decompositions for general tensors
in SymdC3 [60].

Theorem 2.2 (Alexander-Hirschowitz [4]). Let d ≥ 3 and assume r = n−1 ·
(
n+d−1

d

)
∈ Z.

A general tensor in SymdCn has finitely many decompositions of rank r except in the follow-
ing cases: (n, d) = (3, 4), (5, 3), or (5, 4). In these three exceptional cases, a general tensor
has no decomposition of rank r, but infinitely many decompositions of rank r + 1.

When n = 2, note that d+1
2
∈ Z exactly when d is odd. In these cases, Sylvester proved

that there is a unique decomposition with d+1
2

summands [60].

Theorem 1.4( [30]) lists two other cases when a general tensor in SymdCn has a unique
decomposition, namely Sym3C4 where (n, d) = (4, 3) and Sym5C3 where (n, d) = (3, 5) [60].

When n = 3, note that 1
3
·
(
d+2
2

)
∈ Z is an integer exactly when d = 1 or d = 2 modulo 3.

Table 2 records all the cases that can be found in [60] concerning SymdC3. The clever syzygy
technique used in [60] seems not to extend to higher values of d.

Remark 2.3. Let d = 1 or d = 2 modulo 3. By [23, Thm. 4.2(vi)], the number of decom-
positions of a general symmetric tensor in SymdC3 is bounded below by the degree of the

tangential projection from r − 1 points, where r = (d+2)(d+1)
6

is the generic rank. This latter
degree is computed as the residual intersection of two plane curves of degree d having r − 1

double points, which is d2 − 4(r − 1) = d2 − 4 (d−1)(d+4)
6

= (d−2)(d−4)
3

.
An analysis of the degeneration performed in [23] suggests that actually the number of

decompositions of general symmetric tensor in SymdC3 should be divisible by (d−2)(d−4)
3

. This
guess agrees, for d ≤ 8, with the above table from [60] and the results for d ≤ 11 in §3.3.

A general symmetric tensor of rank r which is strictly smaller then the generic rank has
a unique decomposition except for a list of well understood exceptions, see [6, 21,53].

3. Homotopy techniques for tensor decomposition

In this section, we first describe the monodromy-based approach we use to determine
the number of decompositions for a general tensor. The software Bertini [9, 10] is then
used in the subsequent subsections to compute decompositions for various formats. In the
perfect cases under consideration, the number of decompositions can be certifiably lower
bounded via alphaCertified [42,43]. In particular, for the two cases (3, 4, 5) and (2, 2, 2, 3)
which are discovered here to have a unique decomposition, we provide theoretical proofs
in Section 5. Our computational methods include probabilistic reductions (e.g. cutting by
random hyperplanes and choosing random points) and numerical computations which are
always subject to round-off errors in any finite computation (e.g. numerical path tracking).
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Even though these methods are now completely standard, have been carefully and repeatedly
tested, and yield completely reproducible results, they are technically only true with high
probability, or up to the numerical precision of the computers we use. Recently results whose
proofs partially rely on such methods have been denoted Theorem? (see [59]). In this article
we say that these results hold with high confidence.

3.1. Decomposition via monodromy loops. In numerical algebraic geometry, mon-
odromy loops have been used to decompose solution sets into irreducible components [64].
Here, we describe the use of monodromy loops for computing additional decompositions
of a general tensor. For demonstration purposes, suppose that a general tensor of format
(n1, . . . , nd) has rank r and finitely many decompositions.

The approach starts with a general tensor T of format (n1, . . . , nd) with a known decom-
position (1) with vij ∈ Cnj for i = 1, . . . , r. In practice, one randomly selects the vij first and
then computes the corresponding T defined by (1). To remove the trivial degrees of freedom,
we assume that (vij)1 = 1 for i = 1, . . . , r and j = 1, . . . , d− 1. That is, we have a solution of

FT (v11, . . . , v
r
d) =

[
T −

∑r
i=1 v

i
1 ⊗ · · · ⊗ vid

(vij)1 − 1, i = 1, . . . , r, j = 1, . . . , d− 1

]
= 0.

The system FT consists of
∏d

j=1 nj + r(d − 1) polynomials in r ·
∑d

j=1 nj variables. Since

r = R(n1, . . . , nd) in (2), the number of polynomials is equal to the number of variables
meaning that FT is a square system.

Now, suppose that S ⊂ (Cn1 ×· · ·×Cnd)r consists of the known decompositions of T . For
a loop τ : [0, 1]→ Cn1···nd with τ(0) = τ(1) = T , consider the homotopy

H(v11, . . . , v
r
d, s) = Fτ(s)(v

1
1, . . . , v

r
d) = 0.

The loop τ is selected so that the solution paths starting at the points in S when s = 0 are
nonsingular for s ∈ [0, 1]. This is the generic behavior for paths τ since the singular locus
is a complex codimension one condition while we are tracking along a real one-dimensional
arc τ(s) for 0 ≤ s ≤ 1. The endpoints, namely at s = 0 and s = 1, of these solution paths
form a decomposition of T . If a new decomposition is found, it is added to S. The process
is repeated for many loops τ . We leave many details about path tracking to [10,66].

Since FT and the homotopy H is naturally invariant under the action of the symmetric
group on r elements, we only need to track one path starting from one point from each
orbit. Each loop is usually computationally inexpensive so we can repeat this computation
many times. Experience has shown that randomly selected loops are typically successful
at generating the requisite monodromy action needed to obtain all decompositions starting
from a single one in a relatively small number of loops.

In the subsequent subsections, when an exact value is reported, this means that at least 50
additional randomly selected loops failed to yield any new decompositions. Thus, we expect
that these values are sharp. When a lower bound is reported, this means that we have
terminated the computation with the last loop generating many new decompositions. Thus,
these lower bounds are probably quite far from being sharp, but do show nonuniqueness.
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(n1, n2, n3) gen. rank # of decomp. of general tensor
(3, 4, 5) 6 1
(3, 6, 7) 9 38
(4, 4, 6) 8 62
(4, 5, 7) 10 ≥ 222,556

Table 3. Results of our numerical computation for all perfect format 3-
tensors satisfying (3) with

∏3
i=1 ni ≤ 150 and the number of decompositions

for the generic tensor.

(n1, . . . , nd) gen. rank # of decomp. of general tensor
(2, 2, 2, 3) 4 1
(2, 2, 3, 4) 6 4
(2, 2, 4, 5) 8 68
(2, 3, 3, 4) 8 471
(2, 3, 3, 5) 9 7225
(3, 3, 3, 3) 9 20,596

(2, 2, 2, 2, 4) 8 447
(2, 2, 2, 3, 3) 9 18,854

(2, 2, 2, 2, 2, 3) 12 ≥ 238,879

Table 4. Results of our numerical computation for all perfect format tensors
with d ≥ 4 satisfying (3) with

∏d
i=1 ni ≤ 100.and the number of decompositions

for the generic tensor.

3.2. The number of decompositions for perfect format tensors.

Computation 3.1. Tables 3 and 4 summarize the results of our numerical computations
which determine (with high confidence) the generic ranks and numbers of decompositions

for general tensors d ≥ 3 satisfying (3) with
∏d

i=1 ni ≤ 100. Table 5 records our results for
symmetric tensors.

The generic rank is known to be equal to the expected one for formats (n, n, n) [51], which
is not perfect for n ≥ 3, and (2, . . . , 2) for at least k ≥ 5 factors [17], which is perfect if k+ 1
is a power of 2. A numerical check for k = 7 shows it is not identifiable.

3.3. The number of decompositions for symmetric tensors. We highlight a few cases
for computing the number of decompositions of symmetric tensors.

In the cases of this table, Theorem 1.1 in [52] and the recent [30] imply that the number
of decompositions of a general tensor is at least 2.

For SymdC3 and d = 1 or d = 2 modulo 3, the expectation stated in Remark 2.3 is that

the number of decompositions is divisible by (d−2)(d−4)
3

. This is confirmed for d = 10 with
320 = 20 · 16 and d = 11 with 2016 = 96 · 21.
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Tensor space gen. rank # of decomp. of general tensor

Sym10C3 22 320

Sym11C3 26 2016

Sym5C4 14 101

Sym3C7 12 98

Table 5. Results of our numerical computation for the number of decompo-
sitions of generic tensors for some symmetric tensor formats.

4. Pseudowitness sets and verification

The approach discussed in Section 3 uses random monodromy loops to attempt to gen-
erate new decompositions. Clearly, when showing that a format is not identifiable, one
simply needs to generate some other decomposition. We can use the numerical approxima-
tions to generate a proof that it is not identifiable in the perfect case using, for example,
alphaCertified [42, 43]. However, to determine the precise number of decompositions,
we simply run many monodromy loops and observe when the number of decompositions
computed stabilize. In this section, we describe one approach for validating the number of
decompositions and demonstrate this approach in Section 4.2 for counting the number of
decompositions for a general tensor of format (3, 6, 6) of rank 8.

4.1. Using pseudowitness sets. For demonstration purposes, consider counting the num-
ber of decompositions of a general tensor of format (n1, . . . , nd) of rank r. Consider the
following where we have removed the trivial degrees of freedom by selecting elements to be 1:

G :=

{
(T, v11, . . . , v

1
d, . . . , v

r
1, . . . , v

r
d)

∣∣∣∣ T =
∑r

i=1 v
i
1 ⊗ · · · ⊗ vid,

(vij)1 = 1 for i = 1, . . . , r and j = 1, . . . , d− 1

}
.

The graph G is clearly an irreducible variety. Hence, the image π(G) is also irreducible

where π(T, v11, . . . , v
1
d, . . . , v

r
1, . . . , v

r
d) = T . If dimG = dimπ(G), then we know that a

general tensor T of format (n1, . . . , nd) of rank r has finitely many decompositions, namely

|π−1(T ) ∩G|
r!

.

In particular, |π−1(T ) ∩G| is the degree of a general fiber of π with respect to G and the
denominator r! accounts for the natural action of the symmetric group on r elements.

Using numerical algebraic geometry, computations on G will be performed using a witness
set, e.g., see [10,66], and on π(G) using a pseudowitness set [46,47]. A byproduct of computing

a pseudowitness set for π(G) is the degree of a general fiber.
Suppose that X ⊂ CN is an irreducible variety of dimension k and f is a system of

polynomials in N variables such that X is an irreducible component of the solution set
defined by f = 0. Then, a witness set for X is the triple {f,L, V } where L ⊂ CN is a
general linear space of codimension k and V = X ∩ L. Here, “general linear space” means
that L intersects the smooth points of the reduction of X transversely so that |V | = degX.
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To focus only on the case of interest, we assume that π : CN → Cm is the projection map
onto the first m coordinates such that π is generically `-to-one on X, i.e., dimX = dimπ(X).

Then, a pseudowitness set for π(X) is the quadruple {f, π,M,W} where W = X ∩ M
and M = Mπ × CN−m with Mπ ⊂ Cm being a general linear space of codimension k.
Here, “general linear space” means thatMπ intersects π(X) transversely, so that |π(W )| =
|π(X) ∩Mπ| = deg π(X), and, for each T ∈ π(X) ∩Mπ, |π−1(T ) ∩X| = `. Therefore, π is

an `-to-one map on W with |W | = ` · deg π(X).

Returning to the problem at hand, since we aim to compute a pseudowitness set for π(G),
we can simplify this computation by only considering the fiber over a general curve section
of π(G). If k = dim π(G), let A ⊂ Cn1 ⊗ · · · ⊗ Cnd be a general linear space of codimen-

sion k − 1. Then, C = π−1(π(G)∩A)∩G and π(C) = π(G)∩A are both irreducible curves,

e.g., see [62, Thm. 3.42] and [66, Thm. 13.2.1], respectively. Moreover, deg π(G) = deg π(C)
and the degree of a general fiber for C and G with respect to π are equal.

With this, we now aim to compute a pseudowitness set for the curve π(C). Since C is a

curve, we compute a pseudowitness set for π(C) by intersecting C with a hyperplane of the
form π−1(H) where H ⊂ Cn1 ⊗ · · · ⊗Cnd is a general hyperplane. Since π−1(H) is invariant
under the natural action of the symmetric group on r elements, we will first consider the
intersection of C with a general element of an irreducible family of hypersurfaces that are
invariant under the same action and contains hyperplanes of the form π−1(H). This is
sufficient by the results of [56] and simplifies the computation since only one point in each
orbit needs to be computed, i.e., only one point out of every r! based on the natural action
of the symmetry group on r elements.

Remark 4.1. At first sight, by reducing down to the curve case, it might seem that some
technicalities could be avoided by choosing a general hyperplane among the hyperplanes
invariant under the symmetric group and only needing to compute one point in each orbit.
However, there could be some difficulties that arise with this.

The first difficulty is that the set of hyperplanes invariant under a finite group does not
have to be irreducible. For example, let G ⊂ C∗ denote the sixth roots of unity. Consider
the action of G on C2 defined by g · (z, w) 7→ (g2z, g3w). In this case, the set of invariant
hyperplanes consists of two points, i.e., the z axis and the w axis.

Even when there is a large family of invariant hyperplanes that make sense, the second
difficulty is that none of them need be invariant enough to intersect the algebraic set of
interest transversely in the degree number of points. For example, let X ⊂ C2 be the
solution set of z2 − w3 which is a curve of degree 3. Let G denote {1,−1} which acts on
C2 by g · (z, w) 7→ (gz, w). Note that X is invariant under G. The G-invariant hyperplanes
consist of two components. One component is made up of the fibers of the projection map
(z, w) 7→ w which meet X in two points. The other component consists of the w axis which
is not transversal to X.

To avoid these potential difficulties, we first define an irreducible family of hyperplanes that
contains the invariant hyperplanes of interest. Then, the general theory in [56] shows that
this process computes the requisite points needed in the construction of a pseudowitness set.
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4.2. Tensors of format (3, 6, 6) of rank 8. The tensors of format (3, 6, 6) have generic
rank 9 in which a general tensor of this format has infinitely many decompositions. In [22],
the open problem of computing the number of tensor decompositions of a general tensor of
rank 8 of format (3, 6, 6) was formulated. To the best of our knowledge, this is probably
the last open case when a generic tensor of some rank strictly smaller than the generic one
is not identifiable. Theorem 3.5 of [22] proved that the number of decompositions is ≥ 6.
Moreover, [22] showed that the number of decompositions of format (3, 6, 6) of rank 8 is equal
to the number of decompositions of a general tensor in Sym3C3 ⊗C2 ⊗C2, which is perfect
with generic rank 8. We use the approach from §4.1 to show exactly 6 decompositions.
Another approach based on a multihomogeneous trace test in [44] confirms this result.

To use the approach from §4.1, consider the Veronese embedding

v3 : C3 → C10 where (x, y, z) 7→ (x3, x2y, x2z, xy2, xyz, xz2, y3, y2z, yz2, z3).

We picked a random line L ⊂ C40 and consider the irreducible curve

C :=

{
(T, a1, b1, c1, . . . , a8, b8, c8)

∣∣∣∣ T =
∑8

i=1 v3(ai)⊗ bi ⊗ ci ∈ L
(ai)1 = (bi)1 = 1 for i = 1, . . . , 8

}
⊂ L×

(
C3 × C2 × C2

)8
.

To compute a pseudowitness set for π(C), we need to compute C∩(Mπ×(C3×C2×C2)8)
where Mπ ⊂ C40 is a general hyperplane. Consider the irreducible family of hyperplanes
defined by the vanishing of linear equations of the form

(5)
40∑
j=1

αjTj +
3∑
j=1

βj

8∑
k=1

(ak)j +
2∑
j=1

γj

8∑
k=1

(bk)j +
2∑
j=1

δj

8∑
k=1

(ck)j = ε.

By construction, this family is invariant under the natural action of the symmetric group S8

and contains all hyperplanes of the form Mπ × (C3 × C2 × C2)8. After picking a random
hyperplaneH of the form (5) and starting with one point on C∩H, we used monodromy loops
via Bertini to compute additional points in C∩H which stabilized to 1020 ·8! = 41,126,400.
The trace test [63] confirms that this set of points is indeed equal to C∩H. After selecting a
random hyperplaneMπ, we then computed W = C ∩ (Mπ× (C3×C2×C2)8) by deforming

from C ∩H which yielded |W | = 6 · 8! = 241,920. Since π(C)∩Mπ = L which has degree 1,
|π(W )| = 1 thereby showing exactly 6 decompositions.

We summarize the result of this computation.

Computation 4.2. Numerical algebraic geometry together with randomly selected linear
spaces show (with high confidence) that a general tensor in Sym3C3⊗C2⊗C2 has exactly 6
decompositions.

5. Tensor decomposition via apolarity

In [58], a technique generalizing Sylvester’s algorithm was implemented by considering the
kernel of the catalecticant map, which in turn is a graded summand of the apolar ideal. In
principle, this apolarity technique can be used for any algebraic variety.
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5.1. A uniform view of (Koszul) flattenings. Let V and Vi be arbitrary finite dimen-
sional vector spaces over C of dimensions n and ni, respectively. For −n ≤ p ≤ n, let

∧pV
denote fundamental representations of GL(V ) where we interpret

∧p =
∧−pV ∗ when p < 0.

For a multi-index I ∈ Zd, let VI denote the tensor product of fundamental representations

VI :=
∧i1V1⊗∧i2V2⊗ . . .⊗∧idVd.

Note that V1d := V1⊗ . . .⊗Vd. We may assume, up to reordering, that ij ≥ 0 for j = 1, . . . , h,

ij < 0 for j = h + 1, . . . , d. We obtain linear maps Kp :
∧pV → ∧p+1V that depend linearly

on V by way of the Koszul complex. Specifically, for v ∈ V and ϕ ∈
∧pV define

Kp(v)(ϕ) = ϕ ∧ v for p ≥ 0,

Kp(v)(ϕ) = ϕ(v) for p < 0.

Now we consider the tensor product of many Koszul maps, which are linear maps on tensor
products of fundamental representations that depend linearly on T ∈ V(1,...,1) := V1⊗ . . .⊗Vd:

KI(T ) : VI → VI+1d .

For indecomposable elements v1⊗ . . .⊗vd ∈ V1⊗ . . .⊗Vd and ϕ1⊗ . . .⊗ϕd ∈ VI define

(6) KI(v1⊗ . . .⊗vd)(ϕ1⊗ . . .⊗ϕd) =
h⊗
j=1

(ϕj ∧ vj)⊗
d⊗

j=h+1

(ϕj(vj)).

The definition of KI is extended by bi-linearity. We often drop the argument (v) or (T )
of Kp or KI when the tensor to be flattened is not specified and the linear dependence is
understood. From this definition it is clear that the image of KI(v1⊗ . . .⊗vd) is isomorphic to

h⊗
j=1

(∧ij (Vj/〈vj〉)⊗(vj)
)
⊗

d⊗
j=h+1

(∧−ij−1 (v⊥j )) .
A consequence of dimension counting, bi-linearity of KI , and sub-additivity of matrix rank
is the following, which is essentially described in [50, Prop. 4.1].

Proposition 5.1. Suppose T ∈ V1,...,1 has tensor rank r. Let ij ≥ 0 for j = 1, . . . , h, ij < 0
for j = h+ 1, . . . , d. Then the Koszul flattening KI(T ) : VI → VI+1d has rank at most

rI := r ·
h∏
j=1

(
nj − 1

ij

)
·

d∏
j=h+1

(
nj − 1

−ij − 1

)
.

In particular, the (rI + 1) × (rI + 1) minors of KI(T ) vanish. This is meaningful provided
that rI < min{dimVI , dimVI+1d}.

Let m =
∏h

j=1

(
nj−1
ij

)
·
∏d

j=h+1

(
nj−1
−ij−1

)
. The proposition says that for all tensors T with

rank(T ) = r we have rank(KI(T )) ≥ r ·m. Thus, Koszul flattenings potentially provide the
most useful information whenever the following ratio is maximized:

min {dimVI , dimVI+1d} / m.
When rm ≤ min {dimVI , dimVI+1d} we say that the flattening can detect rank r since we
expect that the flattening KI(T ) will have different ranks when T has rank either r− 1 or r
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(this is true in all the examples we have tried, including the ones occurring in Theorems 1.1
and 1.2) and there is no obstruction to this based solely on the size of the flattening matrix.

5.2. Apolarity Lemma for Koszul flattenings. Recall from (6) that

KI(v1⊗ . . .⊗vd) ≡ 0⇐⇒
h⊗
j=1

(ϕj ∧ vj)⊗
d⊗

j=h+1

(ϕj(vj)) = 0

for all pure tensors ϕ ∈ VI .
It is useful to look at tensors in the kernel of KI(T ) as linear maps. With this aim, we

need to distinguish the negative and nonnegative parts of I ∈ Zd. So let N tP = {1, . . . , d}
be the set partition such that −IN ∈ Zd>0, IP ∈ Zd≥0 and the notation IP (resp. IN) is the

vector in Zd gotten by keeping the elements of I in the positions P (resp. N) and setting
the rest of the entries to zero. We also let 1P denote the vector with ones in the positions
denoted by the index P (and zero elsewhere), and similarly for 1N . With this, we may
identify VI = VIP+IN = Hom(V−IN , VIP ), and consider the Koszul flattening of T ∈ V(1,...,1) as

KI(T ) : Hom(V−IN , VIP )→ Hom(V−IN+1N , VIP+1P ).

Up to reordering the factors, KI(T ) is defined on decomposable elements
(⊗

j∈IN wj

)
by

KI (v1⊗ . . .⊗vd) (ψ)

(⊗
j∈IN

wj

)
= ψ

(⊗
j∈IN

(wj ∧ vj)

)∧⊗
j∈Ip

vj

 ∀ψ ∈ Hom(V−IN , VIP ).

In our setting, [50, Prop. 5.4.1] yields the following lemma (see (9) for a concrete case).
Since this technique refers to a vector bundle, it could be called “nonabelian” apolarity, in
contrast with classical apolarity which refers to a line bundle (see [50, Ex. 5.1.2] and [58, § 4]).

Lemma 5.2 (Apolarity Lemma). Suppose T =
∑r

s=1 v
s
1⊗ . . .⊗vsd.

kerKI(T ) ⊃ {ψ ∈ Hom(V−IN , VIP ) | ψ
(
V−IN+1N ∧

⊗
j∈N v

s
j

)
∧
(⊗

j∈P v
s
j

)
= 0 for s = 1, . . . , r}.

Proof. Pick ψ in the space on the right hand side of the inclusion. Choosing any wj ∈ V−IN+1N

for every j ∈ IN , we have

KI

(
r∑
s=1

vs1⊗ . . .⊗vsd

)
(ψ)

(⊗
j∈IN

wj

)
=

r∑
s=1

ψ

(⊗
j∈IN

(wj ∧ vsj )

)∧⊗
j∈Ip

vsj


and each summand vanishes by the assumption. �

5.3. The 3× 4× 5 case. Let us denote the three factors as A = C3, B = C4, C = C5. The
following are all possible relevant non-redundant Koszul flattenings (up to transpose), which
all depend linearly on A⊗B⊗C.

K(0,−1,−1) : (B⊗C)∗ → A, K(−1,0,−1) : (A⊗C)∗ → B, K(−1,−1,0) : (A⊗B)∗ → C

K(1,0,−1) : C∗⊗A→ B⊗
∧2A , K(−1,0,2) : A∗⊗

∧2C → B⊗
∧3C

K(0,1,−1) : C∗⊗B → A⊗
∧2B , K(−1,1,0) : A∗⊗B → C⊗

∧2B,
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K(−1,0,1) : A∗⊗C → B⊗
∧2C , K(0,−1,1) : B∗⊗C → A⊗

∧2C,

Consider

Ku(T ) :
∧u1A⊗∧u2B⊗∧u3C → ∧u1+1A⊗

∧u2+1B⊗
∧u3+1C,

where, for any vector space V , we interpret negative exterior powers by asserting that∧sV =
∧−sV ∗ if s < 0.

For example K0,−1,−1(a⊗b⊗c) has image

(
∧0A ∧ a)⊗(B∗(b))⊗(C∗(c)) ⊂

∧1A⊗
∧0B⊗

∧0C.

The factor (B∗(b))⊗(C∗(c)) is just any scalar, obtained by contracting b with B∗, and c
with C∗. We are left with (

∧0A ∧ a) = 〈a〉, which is 1-dimensional.
Another example is K0,1,−1(a⊗b⊗c) which has image

(
∧0A ∧ a)⊗(

∧1B ∧ b)⊗(C∗(c)) ⊂
∧1A⊗

∧2B⊗
∧0C.

The factor C∗(c) is a scalar obtained by contracting c with C∗. This leaves (
∧0A ∧ a) = 〈a〉

tensored with (
∧1B ∧ b) ⊂

∧2B, but (
∧1B ∧ b) ∼= (B/b)⊗〈b〉, which is 3-dimensional.

In general, the image of Ku(a⊗b⊗c) has dimension

(7)

(
dimA− 1

f(u1)

)(
dimB − 1

f(u2)

)(
dimC − 1

f(u3)

)
.

where f(x) =

{
x if x ≥ 0

−x− 1 if x < 0
. On the other hand, the maximum rank that Ku can

have is the minimum of the dimensions of the source and the target, or

(8) min

{(
dimA

|u1|

)(
dimB

|u2|

)(
dimC

|u3|

)
,

(
dimA

|u1 + 1|

)(
dimB

|u2 + 1|

)(
dimC

|u3 + 1|

)}
.

Since the matrix rank of a Koszul flattening of a tensor T is bounded above by a multiplicative
factor (7) of the tensor rank of T , the maximum tensor rank that a Koszul flattening can
detect by a drop in matrix rank is the ratio of (8) and (7). For convenience we record the
dimensions and the multiplication factor (7) for each flattening.

map size mult-factor max tensor rank detected
K(0,−1,−1) 3× 20 1 3
K(−1,0,−1) 4× 15 1 4
K(−1,−1,0) 5× 12 1 5
K(1,−1,0) 15× 12 2 6
K(1,0,−1) 12× 15 2 6
K(0,1,−1) 18× 20 3 6
K(−1,1,0) 12× 30 3 4
K(−1,0,1) 40× 15 4 4
K(0,−1,1) 30× 20 4 5
K(−1,0,2) 40× 30 6 5
K(0,−1,2) 30× 40 6 5
K(0,−1,2) 30× 40 6 5
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We see that the only maps that might distinguish between tensor rank 5 and 6 are K(1,−1,0),

K(1,0,−1), and K(0,1,−1). Since
∧2A ∼= A∗, the first two maps are transposes of each other:

K(1,−1,0) = (K(1,0,−1))
t.

Thus, we proceed by considering K(1,0,−1) and K(0,1,−1).
In our case, Apolarity Lemma 5.2 says that

(9) kerK1,0,−1(
∑s

i=1 aibici) ⊃ {ϕ ∈ Hom(C,A)|ϕ(ci) ∧ ai = 0 for i = 1, . . . , s}.
and

kerK0,1,−1(
∑s

i=1 aibici) ⊃ {ϕ ∈ Hom(C,B)|ϕ(ci) ∧ bi = 0 for i = 1, . . . , s}.
Equality should hold for honest decompositions, see [50, Prop. 5.4.1].

With this setup, we now present a proof of Theorem 1.1.

Proof of Theorem 1.1. For general f ∈ A⊗B⊗C, K1,0,−1(f) is surjective and kerK1,0,−1(f)
has dimension dimHom(C,A) − dim∧2A ⊗ B = 15 − 12 = 3. To complete the proof
we interpret the linear map K1,0,−1(f) as a map between sections of vector bundles. Let
X = P(A) × P(B) × P(C), endowed with the three projections πA, πB, πC on the three
factors. We denote O(α, β, γ) = π∗AO(α) ⊗ π∗BO(β) ⊗ π∗CO(γ). Let QA be the pullback of
the quotient bundle on P(A).

Let E = QA ⊗O(0, 0, 1) and L = O(1, 1, 1). Note that E is a rank two bundle on X. As
in [50,58], the map K1,0,−1(f) can be identified with the contraction

K1,0,−1(f) : H0(E)−→H0(E∗ ⊗ L)∗

which depends linearly on f ∈ H0(L)∗.
The general element in H0(E) vanishes on a codimension two subvariety of X which

has the homology class c2(E) ∈ H∗(X,Z). The ring H∗(X,Z) has three canonical gen-
erators tA, tB, tC and it can be identified with Z[tA, tB, tC ]/(t3A, t

4
B, t

5
C). Since the rank of

QA is 2 and O(0, 0, 1) is a line bundle, we have the well known formula c2(E) = c2(QA) +
c1(QA)c1(O(0, 0, 1)) + c21(O(0, 0, 1)). We have c1(QA) = tA, c2(QA) = t2A, c1(O(0, 0, 1)) = tC
and we compute c2(E) = t2A + tAtC + t2C . Hence three general sections of H0(E) have

their common base locus given by c2(E)3 = (t2A + tAtC + t2C)
3

= 6t2At
4
C . This coefficient 6

coincides with the generic rank and it is the key of the computation. Terracini’s lemma
(see [49, Cor. 5.3.1.2]), using a simple tangent space computation, verifies that the generic
rank is indeed 6. We pick a tensor f =

∑6
i=1 aibici constructed with six random points

(ai, bi, ci) ∈ P(A) × P(B) × P(C) for i = 1, . . . , 6. By using Macaulay2 (see the Macaulay2

file attached at the arXiv version of this paper) we may compute that the variety

{(a, c) ∈ P(A)× P(C)|ϕ(c) ∧ a = 0 ∀ϕ ∈ kerK1,0,−1(f)}
consists of the union of six points (ai, ci) for i = 1, . . . , 6, and this holds even scheme-
theoretically. It follows that equality holds in (9) with s = 6, indeed K1,0,−1(f) is surjec-
tive and has 3-dimensional kernel, while the right-hand side of (9) has dimension at least
dimHom(C,A) − 6 · 2 = 3 . Moreover the common base locus of kerK1,0,−1(f) is given
by 6 linear spaces {ai} × P(B)× {ci} for i = 1, . . . , 6.

We claim that the common base locus of kerK1,0,−1(f) is given by 6 linear spaces as above
for general tensor f . Indeed, the common zero locus of three sections of E can be seen
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as the zero locus of a section of E⊕3. The dimension of the zero locus of a section of E⊕3

is at least 9 − 6 = 3 and it is upper semicontinous with respect to the section, hence the
common base locus of kerK1,0,−1(f) is a pure-dimensional 3-fold for general f . Since the top
Chern class of E⊕3 is c2(E)3, which we computed to be 6t2At

4
C , we know that the common

base locus of kerK1,0,−1(f) comes from a 0-dimensional scheme of degree 6 on P(A)× P(C),
after a pullback with πB, by [29, Prop. 14.1 (b)]. Since this 0-dimensional scheme consists
of 6 distinct points for the tensor f that we have picked, this property remains true for
general f .

In particular, the decomposition f =
∑6

i=1 ai ⊗ bi ⊗ ci has a unique solution (up to scale)
for ai and ci. After ai, ci have been determined, the remaining vectors bi can be recovered
uniquely by solving a linear system. �

Remark 5.3. If we attempt to repeat the same proof using K0,1−1 in place of K1,0,−1 most

parts go through unchanged. The map K0,1−1(T ) : C∗⊗B → A⊗
∧2B is 18× 20, and general

element T produces a 2-dimensional kernel. Then, we consider the intersection of two general
sections of H0(E) = Hom(C,B), where now E = QB⊗O(0, 0, 1). The top Chern class of E
is (by a similar calculation as in the proof of Theorem 1.1)

4t3Bt
3
C + 3t2Bt

4
C .

This gives that the common base locus of kerK0,1−1(T ) is given by a degree 7 curve on the
Segre product Seg(P(C) × P(B)). This curve necessarily contains the 6 points needed to
decompose T , but information from another Koszul flattening is needed to find them.

Remark 5.4. For the (3, 4, 5) format, we can even decompose a general tensor T of any rank r
between 1 and 6. The trick is to add to T the sum of 6 − r general decomposable tensors,
find the unique decomposition with the algorithm described in the proof of Theorem 1.1,
and subtract the 6−r tensors that have to appear in the decomposition. Unfortunately, this
technique cannot work in other cases if we do not have a tensor decomposition to start with.

5.4. The ≥ 4 factor case. We have seen that general tensors of format (2, n, n) and (3, 4, 5)
are identifiable. We asked if there are other formats with this property when there are ≥ 4
factors. To our surprise, the numerical homotopy method predicted an additional case where
identifiability holds. Our construction of Koszul flattenings and multi-factor apolarity above
allows us to prove this fact, which we prove next.

5.5. The 2×2×2×3 case. For this part, let A ∼= B ∼= C ∼= C2 and D ∼= C3. Because of the
small dimensions we are considering, the number of interesting Koszul flattenings for tensors
in A⊗B⊗C⊗D is limited to the following maps, which depend linearly on A⊗B⊗C⊗D.

The 1-flattenings (and their transposes):

K−1,0,0,0 : A∗ → B⊗C⊗D, K0,−1,0,0 : B∗ → A⊗C⊗D,

K0,0,−1,0 : C∗ → A⊗B⊗D, K0,0,0,−1 : D∗ → A⊗B⊗C,
which detect a maximum of rank 2 in the first 3 cases and a maximum of rank 3 in the last.

The 2-flattenings (and their transposes):

K0,0,−1,−1 : C∗⊗D∗ → A⊗B, K0,−1,0,−1 : B∗⊗D∗ → A⊗C,
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K−1,0,0,−1 : A∗⊗D∗ → B⊗C.
The maps are all 4× 6 and detect a maximum of tensor rank 4.

Remark 5.5. For (2,2,2,2), it is known that only two of the three 2-flattenings are algebraically
independent, and the dependency of the third on the other two is “responsible” for the
defectivity of the 3rd secant variety σ3(P1 × P1 × P1 × P1). This secant variety has one
dimension less than expected. This type of Segre variety was indeed studied by C. Segre [61].

The higher Koszul flattenings:

K−1,0,0,1 : A∗⊗D → B⊗C⊗
∧2D, K0,−1,0,1 : B∗⊗C → A⊗C⊗

∧2D,

K0,0,−1,1 : C∗⊗D → A⊗B⊗
∧2D

These maps are all 12× 6, and detect a maximum of rank 3.
We will proceed with the 2-flattenings in the following proof of Theorem 1.2 since they

are the only flattenings that detect the difference between rank 3 and 4.

Proof of Theorem 1.2. Terracini’s lemma (see [49, Cor. 5.3.1.2]), using a tangent space com-
putation, verifies the well known fact that the generic rank is 4. Suppose T ∈ A⊗B⊗C⊗D
is general among tensors of rank 4 and write T =

∑4
i=1 ai⊗bi⊗ci⊗di.

First consider the case K0,0,−1,−1 : C∗⊗D∗ → A⊗B. If T is general of rank 4, then
K0,0,−1,−1(T ) has rank 4, and must have a 2-dimensional kernel. Now, we apply (9). The
points {ci⊗di} must be contained in the common base locus of the elements in the kernel
of K0,0,−1,−1(T ). Let X = P(A) × P(B) × P(C) × P(D), endowed with the four projec-
tions πA, πB, πC , πD on the four factors. We denote O(α, β, γ, δ) = π∗AO(α) ⊗ π∗BO(β) ⊗
π∗CO(γ) ⊗ π∗DO(δ). Consider the line bundle E = O(0, 0, 1, 1) and L = O(1, 1, 1, 1) over
X. The ring H∗(X,Z) has four canonical generators tA, tB, tC , tD and it can be identified
with Z[tA, tB, tC , tD]/(t2A, t

2
B, t

2
C , t

3
D). We have c1(E) = tC + tD. As in the proof of Theo-

rem 1.1, the common base locus of the 2-dimensional kernel of K0,0,−1,−1(T ) may be seen as
the zero locus of a section of E⊕2 = O(0, 0, 1, 1)⊕2, which has top Chern class c21(E). Since
c21(E) = 2tCtD+ t2D, we get c21(E)tC = 1 · tCt2D, c21(E)tD = 2 · tCt2D. It follows that two general
sections of E have common base locus given by a cubic curve, denoted CC,D of bi-degree
(1, 2) on Seg(P(C)×P(D)), pulled back to a codimension 2 subvariety of X. The projection
to P(D) is a conic, which we denote QC .

Similarly for the next 2-flattening, K0,−1,0,−1 : B∗⊗D∗ → A⊗C, we repeat the same pro-
cess, where all the dimensions and bundles are the same except for a change of roles of C
and B. By the same method we obtain another conic QB in P(D).

Finally, if QC and QB are general, Bézout’s theorem implies that they intersect in 4
points in P(D), say {[d1], [d2], [d3], [d4]}. Like in the proof of Theorem 1.1 we can check,
using a Macaulay2 script, that starting from T =

∑4
i=1 aibicidi with (ai, bi, ci, di) ∈ X

for i = 1, . . . , 4, we get that the conics found by the above procedure intersect exactly in
{[d1], [d2], [d3], [d4]}. By semicontinuity, like in the proof of Theorem 1.1 , we have that the
intersection between the common base locus of the kernel of K0,0,−1,−1(T ) and the common
base locus of the kernel of K0,−1,0,−1(T ), corresponding to the class (2tCtD+t2D)(2tBtD+t2D) =
4tBtCt

2
D, consists of the pullback under πA of four distinct points on P(B) × P(C) × P(D),

for general T , namely of the 4 linear spaces P(A) × {bi} ⊗ {ci} × {di}. In particular, the
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decomposition T =
∑4

i=1 ai⊗ bi⊗ ci⊗ di has a unique solution (up to scale) for bi, ci and di.
After bi, ci, di have been determined, the remaining vectors ai can be recovered uniquely by
solving the linear system T =

∑4
i=1 ai⊗bi⊗ci⊗di. �

6. Conclusion

By using a numerical algebraic geometric approach based on monodromy loops, we are
able to determine the number of decompositions of a general tensor. Since this approach
determined that general tensors of format (3, 4, 5) and (2, 2, 2, 3) have a unique decomposi-
tion, we developed explicit proofs for these two special cases. With the classically known
generically identifiable case of matrix pencils, i.e., format (2, n, n), we conjecture these are
the only cases for which a general tensor has a unique decomposition.

We are currently researching other applications of this monodromy-based approach, in-
cluding determining identifiability in biological models [8].
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