3,674 research outputs found

    Capacity Theorems for the Fading Interference Channel with a Relay and Feedback Links

    Full text link
    Handling interference is one of the main challenges in the design of wireless networks. One of the key approaches to interference management is node cooperation, which can be classified into two main types: relaying and feedback. In this work we consider simultaneous application of both cooperation types in the presence of interference. We obtain exact characterization of the capacity regions for Rayleigh fading and phase fading interference channels with a relay and with feedback links, in the strong and very strong interference regimes. Four feedback configurations are considered: (1) feedback from both receivers to the relay, (2) feedback from each receiver to the relay and to one of the transmitters (either corresponding or opposite), (3) feedback from one of the receivers to the relay, (4) feedback from one of the receivers to the relay and to one of the transmitters. Our results show that there is a strong motivation for incorporating relaying and feedback into wireless networks.Comment: Accepted to the IEEE Transactions on Information Theor

    A Relay Can Increase Degrees of Freedom in Bursty Interference Networks

    Full text link
    We investigate the benefits of relays in multi-user wireless networks with bursty user traffic, where intermittent data traffic restricts the users to bursty transmissions. To this end, we study a two-user bursty MIMO Gaussian interference channel with a relay, where two Bernoulli random states govern the bursty user traffic. We show that an in-band relay can provide a degrees of freedom (DoF) gain in this bursty channel. This beneficial role of in-band relays in the bursty channel is in direct contrast to their role in the non-bursty channel which is not as significant to provide a DoF gain. More importantly, we demonstrate that for certain antenna configurations, an in-band relay can help achieve interference-free performances with increased DoF. We find the benefits particularly substantial with low data traffic, as the DoF gain can grow linearly with the number of antennas at the relay. In this work, we first derive an outer bound from which we obtain a necessary condition for interference-free DoF performances. Then, we develop a novel scheme that exploits information of the bursty traffic states to achieve them.Comment: submitted to the IEEE Transactions on Information Theor

    Bounds on the Capacity of the Relay Channel with Noncausal State at Source

    Full text link
    We consider a three-terminal state-dependent relay channel with the channel state available non-causally at only the source. Such a model may be of interest for node cooperation in the framework of cognition, i.e., collaborative signal transmission involving cognitive and non-cognitive radios. We study the capacity of this communication model. One principal problem is caused by the relay's not knowing the channel state. For the discrete memoryless (DM) model, we establish two lower bounds and an upper bound on channel capacity. The first lower bound is obtained by a coding scheme in which the source describes the state of the channel to the relay and destination, which then exploit the gained description for a better communication of the source's information message. The coding scheme for the second lower bound remedies the relay's not knowing the states of the channel by first computing, at the source, the appropriate input that the relay would send had the relay known the states of the channel, and then transmitting this appropriate input to the relay. The relay simply guesses the sent input and sends it in the next block. The upper bound is non trivial and it accounts for not knowing the state at the relay and destination. For the general Gaussian model, we derive lower bounds on the channel capacity by exploiting ideas in the spirit of those we use for the DM model; and we show that these bounds are optimal for small and large noise at the relay irrespective to the strength of the interference. Furthermore, we also consider a special case model in which the source input has two components one of which is independent of the state. We establish a better upper bound for both DM and Gaussian cases and we also characterize the capacity in a number of special cases.Comment: Submitted to the IEEE Transactions on Information Theory, 54 pages, 6 figure

    Degraded Broadcast Diamond Channels with Non-Causal State Information at the Source

    Full text link
    A state-dependent degraded broadcast diamond channel is studied where the source-to-relays cut is modeled with two noiseless, finite-capacity digital links with a degraded broadcasting structure, while the relays-to-destination cut is a general multiple access channel controlled by a random state. It is assumed that the source has non-causal channel state information and the relays have no state information. Under this model, first, the capacity is characterized for the case where the destination has state information, i.e., has access to the state sequence. It is demonstrated that in this case, a joint message and state transmission scheme via binning is optimal. Next, the case where the destination does not have state information, i.e., the case with state information at the source only, is considered. For this scenario, lower and upper bounds on the capacity are derived for the general discrete memoryless model. Achievable rates are then computed for the case in which the relays-to-destination cut is affected by an additive Gaussian state. Numerical results are provided that illuminate the performance advantages that can be accrued by leveraging non-causal state information at the source.Comment: Submitted to IEEE Transactions on Information Theory, Feb. 201

    Lecture Notes on Network Information Theory

    Full text link
    These lecture notes have been converted to a book titled Network Information Theory published recently by Cambridge University Press. This book provides a significantly expanded exposition of the material in the lecture notes as well as problems and bibliographic notes at the end of each chapter. The authors are currently preparing a set of slides based on the book that will be posted in the second half of 2012. More information about the book can be found at http://www.cambridge.org/9781107008731/. The previous (and obsolete) version of the lecture notes can be found at http://arxiv.org/abs/1001.3404v4/
    corecore