12 research outputs found

    Optimal trigonometric preconditioners for nonsymmetric Toeplitz system

    Get PDF
    This paper is concerned with the solution of systems of linear equations TN χ

    Spectral estimates for saddle point matrices arising in weak constraint four-dimensional variational data assimilation

    Get PDF
    We consider the large-sparse symmetric linear systems of equations that arise in the solution of weak constraint four-dimensional variational data assimilation, a method of high interest for numerical weather prediction. These systems can be written as saddle point systems with a 3×33 \times 3 block structure but block eliminations can be performed to reduce them to saddle point systems with a 2×22 \times 2 block structure, or further to symmetric positive definite systems. In this paper, we analyse how sensitive the spectra of these matrices are to the number of observations of the underlying dynamical system. We also obtain bounds on the eigenvalues of the matrices. Numerical experiments are used to confirm the theoretical analysis and bounds

    Locality and Exceptional Points in Pseudo-Hermitian Physics

    Get PDF
    Pseudo-Hermitian operators generalize the concept of Hermiticity. Included in this class of operators are the quasi-Hermitian operators, which define a generalization of quantum theory with real-valued measurement outcomes and unitary time evolution. This thesis is devoted to the study of locality in quasi-Hermitian theory, the symmetries and conserved quantities associated with non-Hermitian operators, and the perturbative features of pseudo-Hermitian matrices. An implicit assumption of the tensor product model of locality is that the inner product factorizes with the tensor product. Quasi-Hermitian quantum theory generalizes the tensor product model by modifying the Born rule via a metric operator with nontrivial Schmidt rank. Local observable algebras and expectation values are examined in chapter 5. Observable algebras of two one-dimensional fermionic quasi-Hermitian chains are explicitly constructed. Notably, there can be spatial subsystems with no nontrivial observables. Despite devising a new framework for local quantum theory, I show that expectation values of local quasi-Hermitian observables can be equivalently computed as expectation values of Hermitian observables. Thus, quasi-Hermitian theories do not increase the values of nonlocal games set by Hermitian theories. Furthermore, Bell's inequality violations in quasi-Hermitian theories never exceed the Tsirelson bound of Hermitian quantum theory. A perturbative feature present in pseudo-Hermitian curves which has no Hermitian counterpart is the exceptional point, a branch point in the set of eigenvalues. An original finding presented in section 2.6.3 is a correspondence between cusp singularities of algebraic curves and higher-order exceptional points. Eigensystems of one-dimensional lattice models admit closed-form expressions that can be used to explore the new features of non-Hermitian physics. One-dimensional lattice models with a pair of non Hermitian defect potentials with balanced gain and loss, Δ±iγ, are investigated in chapter 3. Conserved quantities and positive-definite metric operators are examined. When the defects are nearest neighbour, the entire spectrum simultaneously becomes complex when γ increases beyond a second-order exceptional point. When the defects are at the edges of the chain and the hopping amplitudes are 2-periodic, as in the Su-Schrieffer-Heeger chain, the PT-phase transition is dictated by the topological phase of the system. In the thermodynamic limit, PT-symmetry spontaneously breaks in the topologically non-trivial phase due to the presence of edge states. Chiral symmetry and representation theory are utilized in chapter 4 to derive large classes of pseudo-Hermitian operators with closed-form intertwining operators. These intertwining operators include positive-definite metric operators in the quasi-Hermitian case. The PT-phase transition is explicitly determined in a special case

    Problèmes isopérimétriques sur les graphes quantiques

    Get PDF

    Acta Scientiarum Mathematicarum : Tomus 52. Fasc. 1-2.

    Get PDF

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Annual Review of Progress in Applied Computational Electromagnetics

    Get PDF
    Approved for public release; distribution is unlimited
    corecore