24,542 research outputs found

    Categories for Dynamic Epistemic Logic

    Full text link
    The primary goal of this paper is to recast the semantics of modal logic, and dynamic epistemic logic (DEL) in particular, in category-theoretic terms. We first review the category of relations and categories of Kripke frames, with particular emphasis on the duality between relations and adjoint homomorphisms. Using these categories, we then reformulate the semantics of DEL in a more categorical and algebraic form. Several virtues of the new formulation will be demonstrated: The DEL idea of updating a model into another is captured naturally by the categorical perspective -- which emphasizes a family of objects and structural relationships among them, as opposed to a single object and structure on it. Also, the categorical semantics of DEL can be merged straightforwardly with a standard categorical semantics for first-order logic, providing a semantics for first-order DEL.Comment: In Proceedings TARK 2017, arXiv:1707.0825

    Stone-Type Dualities for Separation Logics

    Get PDF
    Stone-type duality theorems, which relate algebraic and relational/topological models, are important tools in logic because -- in addition to elegant abstraction -- they strengthen soundness and completeness to a categorical equivalence, yielding a framework through which both algebraic and topological methods can be brought to bear on a logic. We give a systematic treatment of Stone-type duality for the structures that interpret bunched logics, starting with the weakest systems, recovering the familiar BI and Boolean BI (BBI), and extending to both classical and intuitionistic Separation Logic. We demonstrate the uniformity and modularity of this analysis by additionally capturing the bunched logics obtained by extending BI and BBI with modalities and multiplicative connectives corresponding to disjunction, negation and falsum. This includes the logic of separating modalities (LSM), De Morgan BI (DMBI), Classical BI (CBI), and the sub-classical family of logics extending Bi-intuitionistic (B)BI (Bi(B)BI). We additionally obtain as corollaries soundness and completeness theorems for the specific Kripke-style models of these logics as presented in the literature: for DMBI, the sub-classical logics extending BiBI and a new bunched logic, Concurrent Kleene BI (connecting our work to Concurrent Separation Logic), this is the first time soundness and completeness theorems have been proved. We thus obtain a comprehensive semantic account of the multiplicative variants of all standard propositional connectives in the bunched logic setting. This approach synthesises a variety of techniques from modal, substructural and categorical logic and contextualizes the "resource semantics" interpretation underpinning Separation Logic amongst them

    Tense distributive lattices: algebra, logic and topology

    Full text link
    Tense logic was introduced by Arthur Prior in the late 1950s as a result of his interest in the relationship between tense and modality. Prior's idea was to add four primitive modal-like unary connectives to the base language today widely known as Prior's tense operators. Since then, Prior's operators have been considered in many contexts by different authors, in particular, in the context of algebraic logic. Here, we consider the category tdlat of bounded distributive lattices equipped with Prior's tense operators. We establish categorical dualities for tdlat in terms of certain categories of Kripke frames and Priestley spaces, respectively. As an application, we characterize the congruence lattice of any tense distributive lattice as well as the subdirectly irreducible members of this category. Finally, we define the logic that preserves degrees of truth with respect to tdlat-algebras and precise the relation between particular sub-classes of tdlat and know tense logics found in the literature

    Strongly Complete Logics for Coalgebras

    Get PDF
    Coalgebras for a functor model different types of transition systems in a uniform way. This paper focuses on a uniform account of finitary logics for set-based coalgebras. In particular, a general construction of a logic from an arbitrary set-functor is given and proven to be strongly complete under additional assumptions. We proceed in three parts. Part I argues that sifted colimit preserving functors are those functors that preserve universal algebraic structure. Our main theorem here states that a functor preserves sifted colimits if and only if it has a finitary presentation by operations and equations. Moreover, the presentation of the category of algebras for the functor is obtained compositionally from the presentations of the underlying category and of the functor. Part II investigates algebras for a functor over ind-completions and extends the theorem of J{\'o}nsson and Tarski on canonical extensions of Boolean algebras with operators to this setting. Part III shows, based on Part I, how to associate a finitary logic to any finite-sets preserving functor T. Based on Part II we prove the logic to be strongly complete under a reasonable condition on T

    An algebraic generalization of Kripke structures

    Full text link
    The Kripke semantics of classical propositional normal modal logic is made algebraic via an embedding of Kripke structures into the larger class of pointed stably supported quantales. This algebraic semantics subsumes the traditional algebraic semantics based on lattices with unary operators, and it suggests natural interpretations of modal logic, of possible interest in the applications, in structures that arise in geometry and analysis, such as foliated manifolds and operator algebras, via topological groupoids and inverse semigroups. We study completeness properties of the quantale based semantics for the systems K, T, K4, S4, and S5, in particular obtaining an axiomatization for S5 which does not use negation or the modal necessity operator. As additional examples we describe intuitionistic propositional modal logic, the logic of programs PDL, and the ramified temporal logic CTL.Comment: 39 page

    Coalgebraic Geometric Logic: Basic Theory

    Get PDF
    Using the theory of coalgebra, we introduce a uniform framework for adding modalities to the language of propositional geometric logic. Models for this logic are based on coalgebras for an endofunctor on some full subcategory of the category of topological spaces and continuous functions. We investigate derivation systems, soundness and completeness for such geometric modal logics, and we we specify a method of lifting an endofunctor on Set, accompanied by a collection of predicate liftings, to an endofunctor on the category of topological spaces, again accompanied by a collection of (open) predicate liftings. Furthermore, we compare the notions of modal equivalence, behavioural equivalence and bisimulation on the resulting class of models, and we provide a final object for the corresponding category

    Word graphs: The third set

    Get PDF
    This is the third paper in a series of natural language processing in term of knowledge graphs. A word is a basic unit in natural language processing. This is why we study word graphs. Word graphs were already built for prepositions and adwords (including adjectives, adverbs and Chinese quantity words) in two other papers. In this paper, we propose the concept of the logic word and classify logic words into groups in terms of semantics and the way they are used in describing reasoning processes. A start is made with the building of the lexicon of logic words in terms of knowledge graphs

    Generalized Vietoris Bisimulations

    Full text link
    We introduce and study bisimulations for coalgebras on Stone spaces [14]. Our notion of bisimulation is sound and complete for behavioural equivalence, and generalizes Vietoris bisimulations [4]. The main result of our paper is that bisimulation for a Stone\mathbf{Stone} coalgebra is the topological closure of bisimulation for the underlying Set\mathbf{Set} coalgebra
    • …
    corecore