36 research outputs found

    Causal Inference on Discrete Data using Additive Noise Models

    Full text link
    Inferring the causal structure of a set of random variables from a finite sample of the joint distribution is an important problem in science. Recently, methods using additive noise models have been suggested to approach the case of continuous variables. In many situations, however, the variables of interest are discrete or even have only finitely many states. In this work we extend the notion of additive noise models to these cases. We prove that whenever the joint distribution \prob^{(X,Y)} admits such a model in one direction, e.g. Y=f(X)+N, N \independent X, it does not admit the reversed model X=g(Y)+\tilde N, \tilde N \independent Y as long as the model is chosen in a generic way. Based on these deliberations we propose an efficient new algorithm that is able to distinguish between cause and effect for a finite sample of discrete variables. In an extensive experimental study we show that this algorithm works both on synthetic and real data sets

    Consistency of Causal Inference under the Additive Noise Model

    Full text link
    We analyze a family of methods for statistical causal inference from sample under the so-called Additive Noise Model. While most work on the subject has concentrated on establishing the soundness of the Additive Noise Model, the statistical consistency of the resulting inference methods has received little attention. We derive general conditions under which the given family of inference methods consistently infers the causal direction in a nonparametric setting
    corecore