475,567 research outputs found
Cellulose, Chitosan, and Keratin Composite Materials. Controlled Drug Release
A method was developed in which cellulose (CEL) and/or chitosan (CS) were added to keratin (KER) to enable [CEL/CS+KER] composites to have better mechanical strength and wider utilization. Butylmethylimmidazolium chloride ([BMIm+Cl–]), an ionic liquid, was used as the sole solvent, and because the [BMIm+Cl–] used was recovered, the method is green and recyclable. Fourier transform infrared spectroscopy results confirm that KER, CS, and CEL remain chemically intact in the composites. Tensile strength results expectedly show that adding CEL or CS into KER substantially increases the mechanical strength of the composites. We found that CEL, CS, and KER can encapsulate drugs such as ciprofloxacin (CPX) and then release the drug either as a single or as two- or three-component composites. Interestingly, release rates of CPX by CEL and CS either as a single or as [CEL+CS] composite are faster and independent of concentration of CS and CEL. Conversely, the release rate by KER is much slower, and when incorporated into CEL, CS, or CEL+CS, it substantially slows the rate as well. Furthermore, the reducing rate was found to correlate with the concentration of KER in the composites. KER, a protein, is known to have secondary structure, whereas CEL and CS exist only in random form. This makes KER structurally denser than CEL and CS; hence, KER releases the drug slower than CEL and CS. The results clearly indicate that drug release can be controlled and adjusted at any rate by judiciously selecting the concentration of KER in the composites. Furthermore, the fact that the [CEL+CS+KER] composite has combined properties of its components, namely, superior mechanical strength (CEL), hemostasis and bactericide (CS), and controlled drug release (KER), indicates that this novel composite can be used in ways which hitherto were not possible, e.g., as a high-performance bandage to treat chronic and ulcerous wounds
On the distribution of adjectives in Romanian : the cel construction
This paper deals with the variable position of adjectives in the Romanian DP. As all other Romance languages, Romanian allows for adjectives to appear in both prenominal and post-nominal position. In addition, however, Romanian has a third pattern: the so-called cel construction, in which the adjective in the post-nominal position is preceded by a determiner-like element, cel. This pattern is superficially similar to Determiner Spreading in Greek. In this paper we contrast the cel construction to Greek DS and discuss the similarities and differences between the two. We then present an analysis of cel as involving an appositive specification clause, building on de Vries (2002). We argue that the same structure is also involved in the context of nominal ellipsis, the second environment in which cel is found
Recyclable Synthesis, Characterization, and Antimicrobial Activity of Chitosan-based Polysaccharide Composite Materials
We have successfully developed a simple and totally recyclable method to synthesize novel, biocompatible, and biodegradable composite materials from cellulose (CEL) and chitosan (CS). In this method, [BMIm+Cl−], an ionic liquid (IL), was used as a green solvent to dissolve and synthesize the [CEL+CS] composites. Since, the IL can be removed from the composites by washing them with water, and recovered by distilling the washed solution, the method is totally recyclable. Spectroscopic and imaging techniques including XRD, FTIR, NIR, and SEM were used to monitor the dissolution, to characterize and to confirm that CEL and CS were successfully regenerated. More importantly, we have successfully demonstrated that [CEL+CS] composite is particularly suited for many applications including antimicrobial property. This is because the composites have combined advantages of their components, namely superior chemical and mechanical stability (from CEL) and bactericide (from CS). Results of tensile strength measurements clearly indicate that adding CEL into CS substantially increase its tensile strength. Up to 5× increase in tensile strength can be achieved by adding 80% of CEL into CS. Results of in vitro antibacterial assays confirm that CS retains its antibacterial property in the composite. More importantly, the composites reported here can inhibit growth of wider range of bacteria than other CS-based materials prepared by conventional methods; that is over 24 h period, the composites substantially inhibited growth of bacteria such as MRSA, VRE, S. aureus, E. coli. These are bacteria that are often found to have the highest morbidity and mortality associated with wound infections. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2013
Facile Synthesis, Characterization, and Antimicrobial Activity of Cellulose-Chitosan-Hydroxyapatite Composite Material: A Potential Material for Bone Tissue Engineering
Hydroxyapatite (HAp) is often used as a bone-implant material because it is biocompatible and osteoconductive. However, HAp possesses poor rheological properties and it is inactive against disease-causing microbes. To improve these properties, we developed a green method to synthesize multifunctional composites containing: (1) cellulose (CEL) to impart mechanical strength; (2) chitosan (CS) to induce antibacterial activity thereby maintaining a microbe-free wound site; and (3) HAp. In this method, CS and CEL were co-dissolved in an ionic liquid (IL) and then regenerated from water. HAp was subsequently formed in situ by alternately soaking [CEL+CS] composites in aqueous solutions of CaCl2 and Na2HPO4. At least 88% of IL used was recovered for reuse by distilling the aqueous washings of [CEL+CS]. The composites were characterized using FTIR, XRD, and SEM. These composites retained the desirable properties of their constituents. For example, the tensile strength of the composites was enhanced 1.9 times by increasing CEL loading from 20% to 80%. Incorporating CS in the composites resulted in composites which inhibited the growth of both Gram positive (MRSA, S. aureus and VRE) and Gram negative (E. coli and P. aeruginosa) bacteria. These findings highlight the potential use of [CEL+CS+HAp] composites as scaffolds in bone tissue engineering
On the Expressiveness of Languages for Complex Event Recognition
Complex Event Recognition (CER for short) has recently gained attention as a mechanism for detecting patterns in streams of continuously arriving event data. Numerous CER systems and languages have been proposed in the literature, commonly based on combining operations from regular expressions (sequencing, iteration, and disjunction) and relational algebra (e.g., joins and filters). While these languages are naturally first-order, meaning that variables can only bind single elements, they also provide capabilities for filtering sets of events that occur inside iterative patterns; for example requiring sequences of numbers to be increasing. Unfortunately, these type of filters usually present ad-hoc syntax and under-defined semantics, precisely because variables cannot bind sets of events. As a result, CER languages that provide filtering of sequences commonly lack rigorous semantics and their expressive power is not understood.
In this paper we embark on two tasks: First, to define a denotational semantics for CER that naturally allows to bind and filter sets of events; and second, to compare the expressive power of this semantics with that of CER languages that only allow for binding single events. Concretely, we introduce Set-Oriented Complex Event Logic (SO-CEL for short), a variation of the CER language introduced in [Grez et al., 2019] in which all variables bind to sets of matched events. We then compare SO-CEL with CEL, the CER language of [Grez et al., 2019] where variables bind single events. We show that they are equivalent in expressive power when restricted to unary predicates but, surprisingly, incomparable in general. Nevertheless, we show that if we restrict to sets of binary predicates, then SO-CEL is strictly more expressive than CEL. To get a better understanding of the expressive power, computational capabilities, and limitations of SO-CEL, we also investigate the relationship between SO-CEL and Complex Event Automata (CEA), a natural computational model for CER languages. We define a property on CEA called the *-property and show that, under unary predicates, SO-CEL captures precisely the subclass of CEA that satisfy this property. Finally, we identify the operations that SO-CEL is lacking to characterize CEA and introduce a natural extension of the language that captures the complete class of CEA under unary predicates
0 pewnej własności zbiorów wypukłych i jej zastosowaniu
Man beweist, daß jede abgeschlossene konvexe und nichtkompakte Untermenge
des n-dimensionalen euklidischen Raumes mindestens eine abgeschlossene
Halbgerade enthalten muß und mit Hilfe von dieser Behauptung untersucht
man die Beschränktheit des Lösungsgebiets linearer Ungleichungssystemen
.W artykule dowodzi się, że każdy domknięty, wypukły i niezwarty podzbiór
przestrzeni euklidesowej zawiera domkniętą półprostą i za pomocą tego prostego
faktu bada się ograniczoność obszaru rozwiązań układów nierówności liniowych.Zadanie pt. Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki nr 885/P-DUN/2014 zostało dofinansowane ze środków MNiSW w ramach działalności upowszechniającej naukę
On the finite-sample properties of conditional empirical likelihood estimators
We provide Monte Carlo evidence on the finite sample behavior of the conditional empirical likelihood (CEL) estimator of Kitamura, Tripathi, and Ahn (2004) and the conditional Euclidean empirical likelihood (CEEL) estimator of Antoine, Bonnal, and Renault (2007) in the context of a heteroskedastic linear model with an endogenous regressor. We compare these estimators with three heteroskedasticity-consistent instrument-based estimators in terms of various performance measures. Our results suggest that the CEL and CEEL with fixed bandwidths may suffer from the no-moment problem, similarly to the unconditional generalized empirical likelihood estimators studied by Guggenberger (2008). We also study the CEL and CEEL estimators with automatic bandwidths selected through cross-validation. We do not find evidence that these suffer from the no-moment problem. When the instruments are weak, we find CEL and CEEL to have finite sample properties --in terms of mean squared error and coverage probability of confidence intervals-- poorer than the heteroskedasticity-consistent Fuller (HFUL) estimator. In the strong instruments case the CEL and CEEL estimators with automatic bandwidths tend to outperform HFUL in terms of mean squared error, while the reverse holds in terms of the coverage probability, although the differences in numerical performance are rather small.Conditional empirical likelihood; conditional Euclidean likelihood; heteroskedasticity; weak instruments; cross-validation
Synergistic Adsorption of Heavy Metal Ions and Organic Pollutants by Supramolecular Polysaccharide Composite Materials from Cellulose, Chitosan and Crown Ether
We have developed a simple one-step method to synthesize novel supramolecular polysaccharide composites from cellulose (CEL), chitosan (CS) and benzo-15-crown 5 (B15C5). Butylmethylimidazolium chloride [BMIm+Cl−], an ionic liquid (IL), was used as a sole solvent for dissolution and preparation of the composites. Since majority of [BMIm+Cl−] used was recovered for reuse, the method is recyclable. The [CEL/CS + B15C5] composites obtained retain properties of their components, namely superior mechanical strength (from CEL), excellent adsorption capability for heavy metal ions and organic pollutants (from B15C5 and CS). More importantly, the [CEL/CS + B15C5] composites exhibit truly supramolecular properties. By itself CS, CEL and B15C5 can effectively adsorb Cd2+, Zn2+ and 2,4,5-trichlorophenol. However, adsorption capability of the composite was substantially and synergistically enhanced by adding B15C5 to either CEL and/or CS. That is, the adsorption capacity (qe values) for Cd2+ and Zn2+ by [CS + B15C5], [CEL + B15C5] and [CEL + CS + B15C5] composites are much higher than combined qe values of individual CS, CEL and B15C5 composites. It seems that B15C5 synergistically interact with CS (or CEL) to form more stable complexes with Cd2+ (or Zn2+), and as a consequence, the [CS + B15C5] (or the [CEL + B15C5]) composite can adsorb relatively larger amount Cd2+ (or Zn2+). Moreover, the pollutants adsorbed on the composites can be quantitatively desorbed to enable the [CS + CEL + B15C5] composites to be reused with similar adsorption efficiency
Sealed battery gas manifold construction Patent
Sealed electric storage battery with gas manifold interconnecting each cel
- …
